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ABSTRACT

Though multiple service léading histories may have the same general character for any
given route, the magnmitudes encountered in each history will vary from driver to driver.
This variability in loading histories will be a function of the driving styles of the individual
drivers, which in themselves have a significant level of variability. As the load history from
any one driver will be variable and not a simple linear scaling of the history of any other
driver, a simple linear scaling of any one history will not characterize the variability of
usage over a wide range of service conditions. In this thesis, the effect on fatigue of the
variation of service loads produced by different drivers operating a vehicle over a constant
route will be presenied. This will be accomphshed through a statistical technique of
measuring and extrapolating cumulative exceedance diagrams to quantify the distribution
of loading histories. Necessary in this analysis is the fitting of a single three parameter
Wiebull curve to the exceedance diagram. Also discussed is an automated procedure to
perform such a fit. Monte Carlo simulations along with the Iocal stress strain approach will
be used to simulate a distribution for the varying service conditions imposed by the
different drivers. These varying service conditions are the result of a novel approach in
which loading histories were obtained through the use of a Four-Wheel Drive All Terrain

Vehicle.

iii



ACKNOWLEDGEMENTS

This thesisand the accompanying research activities were sponsored by the Ford
Motor Company of Dearborn, Michigan. Much gracious assistance was also provided by
the SoMat Corporation of Urbana, Illinois.

The author wishes to thank Dr. Darrell F. Socie, his graduate advisor, for the
freedom to work independently and the patience and guidance along the course of this
project.

Most importantly, the author’s parents, Sang Jung and Sun Ai Park, are much

thanked for their support and guidance.

v



Page
1, INTRODUCTION. ...ttt ttaei e e ree s tetenermeeeeeaenns 1
1.1 Concerns in Design..........ooovveviiiiiin i 1
1.2 Cumulative Exceedance Diagrams ...............................3
2. PROCEDURE. ...ttt e
21 General Requirements..............ooiviiiiinieiiieiii e 5
22 Vehicle DesCription..........ocvvvviivieieceioeeeiee e eaninss 6
23 Instrumentation Description.......o.ovoveiiiiiiiiisiorenrreninnns 7
2.4 Test Track Description....oviviieiiini i enreens
25  Volunteer DAVErS.....cooviviiiiiii s
3 RESUL TS, e 18
3.1 Time History FOImal......ooovvi i i e e, 18
3.2  Cumulative Exceedance Diagram Format........................20
3.3 Weibull Fitting of Exceedance Diagrams.......................... 24
34  Monte Carlo AnalysiS........couviviiiniiieenneieeineeeanai, 32
4. FUTURE RECOMMENDATIONS........ooviviiieieieeiieeee e, 41
5. CONCLUSIONS. .ot ee e e v
REFERENCES. ... et 44

TABLE OF CONTENTS

43



1. INTRODUCTION

1.1 Concerns in Design

In the face of intensifying consumer demands, regulatory requirements and
marketplace competition, the resultant increasing requirements and constraints on costs,
performance and durability have forced vehicle manufacturers to push the lmits of almost
every concept and element behind vehicle design. This is inclusive of concerns in structural
elements and other load bearing components. Especially true is the need to ensure that
such components will have sufficient durability in the face of the loading demands that
they will encounter in service. However, with the continued pushing of the envelope, new
methods of analyzing these loading demands have become necessary. Traditional design
procedures called for a component of a given strength (determined by the mechanical
propertics of the material used in fabrication) (o be exposed to a service load of a given
stress value. However, it should be noted that materials fatigue is not a static process but a
random and dynamic one. As seen in Figure 1, due to the random nature of vehicle service
loading events, these events are variable and have a distribution about a mean value. Both
the mean value and the variability will depend upon the service conditions of the
component. Accompanying the loading variability in Figure 1 is the variable nature of the
mechanical properties of the materials used in fabrication also with a distribution about a
mean value. An overall safety factor is determined between the means of scrvice loading

and component strength distributions.
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Figure 1, Loading Distribution Schematic

Generally, the distributions in the service loading events will be of a greater
variability than the distributions of the material mechanical property values. In the analysis
of loading histories, ofien the range-mean rainflow matrix histogram such as the one in
Figure 2 is used. Such histograms provide a manner to more easily visnalize the
relationship between loading events and the number of events than typical time history
plots. However, they are also more difficult to characterize by simple parametric

distribution functions.
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Figure 2, Rainflow Histogram



Utilizing the efforts of Socie and Park [1], an effort will be undertaken in this
thesis to characterize the variability in service histories that are the result of variations in
driving styles. This will be done by analyzing the differences in vehicle loading histories
that arc noted between different drivers while operating an instrumented vehicle over a

constant test track.
1.2. Cumulative Exceedance Diagrams

In the analysis of multiple service histories, it can quickly be discerned that there is
no simple relationship between any two service histories of any two different drivers.
Although the two may pass over the same route, a simple linear scaling of the loading

history of one will not appropriately represent the history of the other.

One method of analytical description of service loading histories is in the form of
the Cumulative Exceedance Diagram. As noted in Socie in [2], the exceedance diagram
such as the one shown in Figure 3 consists of rainflow counted ranges in the vertical axis
and the cumulative number of cycles in the horizontal axis (typically plotted on ar
logarithmic scale). One advantage inherent in the simple exceedance diagram is that it can
be represented by a Weibull curve with only three parameters. These parameters are the

maximum strain, €max, maximum number of cycles in the service loading history, Nmax, and

a curve shape parameter, k where k is the Weibull slope. Also shown in Figure 3, a k-
value of greater than unity yields a convex curve while a k-value less than unity vields a

concave curve,
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Figure 3, Schematic of Exceedance Diagram

Weibull distributions arc often used to describe and extrapolate exceedance style
data. The number of cycles at any given strain amplitude N(g;) from a three parameter

Weibull curve can be computed from the Weibull distribution function of Equation 1.

& k
N(Ae,) = N(Ag, )-N,_, exp{—(a : ) In(Nm)J, .................................... a

The variables €max, Nmax and k can be fit to any given set of exceedance data to

yield a best fit Weibull curve to characterize that particular set of data.



2. PROCEDURE

2.1.  General Requirements

For this effort, to analyze the variations in driving styles on vehicle service loading
histories, a vehicle, a test track and an entourage of drivers was needed. For the sake of
simplicity, a Four Wheel Drive All Terrain Vehicle was chosen as the vehicle. The use of a
full sized passenger vehicle would have necessitated a full size test track of which there
was no such availability. The costs associated with the construction of such a full-sized
track would have also been prohibitive, An advantage of the ATV from the standpoint of
the selection of drivers was the fact that the ATV selected was a relatively easy vehicle to
operate, requiring minimal training to use and was fun to drive. To compliment the ATV,
a test track over which to drive the ATV waus required. An established test track was
preferred as just merely driving the ATV over grass fields and mud patches would not
have yielded consistent or repeatable results. For drivers, a general request was passed
among students at the University of Illinois at Urbana campus. In all, 19 student drivers of
varying driving skill levels volunteered their time and services to operate the ATV. Driver
appointments were scheduled and the volunteer drivers were trained and given safety gear
and control of the vehicle for their test drives. Actual testing occurred during the months

of October through December of 1996.



2.2 Vehicle Description

As noted earlier, the vehicle of choice was a Four Wheel Drive All Terrain
Vehicle. In particular, the ATV used was a 1995 year-model 300cc Honda FourTrax, as

shown in Figure 4.

Figure 4, All Terrain Vehicle

Of particular interest regarding this ATV was the suspension system as seen in the
schematic of Figure 5. The system in question was comprised of a fully independent setup
in front and a live axle in the rear. A double wishbone design, the front suspension
consisted of a pair of unequal length double control arms (upper and lower) with a coil
spring and a shock absorber suspending each of the two wheels. In the rear of the vehicle
was a suspension consisting of a live axle mounted to centrally-mounted trailing arms.

Both trailing arms and rear wheels as well as the live axle were suspended by a single



shock absorber and coil spring. The similarity of the fiont suspension geometry 1o those
found on passenger vehicles (the unequal length double wishbone design is in widespread
use throughout the automotive industry in both front and rear suspension applications)

lent the ATV well to simulating passenger vehicle loading characteristics.

Figure 5, ATV Suspension and Powertrain Schematic

2.3  Instrumentation Description

Given the geometric similarity of the ATV front suspension to that found on a
passenger vehicle, it was desired to take advantage of this similarity by measuring the
loads sustained on the ATV front suspension to model passenger vehicle loading. This was

facilitated through the instrumentation of various suspension components on the ATV.

Located on the front suspensions arms were two ball joints per side on the spindle.
Being a double wishbone configuration, there was onc ball joint on the upper arm and vne

on the lower arm, each ball joint connecting the respective suspension arm to the spindle.



The top ball joint on each side was equipped with strain gauges in three directions (fore-
aft, lateral and vertical) and the bottom in two directions (fore-aft, lateral). Mounting of
the ball joints was done in the configuration illustrated in Figure 6. These instrumented ball
joints measured the loads in each of the respective directions applied to the suspension

components in the course of operation.

Upper A arm

Lower A arm - gy

Figure 6, Front Suspension Geometry and Instrumentation Schematic.

A pair of linear displacement transducers (Figure 7), one on each side of the
vehicle, were mounted to measure the vertical deflection (or wheel travel) of each of the
two front wheels. The steering angle was measured via a 1otary potentiometer spring
mounted to the steering shaft. Mounting the potentiometer to the steering shaft was
chosen as each of the two front wheels cut a different angle in turns due to the geometry
of the steering system. This is due to a shared characteristic between this ATV and
passenger vehicles known as the Ackerman angle. As the final channel, the measurement
of vehicle speed was accomplished through the use of a pulse transducer mounted to the

transmission final drive calibrated with respect to the vehicle speedometer.
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Figurc 7, Front Suspension Detail

Data collection was handled by a modular 2100 series data acquisition field
computer from the SoMat Corporation of Urbana, Illinois. This data collection unit
consisted of a processor, memory and 14 separate signal conditioning modules. There was
one channel module for each of the 14 channels of data (10 strain channels, one pulse
channel and three analog channels). Power for the field computer was provided by the 12
volt DC electrical supply bus of the ATV. The field computer unit was located on the
forward luggage rack of the ATV, in close proximity to the instrumentation connected to
it. After each drive, the data collected during the drive was downloaded from the field
computer to a laptop computer equipped with SoMat TCS for MS Windows® data

acquisition software (Version 1).



A total of 14 channels in the configuration listed in Table 1 made up the
instrumentation for the ATV. The first five channels numericaily represented the five strain
channels on the two ball joints on the left side of the vehicle. The final five represent the

equivalent channels on the opposite side. The Input column denotes the input type used

for each channel into the SoMat 2100 field computer.

Table 1, Instrumentation Data Channels

Channet No. Cha!_mel Name Channel Location [Channel Type input
Channel 1 Left Top BJ Lateral LT Ball Joint Strain Guage Strain
Channel 2 Left Top BJ Fore Aft LT Ball Joint Strain Guage Strain
Channe! 3 Left Top BJ Vertical LT Ball Joint Strain Guage Strain
Channei 4 Left Bottorn BJ Lateral LB Ball Joint Strain Guage Strain
Channel 5 Left Bottom BJ For Aft LB Ball Joint Strain Guage Strain
Channel 6 Speed Trans. Final Drive  [Pulse Transducer |Pulse
Channel 7 Left Vertical Disp. Left Wheel Well Linear Transducer [Analog |
Channel 8 Right Vertical Disp. Right Wheel Well Linear Transducer |Analog
Channel 9 Steering Angle Steering Shaft Rotary Pot. Analog |
Channel 10 |Right Top BJ Lateral RT Ball Joint Strain Guage Strain
Channel 11  |Right Top BJ Fore Aft RT Ball Joint Strain Guage Strain
Channel 12 |Right Top BJ Vertical RT Ball Joint Straip Guage Strain
Channel 13 _|Right Bottom BJ Lateral  |RB Ball Joint Strain Guage Strain
Channel 14 . |Right Bottom BJ For At  |RB Ball Joint Strain Guage Strain

2.4 Test Track Description

As a requirement to generate service loading data with the ATV, a driving course

over which to drive the vehicle was needed. One option as a driving course was in driving

the vehicle over a random set of terrain (grass fields, mud patches, nature trails, etc.).

However, as this sort of driving would have been uncontrolled and unrepeatable due to

the random selection of the terrain driven over, so also would the service loading data
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collected by such driving. Efforts to contain such random course selection by repeatedly
driving over the same section of soft terrain would eventually have resulted in the
degradation of that driving surface. Such a degradation would have changed the
characteristics of the terrain surface itself and, thus, changed the nature of the service
loading data collected. Given all factors, the determination was in the construction of an
established test track. Such a track would ensure repeatability in its ability to be driven

over repeatedly and generate consistent data with each pass.

For the sake of simplicity and portability, an existing pavement structure was used
for the base of the test track with the load event generators being in the form of a set of
portable track modules. The track modules used were constructed of green-treated (i.e.

weather-resistant) lumber and % inch thick 4'x8” plywood sheets.

Figure 8, View of Test Track.

11



The final track configuration consisted of seven wooden track modules of four
different module designs. These modules were located on an abandoned gravel frontage
road as depicted in Figure 8. As noted in Figure 9, the basis of the data collected was from
lining the modules in a single row and making repeated passes over the modules with the
ATV. By driving the vehicle over the track in both directions, each side of the vehicle
encountered both sides of the test track. With the definition of a single pass over the track
as being a drive down the full length of the track modules one time, a total of 10 passes
over the track were made by each driver for each data set collected (five passes in each of

two directions).

Figure 9, Pattern of Passes over Test Track

The first of the four track module designs was the Curb module (Figure 10). This
module consisted of three equidistant 4.5-inch tall blocks, two half width and one full
width mounted to a 4’x 8 plywood sheet. These blocks were composed of a single 27x 4”
wood stud (1.57x 3.5” nominal with the smaller dimension being the height) affixed atop a
pair of 2”x 6” studs (also each 1.5” in height). An offset pattern of the blocks had the
vehicle see two events per side per pass. One module of this type was placed in the test

track.

12



Figure 10, Curb Module

Alongside the curb module was the second module type, the ripple module. This
module consisted of ten equidistant blocks each of a three inch height set in a staggered
fashion, Similar to the curb module, the blocks were fashioned of a single 2”x 4” stud (1.5
inch beight) affixed atop a single 2”x 6” stud (also of 1.5” height). With this module, the
vehicle saw five events per side per pass over each module. Two tipple modules were

installed in the test track as seen in Figure 11.

13



Figure 11, Ripple Module.

The third module type as seen in Figure 12 was the pothole module. As implied by
the name, this module had four "potholes” cut into it. Each hole was an eighteen inch
square cut into a 4’x 8’ sheet with the sheet supported on top of 2”x 4”s (with the larger
dimension being the height, giving a 3.5 inch nominal depth for each hole). Internal
remnforcements 1n the module’s hollow interior core were supplied by a set of additional
2x4’s to ensure that the module would not flex and distort under the weight of the ATV.
The four holes were set in a staggered fashion so that the vehicle would see two events

per side per pass over each of the two such modules in the track.

14



Figure 12, Pothole Module,

The fourth module type used was the tarstrip module. This module consisted of
ﬁvg: one and a half inch nominal tall studs (2”x 4”s with the smaller dimension as the
height) set at two foot intervals. The 2” x 4” studs were affixed longitudinally by a pair of
2”x 67 studs as seen in the schematic of Figure 13. Over the track, five events per side per

pass were encountered by the vehicle over each of the two such modules in the track.
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Figure 13, Tarstrip Module Schematic
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2.5 Volunteer Drivers.

To obtain the needed variations in driving styles required for analysis, a small
entourage of drivers was assembled to drive the ATV. Though all the volunteer drivers
obtained were either students or recent graduates from the student body at the University
of Illinois, exhibited was a fair level of variability within this sample pool of drivers in
almost every measure of driving skill varation. A total of 19 volunteer drivers were
retained. On the date of their driving appointment, each driver was asked to fill an
evaluation form. The results of this form are listed in Table 2. The questions listed in the
form included basic physical data such as gender information, weight and height. Another
class of information soughl was in terms of driving experience and violations information.
In this sense, each driver was asked how many years of licensed driving experience each
had with a passenger vehicle. The values ranged from 13 years down to as little as 1 week.
Listed within parenthesis next to the experience with passenger vehicles was each driver’s
experience with motorcycles and ATV’s, as applicable. Each driver was also gueried
regarding the number of traffic citations and at-fault vehicle accidents each was involved
in within the previous five years. Another class of information sought was in self-ratings.
Each driver was asked to rate themselves relative to the general public in terms of their
driving ability and driving aggressiveness. As opposed to the other categories of questions

which were objective in nature, these two questions were subjective.

Table 2, Driving Skills Survey of Volunteer Drivers.

16



Gender Wiight Driving Experience | Tickets Accidenté-Driving Ability Aggrcssivenes:
Driver 1 M 195 8yrs (12yrs) 0 o ++ +
Driver 2 M 185 Byrs 0 0 + 0
Driver 3 M 135 13yrs 2 1 + o ]
Driver 4 M 165 2yrs (3yrs) 1] i + e
Driver 5 M 120 9yrs 0 0 + 0
Driver 6 M 225 Syrs 0 0 + +
Driver 7 M 140 yre 0 1 9 --
Driver 8 M 165 Syrs (5yrs) 3 1 + +
Driver 9 M 195 Syrs {12yrs}) 0 0 + -
Driver 10 M 150 Syrs {1yr) 0 g + 0
Driver 11 F 130 3yrs 0 0 + 0
Driver 12 M 220 Oyrs 2 1 0 0
{Driver 13 M 145 Byrs 0 0 + 0
IDriver 14 F 105 1 week 0 0 0 -
|Driver 15 F 100 Syrs 1 0 0 +
Driver 16 M 140 Byrs {8yrs) 6 0 + +
Driver 17 M 200 Byrs 3 2 0 -
Driver 18 [ 140 7yrs 0 0 0 0
Driver 19 M 185 9yrs 0 0 + o
Driving Ability ++ much better than average, Aggressiveness ++ mnch more aggressive than average
(self evaluation) + better than average, (self evaluation) + more aggressive than average,
0 average, O average,
- worse than average, - less aggressive than average,
— much worse than average -- much less aggressive than average

3. RESULTS

17



3.1 Time History Format

Having equipped a vehicle with the necessary instrumentation and constructed a
test track, the next step was in analyzing the data generated in the test drives. An example
of the results from the combination of the instrumentation-equipped vehicle and the test
track can be seen in the time history plot of Figure 14. Represented is a combination of the
time histories of all 14 channels of data taken during the driving appointment of Driver 8.
Observing the 14 time history plots, channel 9 is the steering angle. While driving, when
the vehicle steering was centered and the vehicle aimed straight ahead (noted in the time
history plot of channel 9 when the plot is dead center), the vehicle encountered a number
of loading events as noted by the activity of channels 1-5 and 10-14. Shortly after the
events subsided, the steering was turned (as noted by the steering angle plot wavering off
center in either direction) and then straightened before the suspension loading events
resumed. This is representative of the loading pattern of Figure 9. Though only
representative of the data taken for only one of the 19 drivers, Figure 14 represents the
general form of the data taken for all the drivers. Among the variations noted between the
individual sets of data were such factors as time length (faster drivers completed the
course in a shorter period of time than slower drivers), speed activity (some drivers varied
their speeds more than others, usually upon approach to the track modules) and the

severity of the loading events.

i8
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Figure 14, Time History Activity for One Driver

Demonstrating the variation between drivers is Figure 15. Two separate time
histories between two different drivers (Drivers 1 and 8) for the same channel (Channel 3)
are plotted. Variations between the two include time length and event magnitude. A

simple scaling of either of the histories to characterize the other would not be appropriate.
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Figure 15, Comparison of Time Histories between Two Drivers
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3.2 Cumulative Exceedance Diagram Format

With the objective to identify variances between different drivers and the effects
that such variances have on vehicle service loading histories, a simple manner in which to
visualize such vériances was desired. The cumulative exceedance diagram described in [2]
is one such solution. Figure 16 represents the familiar time history plot of a single data

channel (Channel 3) for one driver (Driver 8) operating the ATV.

L T Vertical (k)

Figure 16, Time history plot (Chan. 3, Drvr. 8)

Converting the time history information into the cumulative exceedance format

generates the plot of Figure 17.

20
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Figure 17, Cumulative Exceedance Diagram (Chan. 3, Drvr. 8)

Plotting the rainflow counted ranges in the vertical axis and the cumulative number
of cycles in the horizontal axis generates an exceedance plot that gives a good idea of the
proportion of the magnitude of loading events to the frequency of their occurrence. One
tool available in the use of exceedance diagrams is in the direct comparisan hetween
multiple such diagrams of different service loading histories in exceedance form. In such a
form, the differences between multiple service loading histories are easier to visualize and
quantify. This can be seen in Figure 18 which represents the histories of all 19 drivers
combined simultaneously into one exceedance plot for the same channel noted in Figures
16 and 17. A significant level of variance can be noted between the individual exceedance

plots for the 19 drivers in this combined exceedance plot. An example of this variation

21



noted is in the maximum magnitude loading cvent achieved between the 19 drivers,
factor of approximately two being noted between the minimum and maximum such

amplitude.
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Figure 18, Combined Exceedance Diagram (Channel 3)

Given that Figure 18 is a representation of the service loading histories of the 19
drivers for only one of the 14 data channels, a similar process can be used to generate
exceedance diagrams for the remaining 13 channels. However, when focusing specifically
on the channels directly measuring values directly pertinent to fatigue calculations, only
the 10 strain channels are involved. Noting that these 10 channels share symmetry about
the vehicle center line, for the purpose of illustration, only five of the channels need be

diagrammed. Choosing the five ball joint / strain gauge channels on the left side of the
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vehicle (Channels 1-5) and adding the accompanying vertical displacement channel
(Channel 7) for visual reference, the exceedance diagrams of the load histories for the 19

drivers for the six channels in question are plotted in Figure 19 a) through 19 f).
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Figure 19, Exceedance Diagrams for Six Channels and 19 Drivers

As in Figure 18, significant levels of variation can be noted between the individual

exceedance plots between the 19 drivers. This variation is evident in all six channel plots.
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In tenns of magnitudes, the channels dedicated to lateral forces revealed the least variation
between drivers while the fore-aft channels revealed the most. Some variance is also
observable from the standpoint of the number of higher amplitude loads seen, particularly
in the vertical displacement channel (Channel 7). Given symmetry constraints, exceedance

plots for the equivalent channels on the right side of the vehicle are similar.

3.3  Weibull Fitting of Cumulative Exceedance Diagrams

As noted previously, utilizing the Cumulative Exceedance Diagram format to
display the service loading history data in exceedance form enables the use of a fitted
three-parameter Weibull curve to characterize it. A Weibull curve that best fits the
exceedance data represents a good model of that particular exceedance data set itself
However, necessary for analysis is a methodology of finding such a good fit curve. A

reasonable fit curve can be obtained by “eyeballing” the curve, by iterating with different
values of Nmax and k (since Emax is constrained by the exceedance curve, it is already
known) until a visually appeasing curve is achieved. However, such “eyeballing” is

inconsistent and time consuming. An automated fitting method is preferred for more

consistent results.

In developing an automated curve fitting routine for the exceedance diagrams, a
linear fitting routine can be used. Non-linear regression fitting, though possible, would

involve extra complexity to what would otherwisc be a relatively simple routine. To
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linearize the exceedance data, the equation for the three parameter Weibull curve

(Equation 1) is modified into a linear format,

ln(N(si)):ln(Nm“)[l—( 5 ﬂ R

Placing the entire range of exceedance data points for any given data set into the
individual parameters for x and y yields a plot dependent upon the k parameter for the x-
variable. Adjusting this k parameter until the best straight line with slope m = 1n(Nmax) is
obtained would determine the k parameter best suited for fitting the entire range of
exceedance data. However, in fitting the exceedance data, it must be noted that fitting the
entire range of exceedance data may not necessarily give the best fit Weibull curve.
Indeed, it usually will not. As seen in Figure 20, this is due to the fact that exceedance
diagrams often take on a two stage curve form, with a primary curve covering the higher
magnitude, low cycle spectrum and a secondary curve covering the lower magnitude, high

cycle spectrum. Depending on the nature of the specific exceedance data set, a single three
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parameter Weibull curve usually will not adequately fit the entirc spcctrum of exceedance
data. Therefore, a certain segment of the data spectrum should be identified as being of

more importance in fitting.

High magnitude,

Emax 1w Low cycle curve
Exceodance cuive
Ag \\/
1

Low magnitude,

emax2 gh c,y(,le curve

Figure 20, Schematic of Two Stage Nature of Exceedance Curves

Between the higher magnitude strain curve values and the lower magnitude strain
curve values, the higher strain values will contribute significantly more to fatigue damage
than the lower strain values. This can be visualized in the damage histogram of Figure 21
b) which is the damage histogram of the rainflow range-mean histogram of Figure 21 a).
Though the majority of loading events described in rainflow histogram occur in the lower
strain range region, the loading events responsible for the majority of the damage are the
small number of higher loading events as seen in the damage histogram. Therefore, the
important data segment for priority curve fitting is the higher magnitude, low cycle
regime. Indeed, the lower strain values on the exceedance diagram can be ignored in the

curve fit with negligible irapact on the extrapolated fatigue lives.
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Figure 21, Rainflow Histogram (a) and Damage Histogram (b)

A high magnitude regime cut-off value in the exceedance data must be determined
for use in fitting the higher magnitude Weibull curve. The manner in which this cut-off for
the selection of which segment of the exceedance data should be fitted to and which
should be ignored is through a selective slope fitting method. In this method, as outlined in
Figure 22 a), the local slopes of various points along the exceedance curve are determined.
The point at which the maximum slope on the curve occurs is also the point at which a
properly fitting higher magnitude Weibull curve would likely begin to lose it (o, and
diverge away from, the exceedance curve. It is at this point where the cut-off is established
for Weibull fitting as seen in Figure 22 b). All points along the exceedance curve before
the global maximum slope cut-off point are used in the fitting. All points after are ignored
as such points would constitute the lower magnitude curve which is of lesser importance

in determining fatigue damage.

Following the selection of a global maximum slope cut-off point, all data points

preceding the cut-off are placed into the linearized Weibull equation of Equation 2). This
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linearized equation contains the k parameter in the x-component. As scen in Figure 22 ¢),

adjusting the k parameter in the x component will yield different shapes for the resulting

(19 7

linearized plot. The value of k which results in a best fit to a straight line of slope “m” is
the k value for the Weibull plot. This best fit slope “m” is defined in Equation 4) and is

equivalent to the “m” value noted in Equation 2).

error = € = mx'-y

et = (M= ¥) )
Yot = Y (mix’  2may+y?)’,

2 =mi Yt - amY xy+ 2y,

8y e

e 2_ —
- =2m),x*-2Y xy=0,

2mY x* =22 xy,

in(Nmu): m = S e e e e e (&)

nyzxi*yi+xi+1*yi+l+ ....... +xn*y,,

where
D xt= (1:{i )2 + (xi+1)z+ ....... +(xn)2
The definition for this “best fit” to the straight line of slope m is given through an
error summation function as noted in Equation 3). The error measured by this function is
the difference in the y-values between the actual y-value from the data and the y value for

the line at a corresponding x-point (x multiplied by the line slope, m). This summation
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funciion is performed throughout the entire range of exceedance data values before the
cut-off point. The value of k which yields the smallest error summation between the
straight line and the curve is the k-value selected as the shape parameter for the Weibull

curve as seen in Figure 22 d).

Knowing that fatigue damage is a function that varies between the fourth power to
the tenth power of the applied strain, this fact can be used as a weighting function for the
error summation process. Given that the higher magnitude events play a far more
significant role in determining fatigue damage than the lower magnitude events, it is
desired that these higher magnitude events be fitted more closely than the lower magnitude
events. Though a fourth power function would give the least weighting fo the larger {oad
events and a tenth power function the most weight, a weighting function of the fourth
power would assure a close fit of the Weibull curve in the high magnitude strain regime
without sacrificing excessively the fit to moderate magnitude events. An additional factor
in the weight function is the number of cycles that each magnitude event occurred. This
factor assures a closer fit to larger events that ocour most frequently. The result is a fit
that is biased towards the most fatigue damage. The weight function utilized is the fourth
power of the strain raﬁge value multiplied to the number of cycles that strain range value
occurred multiplied to the corresponding exceedance curve point in the x and ¥ parameters

as seen in Equation 5).

error = mx'-y
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Figure 22, Schematic Procedure of Weibull / Exceedance Curve F itting

One criterion established in the cut-offis in the fact that at the high magnitude, low

cycle region of the exceedance curve, localized slope perturbations may ocour duc to the

random nature of the service loading history data. Such perturbations in the low cycle

region may result in a locally high slope value for the exceedance curve in that region. If
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such a localized high slope value were 1o exceed the global maximum slope value, it would
then be used by the slope fitting routine to establish the cut-off point. Such a premature
cut-off would be unacceptable as it would leave only a very minimal amount of
exceedance data to fit a Weibull curve to (since the cut-off occurred so early). An early
cut-off would also likely result in an improper overall fit of the exceedance data.
Therefore, an acceptable minimum permissible cut-off point should be imposed, before
which, the global cut-off would not occur regardless of high local slope values. In this

analysis, the minimum cut-off was set at 10 cycles as seen in Figure 22 a).

Pursuit of the above procedures for the Weibull curve fitting of the exceedance
diagrams will yield Weibull curves with a good level of fit to the exceedance data as seen

in Figure 23 (Channel 3, Driver 11).
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Figure 23, Weibull Fitting to Fxceedance Data (Chan. 3, Drvr. 1 1)
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3.4  Monte Carlo Analysis

Each of the three Weibull variables, &max, Nmex and k can be treated as random

vartables in their own right. As random variables, each of the three will have their own
statistical distributions. For the ten strain channels, a statistical distribution can be
generated for the three parameters. This can be done by analyzing the vaziability of the
parameters among the 19 drivers for each chaunel Statistical manipulation of these
distributions for the three parameters can produce a number of variable amplitude loading
histories for each channel. Contained in Table 3 are the constants for the three parameters

obtained from the Weibull curve fit to all 19 data sets for Channel 3.

Table 3, Results from Curve Fitting (Channel 3)
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ABmax Nmax Kk
1173.75 63.386 4.05
10835 84.797 4.05
1075.75] 269.943 1.65
1025.25] 181.821 2.2
1035.203| 266.170 1.7
985 125 117.985 2.8
901.48| 350.433 2.15
797.05] 193.518 3.55
970.7325] 162.664 2.55
888.275] 210.893 2.45
975.7225 75.656 4.2
902.475] 211.337 2.3
1086.873 92.837 4
826.675f 271.699 2.45
873.875| 236.004 2.35
1206.035] B882.618 0.9
901.4725| 102.079 3.85
826.6825! 197.262 3.85
718,0975] 404.975 2.65

Table 4 presents the statistical distributions of the data in Table 3. Considering the
limited sample size of 19, a LogNormal distribution was used in the accompanying
analysis. Verification of the LogNormal distribution is provided by Figure 24 which is a

LogNormal plot for Agmax.

Table 4, Distribution of Variables (Channel 3)

AEmax Nrmax [ 4
Distribution {LogNormal | LogNormal|LogNormal
jMean 960 230 2.79
fcov 0.13 0.79 0.33

where COV = s

33

By




58,2 %F
LogNormal Distribution
o 19 Data Points
$9% " Mean 960
cov 013 .
L]
S0 %[ R
»
s
*
*
L]
50 % |+ + : i o : ' t bt
a0 3000 10000
.
»
L]
0% .
L]
1%
1% =

Figure 24, LogNormal Distribution of Agmax

Table 5 contains the correlation coefficients between the variables. A significant
level of correlation exists between the k shape parameter and the Nmax values. This
correlation is understandable since, for a constant Agmax value, a higher k value will
generally accompany a lower Nmax value in a Weibull fit. The correlation between the

other variables is relatively weak.

Table 5, Correlation Between Variables (Channel 3)

A& max Nmax k
Aemax 1
Nmax 0.0150 1
K 0.0205 0.5340 1
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Pursuing Equation 1, each of the variables in the equation can be replaced by a
value based on the statistical distributions given in Table 4. With this statistical
manipulation, any number of Weibull curves and, thus, service loading histories can be
obtaned. Complicated numerical methods are necessary to obtain a solution due to the
complex statistical distributions associated with each variable. One simple but useful
technique in this manner is the Monte Carlo method. In general methodology, a sample of
each of the three variables is drawn at random from its distribution and a single
deterministic loading history is generated. In the case of the Monte Carlo simulation, this
analysis is performed by selecting a random number between 0 and 1. This random number
is then transformed into a specific value for each input variable knowing the distribution
function for the variable.

Employing the familiar Coffin-Manson strain-life equation of Equation 6, fatioue
lives can be computed for each simulated service loading history. The relationship between
strain amplitude and fatigue life is given by this equation. The strain life material property
values for 980X steel used in these calculations are listed in Table 6 and are the same as

those used in [2].

(TJ = (%)(ZN')b FE (2N ) e (6)

Table 6, Material Properties for 980X
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a'f Fatigue Strength Coefficient 1315 MPa
b Fatigue Strength Exponent -0.087
g'f Fatigue Ductility Coefficient 0.253
[ Fatigite Ductility Exponent -0,556
e'f Modulus of Elasticity 208 GPa
K Cyclic Strength Coefficient 1675 MPa
n' Strain Hardening Exponent -0.17

Demonstrating the viability of the Monte Carlo numerical analysis, results for 1000
Monte Carlo simulations for three selecled strain channels are given in Figures 25 through
27. In each plot, the square symbols represent the fatigue estimates obtained from the
analysis of the original 19 loading histories for each of the three illustrated channels, Listed
within each plot is a distribution (mean and coefficient of variation) for each of the three
Weibull variables used in the simulation.

The level of agreement between the life estimates from the 19 original loading
histories and the 1000 simulated histories generated through the use of the Monte Carlo

analysis are generally good.
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Figure 25, Simulation Results (Channel 1)
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Figure 26, Simulation Results (Channel 3)
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Figure 27, Simulation Results (Channel 4)

Listed in Tables 7 to 9 are the correlation coefficients between the three Weibuli
variables and the life estimates generated by the simulations. In all cases, a high degree of
correlation exists between the life estimates and the Agmax values. This is to be expected
given the strong relationship hetween imposed strains and cyclic life. This relationship is
noted by the rainflow and demage histograms of Figures 21 a) and 21 b) as well as the
Coffin-Manson strain-life equation of Equation 6. A more modest correlation is also seen
between the life estimales and the k shape parameter. Again, this is understandable noting
that a higher k parameter will make the Weibull curve more convex, increasing the number
of higher magnitude cycles in the simuiations. The result of an increase in the k-value and
the accompanying increase in the number of higher magnitude cycles would be a reduction
in expected fatigue lives. In all three cases, the relationship between the life estimates and

the Nmax values is relatively weak.
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Table 7, Correlation Between Variables (Channel 1)

Agmax k Nmax Life
Asmax 1
k 0.0008 1
Nmax 0.0019 0.0011 1
Life 0.5544 .1832 0.0136 1

Table 8, Correlation Between Variables (Channel 3)

Asmax k Nmax Life
Asmax 1
k 0.0008 1
Nmax 0.0012 (.0006 1
Life 0.4763 0.0895 0.0188 1

Table 9, Correlation Between Variables (Channel 4)

Aemax k Nmax Life
Asmax 1
k £.0009 1
Nmax 0.0022 0.0013 1
Life 0.4296 0.0801 0.0020 1

As seen from the analysis, the variations in the driving styles of the 19 volunteer
drivers yields a significant level of variability from the standpoint of fatigue. Depending on
the channel, this variability in fatigue lives of the original loading histories is from one to
one and a half orders of magnitude from the lowest to highest values. Not surprisingly,
between the 1000 simulated loading histories, this variability in fatigue estimates is slightly

higher. The variability in this case ranges from two to three orders of magnitude.
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With the original loading histories, the ability to generate an estimate of the
reliability or estimate of more severe usage beyond the most severe history in the data set
was limited. However, the statistical simulation model presented can easily generate such
an estimate. As an example, referring to Figure 26 (Channel 3), an estimate of the 99.9%
reliability can be made. Using the results from the Monte Carlo simulations, the 99 9%
reliability case yields a fatigue life estimate one and a half orders of magnitude smaller than
the mean life of 4.3 x 10° cycles. In Figure 28, a representation of a possible exceedance
diagram of this most severe loading case is presented. The original 19 loading histories for
Channel 3 are plotted for reference. It is interesting to note that both the maximum loading
range and the number of higher amplitude loads of the 99.9% reliability case are increased.
A hinear scaling of any one of the original histories would not have produced this result. It
should also be noted that any one of a number of possible combinations of the appropriate

three Weibull parameters would also have yielded an identical result.
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Figure 28, 99.9% Reliabilty Loading Simulation (Channel 3)

4. FUTURE RECOMMENDATIONS

The analysis performed in [2] made use of a two curve distribution to characterize

both the high load curve and the lower load curve as illustrated in Figure 20. The data that
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was obtained from the ATV, however, did uot display as much of a two-curve tendency as
that from [2]. Part of this difference can be attributed to the test track used for the ATV
which emphasized larger loading events as opposed to smaller loading events. With fewer
smaller load generating track modules, the resultant exceedance plots reflected fewer
events of a smaller load nature. Correspondingly, there was a smaller tendency to have a
secondary lower magnitude curve in the exceedance diagram. Certainly, fitting the larger
load curve is certainly still of more importance than in fitting the smaller load curve from a
fatigue standpoint. However, if the exceedance diagram in question contains a significant
number of smaller to moderate sized events in a visually distinct lower magnitude curve,
fitting this separate curve would be desirable for optimum accuracy in fitting. Utilizing the
exceedance data after the maximum slope cut-off described along with the linearized
Wiebull equation is one potential method in handling such a fitting. Unlike the larger foad
curve, however, the smaller curve does not have a distinct maximum strain range value to
use as an anchor in the estimates of the other two parameters. As with the larger load
curve, the maximum cycle count for the exceedance data, Nmax, again may not serve
appropriately as the Nmax for the Weibull curve. An iterative fitting procedure would be

needed to find a best fit value for all three parameters.

Noting the limited sample size of data sets for each of the channels of 19, a larger
sample size would be desired. Statistically speaking, the minimum useful sample size is
approximately 30. A higher sample size, of course, would be desired. Continuing data
collection with additional drivers and using drivers from different sample populations

(other than college students as with the current sample population) would yield a more
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statistically useful disiribution of data. Given that the Monte Carlo simulation method
relies upon the data collected from the ATV as the basis of its simulations, a larger sample

pool of drivers would also improve the accuracy of the Monte Carlo simulations.

It should also be noted that service loading histories are not the only source of
variability in determining the durability of vehicle structural components. Other sources of
variability include those in material properties and manufacturing concerns. Variability in
materials properties can be a function of initial flaw sizes, material purity, alloying
compound compositions, grain sizes among others. Variability in manufacturing can
include variations in machining and die and mold dimensions. Simulation methods similar
to the one presented here to analyze the variability in service loading histories can also be

used to evaluate these sources of variability

5. CONCLUSIONS

The magnitudes encountered in multiple service loading histories will vary between
any two drivers even if the two drivers traverse the same route. As any one loading history
from any one driver is variable, it cannot be represented by a simple linear scaling of the

history of any other driver. By the same token, the variability in the severity of usage in a
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wide range of operating conditions cannot be characterized by a simple linear scaling of

any one loading history.

A statistical model utilizing Monte Carlo numerical analysis methods has been
presented to simulate service loading histories of a passenger vehicle. This model can
measure and extrapolate Weibull curve-fitted cumulative exceedance diagrams to quantity
the distribution of service loading histories. Also described was an automated curve fitting
routine for the fitting of a single higher magnitude 3 parameter Weibull curve to any given
set of exceedance data. The Monte Carlo obtained a distribution for service loading under
a variety of service conditions by using data obtained from a novel approach of using a
Four-Wheel Drive All Terrain Vehicle to model passenger vehicle service loading data.

Overall, this statistical method of fatigue analysis described holds definite potential,
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