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CYCLIC PLASTICITY WITH AN EMPHASIS ON RATCHETTING
ABSTRACT

Two types of plasticity formulations, Armstrong-Frederick and Mroz
multiple surface, were evaluated to determine their applicability to model
ratchetting and other complex cydlic loading. A limited experimental base exists
for loadings such as multiple step proportional and nonproportional loading.
Ratchetting experiments have been conducted using a 1070 steel to broaden the
experimental base with which the existing plasticity models were evaluated. All
the Armstrong-Frederick type models are able to predict reasonable stress
response for the balanced nonproportional loading. The Mroz multiple surface
type models are inferior to Armstrong-Frederick type models for
nonproportional loading.

Under single step loading, the experimental ratchetting rate decreases
with increasing number of loading cycles for both proportional and
nonproportional loadings, and can be fit using a power law relation. For
multiple step loading, the material exhibiis a memory of the previous loading
history, and could ratchet in the direction opposite to the mean stress. The
memory effect dissipates with increasing number of loading cycles. The Ohno-
Wang model is the only existing model which can correlate with some of the
experimental ratchetting observed for 1070 steel. A shortcoming of the Ohno-
Wang model is its inability to predict a constant ratchetting rate for
nonproportional loading, and adequately reflect the memory effect for multiple
step loading.

Using a concept of the limiting surface for a backstress part, a new
plasticity model is proposed to refine the Ohno-Wang model. The capability of
the new model to improve predictions for long term and multiple step
ratchetting is demonstrated. A convenient procedure to determine the material
constants for the model, which is also applicable to other Armstrong-Frederick
type models, is described. The new plasticity model is applicable to a broad
range of cyclic material behaviors including cyclic hardening/ softening, non-
Masing behavior, stress level effect, and a variety of ratchetting responses.
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1. INTRODUCTION AND OBJECTIVES

Cyclic plasticity deals with the nonlinear stress-strain response of a
material subjected to repeated external loading. The theory of plasticity is a part
of the broad and fascinating subject of mechanics of materials or continuum
mechanics, which spans the spectrum from the fundamental aspects of elastic
and inelastic behavior to the practical solution of engineering problems (Drucker,
1988). The phenomenon of cycdlic plasticity, its impact on the design and analysis
of mechanjcal systems, and its role in assessing integrity of structures, are well
recognized (Chaboche, 1989a; Drucker, 1988; Ohno, 1990). Plastic deformation is
difficult to avoid in many design situations. The elastic-plastic stress-strain
response plays a pivotal role in the design and failure analyses of many
components in practical applications.

Early studies of elastic-plastic deformation concentrated mainly on the
monotonic and uniaxial loading conditions (Bairstow, 1911; Besseling, 1958;
Budiansky, 1959; Coffin, 1960; Iwan, 1967; Kennedy; 1956; Krempl, 1969,
Landgraf, 1970; Landgraf et al., 1969; Lazan, 1949; Manjoine, 1949; Masing, 1926;
Morrow, 1964; Morrow and Sinclair, 1958; Prager, 1945). Recently, efforts have
been directed toward cyclic multiaxial plasticity, both proportional and
nonproportional (Benallal and Marquis, 1987a, 1987b; Benallal et al., 1989a, 1989b;
Bower, 1987; Chaboche, 1986, 1987, 1989b, 1989¢: Garud, 1981a, 1982, 1991;
Hassan ef al., 1992; Inoue ef al., 1985, 1989, 1991; Lamba, 1976; Lamba and
Siderbottom, 1978a, 1978b; Lebey and Roche, 1979; Lu and Mohamed, 1987;
McDowell, 1981, 1983a, 1983b, 1985a, 1985b, 1985¢, 1987, 1991, 1992; McDowell
and Lamar, 1989; McMeeking, 1982; Mroz, 1967, 1969; Ohno, 1982; Ohno and
Wang, 1991a, 1991c, 1993a, 1993b; Yamanouchi et al., 1976). Most researchers
have concentrated on the strain-controlled tests where stress relaxation occurs
with asymmetric cycling. In the past, experimental control capabilities have
limited many researches to strain-controlled testing. The more complicated, yet,
more general case of loading which involves ratchetting remains a challenge 1o
the researchers in the field. Cyclic ratchetting refers to progressive and
directional accumulation of strain in asymmetric load/stress controlled testing.
Depending on the load magnitude and the initial material condition, the
ratchetting deformation could result in tensile, compressive or shear failures.



The current interest in cyclic plasticity stems from the author's earlier
work on rolling contact. The stress/strain state under rolling contact is multi-
axial and nonproportional, representing one of the most complex analyses for a
plasticity model. The consecutive deformation resulting from rolling contact will
be accumulated, which could result in ratchetting failure of a component.

In this work, the cyclic plasticity of metals will be studied and the
emphasis will be placed on the observation and modeling of the cydlic ratchetting
phenomenon. The investigation is focused mainly on a critique and comparison
of existing theories dealing with cyclic plasticity for loadings which involve
ratchetting. The subsequent development of a new approach suitable for the
stress/strain predictions under general multiaxial elastic-plastic loading
conditions is compared to previous work and experimental results.

1.1. Objectives, Scope and Out-Line

A number of plasticity models have been developed. The first objective of
this work is to determine how well the existing models of assessing cyclic
plasticity compare with observations from laboratory tests. A literature survey is
therefore undertaken with the purpose of critical examination and comparison of
the cyclic plasticity theories. Details of this survey are given in Chapter 2 of this
thesis. All the plasticity theories discussed are within the framework of
unchanged yield surface shape and yield surface translation. Emphasis is placed
on the recent plasticity models which are able to predict ratchetting. This review
will be limited to room temperature applications in which effects of creep,
temperature, and rate-dependence are negligible for the materials considered.

Any theoretical cyclic plasticity model should reflect experimental
observations. Therefore, the second objective of this work is to explore
ratchetting under various loading conditions. Some ratchetting phenomena not
previously reported are observed and will be presented in Chapter 3. These
experimental observations involve both uniaxial tension-compression and
nonproportional multiaxial loading.

In order to describe the stress-strain response of a material under
complicated cyclic loading, it seems logical to attempt to use the existing
mathematical framework of incremental plasticity. An evaluation of some
existing theories are undertaken and the results are presented in Chapter 4.
Predictions obtained using the existing theories are compared with the
experimental results. From the comparisons, it becomes clear that most of these



existing theories are unable to quantitatively model the long term ratchetting. Of
all the theories evaluated, the model developed by Ohno and Wang (1991a,
1991c, 1993a, 1993b) is found to be the hest model for predicting ratchetting.
Some deficiencies with the Ohno-Wang model are pointed out.

The results of Chapter 4 lead to the pursuit of the third major objective:
the development of a new plasticity model with the capability of quantitatively
predicting cydlic ratchetting under general multiaxial nonproportional loading.
The Ohno-Wang model is refined to accomplish this goal, and detailed
derivation of the new model is presented in Chapter 5. A procedure to
determine the material constants in the new model is forwarded in Chapter 6.
Verification of the new model is discussed in Chapter 7. Improvements in the
ratchetting predictions of the experimental results are achieved utilizing the new
model. Finally, in the last chapter, the main conclusions of this investigation are
listed along with recommendations for future work.



2. CONSTITUTIVE EQUATIONS FOR CYCLIC PLASTICITY:
REVIEW OF LITERATURE

Plasticity models or constitutive equations are mathematical relations
describing the stress-strain response of a material subjected to external loading.
When developing the constitutive equations, some basic assumptions are always
made. In general, the siress-strain response of a material is time dependent,
strain rate dependent, path or history dependent, and temperature dependent.
For most metals at or near room temperature subjected to repeated loading
under isothermal conditions, it is sufficient as a first approximation to consider
that path-dependent factors dominate the stress-strain response. These
assumptions are carried forward throughout this research. In addition, it is
assumed that the material is uniform, homogeneous, and initially isotropic.

Two classes of constitutive equations have been developed, based on one
of the following thermodynamic concepts (Chaboche, 1989a).

1) The present state of the material depends only on the present and past
values of observable variables, giving rise to hereditary theories.

2) The present state of the material depends only on the present values of
observable variables and a set of internal state variables.

The first concept was used by Valanis (1971a, 1971b, 1980) in the
development of the endrochronic theory, and by Krempl (1973) in his
viscoplasticity formulation. The second approach has been developed in various
ways, using the concept of yield surface in the case of rate-independent
plasticity. Constitutive equations can be formalized in stress space, plastic strain
space, or mixed stress/slrain space (Klisinski ef al., 1992). This thesis will make
use of the concept of yield surface and internal state variables to model the
plastic deformation in stress space.

Because a number of existing plasticity models will be discussed
throughout this work, name(s) after the major investigator(s) are given in arder
to facilitate discussion. To list all persons involved with a given theory would be
impossible in many cases. Therefore, the case of a name given for a model is not
intended to slight other investigators, but rather a convenience when referring
repeatedly to a given theory.



2.1. Notations

A second order Cartesian tensor is denoted by a bold letter with a tilde
below. The components of a tensor are denoted using the plain form of the same
letter with subscript indices. A colon between two tensors denotes their inner

(dot or scalar) product. For example, A;; and B;; are the components of the two
tensors A and B respectively, then,

3 3
A:E = Z 2 Aij Bij = Aij Bij . (21)
=1 j=1

Define one of the invariants of the tensor A as,
JA[=YAA . (2.2)

The unit tensor is I, i.e.,

Lj=8&; , (2.3)

where 8;; is the Kronecker delta. A symbol with a bracketed subscript or
superscript represents a number series instead of components of a tensor. For
example, ¢ (i=1, 2, ..., M) represents a number series ranging from 1 to M, and
¢t along generally denotes the ith component of the number series. The prefix
"d" is used to denote increment or differentiation. The prefix "A" denoles range.
Itis a commor practice to refer to some of the tensors as "vectors”, particularly in
describing a hardening rule, although a tensor and a vector are not physically
equivalent. This practice will be followed where convenient.

Conventional nomenclature is used from time to time. Because the
loading cases of uniaxial loading and biaxial axial-torsion are the major topics of
experimental cyclic plasticity, stresses and strains are often cited relative to a
reference frame for a given specimen and testing machine. Customary symbols
instead of tensorial expressions are used to describe the stress and strain
quantities. The axial stress is denoted by ¢ and the corresponding plastic strain
by €P. For biaxial axial-torsion, the shear stress, denoted by 1, refers the
orthogonal shear stress on the plane perpendicular to the specimen axis. The
shear strain is the engineering orthogonal shear strain, y, which has a factor of
two difference from the tensorial shear strain component. In the next section, the



basic framework of infinitesimal elastic theory and incremental plasticity theories
will be reviewed to formalize the reader with the associated notation.

2.2. Basic Framework
2.2.1 Elastic Stress-Strain Relations and Plastic Strain Assumption

It is assumed in the theory of small deformations that the total strain can
be decomposed additively into the elastic and plastic parts,

dg = dg°+deP , (2.4)
where g denotes total strain, and g° and €P are the elastic and plastic strains

respectively.

- For the elastic part, it is assumed that Hook's Law is applicable,

=22 L gepi, (2.53)
or,
d ..
deiej = —ZEG}J_ -% dckksij . (2.5b)

where @ is the stress tensor, E is Young's modulus of elasticity, G is the linear
modulus of elasticity in shear, and p1 is Poisson's ratio. For a homogeneous
isotropic material the three constants are not independent and are related as

follows: The elastic shear modulus, G, is given in terms of Young's modulus, E
and Poisson's ratio, p, by,

4

~__E
G_Z(iﬂ.t) . (2.6)

It should be noted that a material which has been subjected to plastic
deformation is no longer isotropic. Young's modulus, E, and Poisson's ratio, U,
are not constants. However, the anisotropy introduced by small plastic
deformation has minimal influence on the elastic properties. Therefore, in the
practical applications, E and p are generally assumed to be constant.

The plastic incompressibility is assimed, i.e.,

deP:I=0 . (2.7)



2.2.2. Yield Function

The material is assumed to follow the elastic stress-strain relations with
zero plastic strains until the stresses satisfy the yield condition. The two most
commonly used yield conditions are due to Tresca (maximum shear stress
criterion) and von Mises (distortion energy criterion). The von Mises vield

function is used throughout this work,
I=0-0:(8--2k*=0, (2.8)
where § is the deviatoric stress tensor,

S=¢-+ (a1, (2.9a)

L3 [t

or,

Sij= oy - %ckkﬁij . {2.9b)

The quantity g is the deviatoric backstress (center of the yield surface) and k is
the yield stress in simple shear. The shape of the yield surface is generally
assumed unchanged; however the size of the yield surface can be adapted to
account for the transient behavior by allowing k to vary. It is also assumed that
the yield surface can translate but cannot rotate. A schematic representation of
the yield surface and the yield surface translation is shown in Figure 2.1.

2.2.3. Flow Rule

A flow rule is used to relate the increment of plastic strain and the
increment of stress. The most commonly used rule for metals is known as the
associated flow rule or the normality condition (Drucker, 1951, 1960). According
to this postulate the plastic strain increment is collinear with the exterior normal

to the yield surface at the present stress state. The normality condition
mathermatically can be expressed as,

deP =1 (aSm)n (2.10)

where <> denotes the MacCauley bracket (i.e., <x> = -21- (x+]|x])). The unit
exterior normal, n , on the vield surface at the loading point is defined as,
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| [’ (2.11)

and h is a scalar function often called the plastic modulus function. Under
uniaxial loading, h =% i—‘—’}; » Where ¢ and ¢ are the axial stress and axial plastic

A

strain respectively.

2.2.4. Consistency Condition
During elastic-plastic deformation a consistency condition should be
satisfied. The consistency condition requires that the stress state should lie on

the yield surface during elastic-plastic deformation, which can be expressed
mathematically as,

df=0, (2.12a)

or modifying Equation (2.12a),
dS:n-dg:n-v2Zdk=0 . (2.12b)

When there is no change in the size of the yield surface (i.e., dk = 0}, the
previous equation can be expressed as, '

|

dS:n =dg:n . (2.13)

{

Equation (2.13) implies that the projection of the backstress increment onto
the normal direction is identical to the projection of the stress increment onto the
same direction during elastic-plastic loading. From the flow rule, Equation
(2.10}, and the consistency condition, Equation (2.12), the plastic modulus
function can be derived,

: 1
dp dp (2.14)
where the equivalent plastic strain increment, dp, is defined as follows,

dp = YdeP: deP . (2.15)



Equation (2.14) is used to determine the plastic modulus function, h, when the
evolution of the backstress and the yield stress have been specified.

2.2.5. Hardening Rules

While the framework for most cyclic incremental plasticity models is the
same for the previous sections, it is generally the hardening rule that
distinguishes one plasticity model from another. A hardening rule specifies
changes in the yield condition as a result of loading the material. Under the
framework of kinematic yield function, a hardening rule specifies the translation
of the yield surface, or, the evolution of the backstress.

The backstress in deviatoric space can be treated as a vector. Therefore, in
this reference frame the backstress increment has both magnitude and direction.
The plastic modulus function, h, is related to the backstress increment by
Equation (2.14). That is to say that for the three variables, the direction of the
backstress increment, the magnitude of the backstress increment, and the plastic
modulus function, there are two independent variables. A hardening rule can
either specify the direction of the backstress increment and the plastic modulus
function, or both the direction and magnitude of the backstress increment. A
more through review of hardening rules will occur in subsequent section.

2.3. Terminology

In order to avoid ambiguity, some frequently quoted terminology are
defined below.

1. Proportional and nonproportional loading: Since the plasticity theories
will be discussed in a stress based space, proportional loading is defined as the
loading corresponding to a fixed radial line in the deviatoric stress space
throughout the entire loading history. Any loading paths other than the
proportional loading are nonproportional loading. This definition is different
from that used by Kanazawa et 4l.(1979), Lamba (1976), Lamba and Sidebottom
(1978a, 1978b), and McDowell (1983a, 1983b) who defined the proportional
loading as the loading for which the total strain rate is radial and fixed in
direction in the strain space.

2. Active Loading and Elastic Unloading: Elastic unloading refers to the
loading region where the deformation is entirely elastic. From the viewpoint of
yield surface, elastic unloading corresponds to the loading where the stress state
is within the yield surface. When plastic deformation is involved, the loading is
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called active loading for simplicity. Active loading corresponds to the loading
where the stress state is on the yield surface. It should be noted that, in general,
elastic deformation will occur simultaneously during active loading.

3. Balanced and Unbalanced Loading: Balanced loading refers to the
loading under which a virgin material initially isotropic will undergo no
ratchetting and/or mean stress relaxation. Unbalanced loading is that the
loading under which a virgin material initially isotropic will produce strain
ratchetting and/or stress relaxation.

4. Cyclic Hardening/Softening: Material properties that stabilize with
cyclic loading history. These properties are often identified with the changes of
stress response for constant amplitude strain-controlled tests. Cycdlic
hardening/softening behavior is asymptotic for most wrought metals with
increased cycling.

2.4. Review of Literature

2.4.1. Linear Hardening Rule

Using only the isotropic hardening rule, which aliows for uniform
expansion of the yield surface, is considered unsuitable for applications
involving cyclic loading because it does not mimic the Bauschinger effect
commonly observed under reversed loading. With the primary aim of modeling
the Bauschinger effect, Prager (1955) proposed the kinematic hardening rule
which allows the yield surface to translate without changing its shape and size.
The condition that the yield surface remains the same size implies that k is a
constant in Equations (2.8) and (2.12b). This rule was subsequently modified by
Ziegler (1959) and Shield and Ziegler (1958) to eliminate inconsistencies when
applying the rule in a stress subspace. According to Ziegler (1959) the direction
of translation of the yiéld surface is given by the vector joining its center and the
stress point on the yield surface (Figure 2.1). Once the translation direction has
been assumed, the consistency condition (Equation (2.12)) determines the
magnitude of the translation. Mathematically the translation of the center of the

yield surface can be expressed as,

dg=a, deP , (2.16)

where a, is in general a scalar function of the stress and plastic strain state. This
rclationship is often called the linear hardening rule, because of the linear



11

dependence of the translation increment of the yield surface on the plastic strain
increment. Combining Equation (2.14) with Equation (2.16) leads to the
following relationship for the plastic modulus function,

h=ap+ﬁ% : (2.17)

According to the aforementioned derivation, ap should be defined such that the
plastic deformation can be fully determined. If ap is assumed to be a constant,
Equation (2.16) is corresponding to a bilinear stress-strain relation for uniaxial
tension-compression when the yield stress is a constant. Alternatively, Drucker
and Palgen (1981) related aj to the second deviatoric stress invariant in an
attempt to model ratchetting.

When both k and a, are constants, the linear hardening rule predicts no
ratchetting for the proportional loading, which leads to the common
misconception that it is also true for nonproportional loading. The linear
hardening rule will produce transient ratchetting for the nonproportional
loading during the first few cycles, which depends on the loading path and
magnitude. When the loading magnitude is equal to the shakedown limit, the
predicted transient ratchetting can last dozens loading cycles before arresting
(Jiang and Sehitoglu, 1993d). If the plastic modulus function is expressed as a
tunction of the second deviatoric stress invariant (Drucker and Palgen, 1981), a
constant ratchetting rate is predicted for both proportional and nonproportional
stress-controlled unbalanced loading. The ratchetting rate predicted is generally
much larger than the experimental resuits (Hassan et al., 1991, 1992; Jiang and
Sehitoglu, 1993d). It has been demonstrated that the Prager-Ziegler rule does not
correlate with experimental data for nonproportional cyclic loading (Lamba and
Sidebottom, 1978a, 1978b; McDowell, 1981, 1983a). Further studies by McDowell
(1985c) and Jiang and Sehitoglu (1993a) indicate that the experimental translation
direction of the yield surface is different from the normal to the yield surface at
the stress point for nonproportional loading.

2.4.2. Armstrong-Frederick Type Hardening Rules

Armstrong and Frederick (1966) developed a nonlinear kinematic
hardening relation, introducing a recovery term associated to a strain memory
effect. This term modifies the translation of the yield surface,
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dg = aa dgp = Ca_ g dp ¥ (2.18)

where 1, is a constant, c, is some scalar function of the plastic strain path, and dp
remains as defined in Equation (2.15). Combining Equation (2.14) with Equation
(2.18) results in the following expression for the plastic modulus function,

h=a,-came +yZ 4k (2.19)
dp

With the introduction of a nonlinear term (recovery term), this model
renders constant strain rate ratchetting under constant amplitude stress-
controlled loading. Generally this model leads to large overestimations of
ratchetting (Dafalias, 1981; Inoue et al., 1985, 1989, 1991; Ohno and Wang, 1993b).
For rﬁost metals a constant ratchelting rate is not observed (Bower, 1987; Kurath,
1992; McDowell, 1991; Moyar and Sinclair, 1962, 1963). From Equation (2.19) it is
clear that under uniaxial tension-compression the relationship betwecen the
plastic modulus and the axial stress is linear, which, in general, differs from the
experimental stress-strain response. With only two material constants (a, and Ca)
this model is unable to describe the stress-strain hysteresis loop accurately.
Burlet and Cailletaud (1987) added one more term to equation (2.18) to consider
the multiaxial ratchetting, and improved predictions were reported. However,
this added term is effective only under nonproportional loading (Ohno, 1990).

Bower (1987, 1989) and Bower and Johnson (1989) moditied the
Armstrong-Frederick rule by adding one more internal state variable,

dg = ap dgP - ¢ (g - ;3) dp , (2.20a)

and,

dB =ci (g - ?.) dp . (2.20b)

An additional internal state variable, B, has been introduced, which has an initial

value of zero. The quantities ay, cy;, and ¢y, are material constants. Similar to the
nonlinear term, c, ¢, in the Amstrong-Frederick rule (Equation (2.18)), the term
Chy (gg - ﬁJ in Equation (2.20a) serves as the driving force for ratchetting in the
Bower model. Noting that df is proportional to (g- §3), under the stress-

controlled uniaxial tension-compression with HOI-ZETO Mean stress, ¢y (QL - |3)
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decreases with the number of loading cycles. Therefore, this model is able to
predict ratchetting rate decay (Bower, 1987, 1989; Bower and Johnson, 1989).
When cpo=0 the model reverts to the Armstrong-Frederick relation. However,
the Bower model cannot describe the basic cyclic stress-strain curve accurately.
Also it can predict the ratchetting rate decay only for a limited number of cycles,
after which it predicts ratchetting arrest (Jiang and Sehitoglu, 1993a).

Nonlinear hardening rules based on the Amstrong-Frederick relation have
been expressed in the form of a series expansion of the backstress. It was

postulated (Chaboche et al., 1979; Chaboche, 1987) that the total backstress is
composed of additive parts,

M
@= gi (2.21)
j=1

where ¢ is the tofal backstress, g is a part of the total backstress, i=1, 2, ..., M,

and M is the number of backstress parts considered. Each backstress part follows
an Amstrong-Frederick type relation,

dg® = c® (10 deP - W o dp)  (i=1,2, M) | (2.92)

where ¢® and r® are material constants associated with the jth part of backstress
o), and W® is a function of stress state (Moosbrugger and McDowell, 1989;
McDowell, 1992). From Equation (2.14), the plastic modulus function is,

M
h= 2 c® {0 - Whelih:n) +v2 gl,;. . (2.23)

1

Chaboche et al.'s (1979) initial model can be represented by W= 1, and
Equation (2.22) takes the following form,

de® = ¢ (rd dgp - o dp) (i=1,2, ..., M) . (2.29)

Under asymmetric uniaxial loading this model predicts a ratchetting rate decay
response consistent with experiments, but the duration of the transient response

is short-lived. Subsequently, the model predicts a constant ratchetting rate (Jiang
and Sehitoglu, 1993a).
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Mroz (1981, 1983) discussed the Armstrong-Frederick rule and pointed out
that the scalar function c, in Equation (2.18) would depend on the magnitude of
the backstress and might vanish for values less than some critical value. A recent
model by Chaboche et al. (1991) introduced a threshold term,

] §(i)
W(l) = 1 - " N (i=1, 21 b4 M) s (2'25)
orfi): )

where £ is the threshold level for dynamic recovery of the ith backstress g,
When g is below a certain level, W® will be zero and the kinematic hardening
is linear. A backstress exceeding the critical value will result in 0<W®<1, and the
kinematic hardening is then nonlinear. The initial Chaboche model, Equation
(2.24), is characterized by W¥=1, and because the nonlinear term in Equation
(2.22) is the driving force for ratchelling, it can be concluded that the introduction
of the threshold, Equation (2.25), will make the model predict less ratchetting
than the model without the threshold.

Ohno and Wang (1991a, 1991c, 1993a, 1993b) proposed two different
threshold concepts,

Ohno-Wang I
WO = Hg®) {n:L®) (i=1,2,..,M) , (2.26)
Ohno-Wang II
@ |
W = (l% {n:LO) (i=1,2, ., M) . (227)

H is the Heaviside step function (i.e., H(x)=1 if x>0 and H(x)=0 if x<0) and x®
(i=1, 2, ..., M) are material constants. Other terms in Equations (2.26) and (2.27)
are defined as follows,

. (i)

LO- & (i=1,2,..,M) , (2.28)
[a®|

fo® | = Voo (i=1,2,..,M) , (2.29)

and,
g0 =]a® |- <0 (i=1,2,....M) . (2.30)
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L® is the unit vector and |g®| is the magnitude of a backstress. gh=0
represents a surface in the deviatoric stress space, which is centered at the origin
with a radius of r). According to Equation (2.30), | o] < r®, therefore the Ohno-
Wang Model I, Equation (2.26), can be treated as the special case of Ohno-Wang
Model I, Equation (2.27), for ¥ = +e (Ohno and Wang, 1993a).

A graphic illustration of this hardening rule is shown in Figure 2.2. In the
Ohno-Wang models each backstress g is either within or on a limiting surface
g =0. For the Model I, Equation (2.26), when a backstress is within is limiting
surface, gW<0 and H(g®)=0, then W®=0, which results in linear hardening
according to Equation (2.22). For the Ohno-Wang model I, if 3 becomes a large
number, then W® is approximately zero when g® is within the limiting surface.
As a result, the hardening corresponding to g is approximately in the direction
of n in Figure 2.1. When g® is on the limiting surface (i.e., g = 0), the model
predicts do®: n = 0, irrespective of the selection of x@. This implies that when
g is on the limiting surface the translation direction of this backstress will be in
the tangential direction to the limiting surface and the backstress will not go out
of its limiting surface.

The Ohno-Wang Model I, Equation (2.26), predicts a perfect hysteresis
loop closure for proportional loading and therefore is generally not appropriate
for ratchetting prediction. The constants @ (i=1, 2, ..., M) control both the rate
and direction of the raichetting predicted using the Ohno-Wang model II. With
appropriate selection of the material constants, the Ohno-Wang model I can
provide ratchetting predictions in close agreement with the experimental results,
better than the previously discussed methodologies. Demonstration and
discussion on the ¥ influence will be presented in the following chapter. In

subsequent discussions the terminology Ohno-Wang model refers to the Ohno-
Wang model II.

2.4.3. Mroz Multiple Surface Type Models

For the purpose of modeling the observed stress-strain response of a
material under cyclic loading, Mroz (1967, 1969) introduced the concept of a field
of plasticity moduli. Itis a generalization of the unjaxial stress-strain curve in the
sense that instead of using only one point such as the elastic limit, several points
are selected on the uniaxial stress-strain curve (refer to Figure 2.3).
Corresponding to each point, a surface in the stress space is defined to be
geometrically similar to the initial yield surface. Mroz postulated that these
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surfaces define regions in the stress space, each having a constant plastic
modulus function. Incidentally, Twan (1967) proposed a similar multiple surface
model to consider the Bauschinger effect for Masing type materials.

Using his concept of the field of plastic moduli, Mroz (1967, 1969)
proposed that the translation direction of a surface is given by the vector joining
the present state of stress P on the ith surface with the state of stress P’ on the
(i+1)th surface such that the two surfaces have a common exterior normal n (see

Figure 2.4). Without considering the surface size changes, the Mroz hardening
rule can be expressed in the following form,

dg® -981 (2.31)
v

—r

with the vector quantity, ¥ , defined as,
Y =‘\/_%: (RED-R@) g 4 gG+D. o (2.32)

where g and R® represent the center and radius of the ith surface respectively.
The term g® is the backstress of the ith surface at the current stress state. The
interpretation of ¢® for a Mroz type model differs from the Armstrong-Frederick
concept.

Garud (1981a, 1981b, 1982), in examining hardening rules, found that the
translation direction of the yield surface according to both the Mroz and Prager-
Ziegler rules was independent of the stress increment, and this independence
would create an inconsistency problem in the finite stress increment calculation.
In order to avoid this possible inconsistency, Garud proposed a new hardening
rule that related the surface translation direction to the stress increment direction.
Referring to Figure 2.5, if the stress increment were so large that it joined point P
on the ith surface and P' on the (i+1)th surface, so that the two surfaces were
tangential on point P' where the ith surface had its center on 0, the translation
direction of the ith surface is in the direction of the vector joining O;and (), , and
the magnitude of translation is determined by a consistency condition. After the
point P’ is determined, the unit normal at P' can be calculated. The vector joining
point P and point ' can be expressed as,

v = \/_% (Res1) - Ryl + e - 2y (2.33)
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where n is the unit normal al point P' which is called the incremented stress
state. Similar to Equation (2.31), the translation of the ith surface is,
dSm

dg® = === y' | (2.34)
y'n

Because the surface does not rotate, the vector joining O'(i) and Qg is geometri-
cally identical to the vector joining P' and P" (refer to Figure 2.5). Other than the
prime notation, both sets of equations for the Mroz and Garud hardening rules
seem similar. Clearly the only difference between the Garud rule and the Mroz
rule is that the translation direction in the Mroz rule is determined by the normal
n of the current stress state while in the Garud rule the translation direction is
determined by the normal n’ of the incremented stress state.

The Mroz/Garud model can accurately duplicate the Bauschinger effect
for proportional loading, and was found to be superior to the Prager-Ziegler rule
when predicting the stress response under the multiaxial strain-controlled
loading conditions (Hunsaker ef al., 1976; Lamba, 1976; Lamba and Sidebottom,
1978a, 1978b; McDowell, 1983a). The Mroz/Garud model does not predict
ratchetting for any proportional loading. However, this mulfiple surface model
predicts ratchetting for general nonproportional loading (Garud, 1991). The
constant ratchetting rate predicted by Mroz/Garud type models for the
nonproportional loading never decays, and hence the predicted ratchetting
strains are often larger than the experimental results.

In discussing Mroz/Garud multiple surface relations, it has been always
taken for granted that (i) the surfaces be tangential on the point of stress state,
and (ii) in the course of translation the surfaces will never intersect. McDowell
(1989) discussed the possible surface intersection for the two-surface plasticity
theory. Actually, this can be theoretically proven to be true (Jiang and Sehitoglu,
1993d) for an infinitesimal loading increment. Referring to Figure 2.4 and Figure
2.5, when the stress state reaches point I, both the Mroz and Garud rules predict
that the ith surface and (i+1)th surface will be tangential at point P*. Clearly,
when the number of surfaces is large enough, these two models will result in
identical stress-strain predictions. Because the translation direction of a surface
is dependent on the relative positions of the consecutive surfaces, it becomes
evident that the number of surfaces employed has an influence on the surface
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translations, hence on the predicted results. The implication of the Mroz/Garud
multiple surface rules will be discussed further later in the text.

Mroz (1981, 1983) discussed the similarity between the multiple surface
rules and the Armstrong-Frederick type rules. Ohno and Wang (1991b) and
Wang and Ohno (1991) further tormalized the relationship between the Mroz
multiple surface type hardening rules and Armstrong-Frederick type hardening
rules. The Armstrong-Frederick type hardening rules were explained using a
multiple surface concept. However, the translations of the surfaces do not follow
the Mroz or Garud hardening rules. The differences between the two types of
hardening rules are reflected in the predictions for nonproportional loading.

To reduce the computational time involved with the Mroz type model,
two surface plasticity models, a yield surface and a bounding surface, were
developed. The translation of the yield surface follows either the Mroz
hardening rule (Dafalias, 1981; Dafalias and Popov, 1975, 1976; Krieg, 1975,
Voyiadjis and Sivakumar, 1991), Equations (2.31) and (2.32), or Garud hardening
rule (Tsing and Lee, 1983), Equations (2.33) and (2.34). Generally there is a
nonlinear hardening relationship that occurs between these two surfaces. The
plastic modulus function was taken as a function of a "distance” between the
yield surface and bounding surface. This "distance" can be represe;xted by Mroz
distance, | y| (Dafalias and Popov, 1975, 1976: Krieg, 1975), Garud distance, I vl
(Tsing and Lee, 1983), Prager-Ziegler distance (the distance between the two
surfaces in the normal direction to the yield surface at the stress state), or the
second invariant of the deviatoric stress (Jiang and Sehitoglu, 1993¢). Successful
modeling has been achieved using the two-surface models (Bruhns and Pape,
1989; Bruhns ef al., 1992; Chaboche, 1989b; Chang and Lee, 1986b; Iwata, 1991 ;Lu
and Mohamed, 1987; McDowell, 1985a, 1985b, 1985c; Moosbrugger and
McDowell, 1990; Takahashi and Ogata, 1991; Tanaka ef al., 1987; Tsuji, 1989) for
the proportional and nonproportional strain-controlled loading. On the other
hand, Hashiguchi (1988, 1993a, 1993b) discussed the basic characteristics of the
multiple surface and two surface models and pointed out the mechanical
requirements that those models should satisfy.

Two surface models exhibit constant ratchetting rate, and the direction is
always consistent with the mean stress direction for proportional loading. These
results contrast to the decay of ratchetting rate and possible non-coincidence of
ratchetting direction with the mean stress observed in multiple step loading
experiments. Generally, the two surface plasticity theory cannot fundamentally
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correlate cyclic strain accumulation under proportional and nonproportional
loading over a variety of amplitudes and mean stresses (McDowell, 1992).

2.5. Transient Behavior

2.5.1. Cyclic Hardening

Traditional hardening rules are basically useful for the description of a
stabilized stress-strain state. The transient cyclic behavior of a material often
needs separate consideration. Transient behavior is often identified by the
experimental stress-strain response under balanced loading, particularly under
fully reversed and strain-controlled uniaxial tension-compression. For example,
under the strain-controlled balanced loading, the stress amplitude changes with
time, and saturates with loading history. This phenomenon is often referred to as
cyclic hardening/softening.

Two methods can be used to describe the cyclic hardening/ softening. The
first method considers the cyclic hardening/ softening through change in the
yleld strength as a function of the equivalent plastic strain or the accumulative
plastic strain energy density. A relation between the size of the yield surface and
the equivalent plastic strain can be (Chaboche et al., 1979),

dk=by (Q-k)dp , (2.35a)

where by and Q are constants. With an initial value k = kg, integrating Equation
(2.35a) results in,

k= Q - (Q -k()) exp(-bkp) ’ (235b)

where Q is the stabilized yield strength.
The other method considers the hardening by changing the hardening
modulus in the kinematic evolution. For instance, one can consider c¢® and i

in Equation (2.24) as functions of the equivalent plastic strain instead of
constants. Marquis (1979) expressed Equation (2.24) as,

do® = a® deP - d(p) cDa® dp (i=1,2, ., M) , (2.36)
with the following expression for ®(p),

D(p) = Dort (1 - Do) 0P (2.37)
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where a® (i=1, 2, ., M), ¢® (i=1, 2, ..., M), @, and w are constants.

As schematically shown in Figure 2.6 for the uniaxial tension-compression
case, a material may display cyclic hardening, softening, or a combined
hardening and softening. For convenience during the aforementioned
discussion, H, the plastic modulus of the stress-plastic strain loop, is plotted as a
linear function of the stress range, Ag, although this is not necessary for the
validity of the arguments forwarded. The first method is simple and can be
conveniently incorporated into a hardening rule. When a Mroz or Armstrong-
Frederick type model is employed, H-Ac curves parallel to the initial cycle
(Figure 2.6) will result. However, for the two-surface models, since hardening is
determined by the distance between the two surfaces, the change in yield surface
size will also alter the hardening modulus. For the case of two-surface models,
parallel lines will not occur. In general, change of the yield surface size alone
cannot properly describe the cyclic hardening of many different materials. This
is especially true for the single crystal copper (Mughrabi, 1978; Winter, 1974).
The second method, Equations (2.36) and (2.37), is appropriate for the
consideration of the monotonic hardening or softening, but unable to consider
the combined hardening/softening. For any of the plasticity models previously
discussed, the assumption of Equations (2.36) and (2.37) results in non-parallel
lines in Figure 2.6. Mixed behavior modeling can be achieved by adding one
more term in Equation (2.37).

In considering the cydlic hardening, McDowell (1992) and Moosbrugger
and McDowell (1989, 1990) combined the concepts of Equations (2.35) and (2.36).
They assumed that the yield stress was a functional of the equivalent plastic
strain increment and ® (i=1, 2, ..., M) within the framework of Equation (2.22)
were functions of the equivalent plastic strain. This combination provides a
better description of the cyclic hardening behavior for steels.

2.5.2. Plastic Strain Range Effect: Memory Surface

Several investigations show that the asymptotic stress value of cyclic
hardening can be dependent on the prior history, especially in stainless steel
(Chaboche et al., 1979). This influence of plastic strain range on the stabilized
cyclic response is evident from the comparison between the different methods
used to obtain the cyclic curve (Chaboche, 1989). Experimental observation of
non-Masing behavior is an indicator of such memory effects. Another example
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of the memory effects of prior loading history is the stress level influence on
ratchetting, which Chaboche and Nouailhas (1989a, 1989b) referred to as
"quasireversed” (small mean stress) versus "quasirepeated” (large mean stress).

Basic kinematic and isotropic variables are not able to describe the plastic
strain memory effects: kinematic hardening is stable in nature and isotropic
hardening saturates towards a unique value (Chaboche, 1989). In order to
formulate a model with plastic strain memory, Chaboche et al. (1979) introduced
a new internal variable to track prior deformation. The concept uses a memory
surface in the plastic strain space, which Ohno (1982) and Ohno and Kachi (1986)
called the cyclic non-hardening range. This memory surface (Chaboche et al.,
1979) can translate and expand in the plastic strain space, and the radius of this
memory surface represents the maximum plastic strain range of the entire
loading history. The yield stress and hardening behavior are related to this
memory surface. When the plastic strain state is within the memory surface, the
yield strength will not change (non-hardening). McDowell (1985a) incorporated
a recovery term in the evolution equation of the surface, allowing contraction of
the memory surface when the plastic strain is within the memory surface.

A memory surface was also introduced in the stress space to memorize the
maximum backstress of the prior history (Chaboche, 1989; Mroz, 1981, 1983;
Mroz and Trampczynski, 1984). Bruhns and Pape (1989) and Bruhns et al. (1992)
used a similar memory surface in stress space to consider the fransient behavior
in the framework of a two-surface model. The transient cyclic behavior was
modeled by altering the yield stress, which was assumed to be directly
dependent on the size of the memory surface. The memory surface introduced
by Bruhns et al. differs from those of Chaboche et al. (1979) and Ohno (1 982) in
that the former allows the memory surface to contract when a higher loading
level is followed by a lower one. The experimental observations under multiple
step loading (Tanaka et al., 1985a) and non-Masing behavior (Abdel-Raouf ef al.,
1977; Bayerlein et al., 1987: Li and Laird, 1993; Mughrabi, 1978; Winter, 1974)
reveal that the memory of a previous higher loading amplitude fades with the
subsequent number of loading cycles, suggesting that the ability for a memory
surface to contract is necessary for the description of the transient behavior in
many materials. The non-Masing behavior is more likely conirolled by a
maximum stress instead of stress/strain range. Furthermore, from the
ratchetting experiments under multiple step loading, it becomes clear that a
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strain parameter may not be appropriate (Jiang and Sehitoglu, 1993d) for the
consideration of stress level effect on ratchetting.

2.5.3. Nonproportionality Effect

It has been well recognized since the experimental work of Lamba (1976)
and Lamba and Sidebottom (19784, 1978b) that nonproportional loading results
in a higher resistance to plastic flow than does the proportional loading (Benallal
and Marquis, 1978a, 1978b; Benallal ef 4l., 1988, 1989a, 1989b; Benallal ef al., 1989;
Cailletaud ef al., 1984; Kanazawa ef al., 1979; Krempl and Lu, 1983, 1984;
McDowell, 1983a, 1985a, 1985b; McDowell and Socie, 1985; Ning and Xu, 1991;
Nouailhas et al., 1983; Ohashi ef al., 1985a, 1985b; Tanaka ef al., 1985a, 1985b).
Experimentally the nonproportionality effect is observed via two related aspects:
that under nonproportional loading the stabilized equivalent stress is higher, and
hence the transient cyclic hardening is more significant than under proportional
loading. Some stainless steels display more remarkable nonproportional
hardening than other materials. This hardening was explained by increased
dislocation interaction due to nonproportional loading (McDowell, 1983a;
Doong, 1989; Doong and Socie, 1991). Different approaches have been proposed
to describe such effects (Benallal ef al., 1985; Krempl and Yao, 1987; Lindholm et
al., 1984; McDowell, 1985a, 1987; Nouailhas et al., 1984; Tanaka ef al_, 1987). They
are generally based on some proportional /nonproportional loading indices. A
simple and powerful approach was proposed by Benallal and Marquis (1987a,
1987b) and Benallal et al. (1988, 1989a), who used sin 0 (refer to Figure 2.1 for 8 )
as a measure of nonproportionality. The effect interacts with the flow rule by
increasing the yield stress. Benallal et al. (1988, 1989a) observed from
experiments that mean strain does not affect cyclic hardening even under
nonproportional ioading with a material that displays a memory effect. The
strain based parameters for considering the nonproportionality, such as those by
Krempl and Yao (1987), and McDowell (19852, 1987) would predict 2 mean strain
effect even though their experiments were conducted with balanced loading.

2.5.4. Cross-Hardening Effect

The cross-hardening effect usually refers to the phenomenon of a sudden
increase in the siress response observed when the strain-controlled loading is
changed from one "proportional” (note the different definitions for proportional
loading) path to another (Benallal and Marquis, 1987b; Cailletaud et al., 1984;
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Chang and Lee, 1986a; Krempl and Lu, 1984, 1989; McDowell, 1983a; QOhashi et
al., 1985; Tanaka ef al., 1985b). This effect is very significant for some stainless
steels like Type 316. Experimentally, the first proportional loading is allowed to
stabilize. If a second "proportional” path with identical equivalent strain
amplitude is then chosen, the initial equivalent stress will be higher than the
previous stabilized state, but will soften to the level typical for that equivalent
strain range without prior loading (Benallal and Marquis, 1987b; Benallal et al.,
1987b). Further experimental efforts to model this cross-hardening effect have
been performed by McDowell (1983a) and Doong (1989).

Within the basic framework of plasticity (refer to Figure 2.1), it can be
found that a combination of two "proportional” loading paths results in
nonproportional loading to the material. At the end of the first proportional
loading, the yield surface is not centered at the origin due to prior plastic
deformation. As a result, the second "proportional" path will not have sin 8 = 0
initially (Figure 2.1). Hence, the cross-hardening may be a reflection of the
nonproportionality of loading rather than a separate effect. On the other hand,
the cross-hardening effect is not significant for 1045 steel (Kurath, 1993).

2,5.5, Discussion

For most materials without metallurgical transformation or other
microstructural changes during the cyclic loading, it is a general phenomenon
that the stress-plastic strain curve is either convex (tensile loading) or concave
(compressive loading). In general, strain hardening decreases with increasing
plastic deformation. A mathematical generalization of this phenomenon is,

dg:n >0 . (2.38)

This condition has been explicitly incorporated in all the hardening rules
discussed in the previous section. Enforcing the consistency condition, Equation
(2.12), with the Inequality (2.38), one obtains,

dS:n
dk < - (2.39)

The resulting inequality is a condition that must be satisfied at any time for the
evolution of the size of the yield surface during active loading. Many researchers
have ignored this condition. For the hardening Equation (2.35a) for the evolution
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of the size of the yield surface, the Inequality (2.39) results in the following
relation,

bk (Q-k) < % , (2.40)

where h is the plastic modulus function. When modeling transient behavior the
aforementioned condition may not always be satisfied. It is suggested that in
considering refinements in hardening relations that the condition expressed by
Equation (2.38) should be enforced.

Examining experimental investigations on nonproportional cyclic
plasticity, it seems evident that nonproportionality has a remarkable effect on the
deformation behavior of some materials subjected to cyclic loading. However,
the method of comparison for the nonproportionality effect has not been
adequately defined. Most of the reports for the nonproportionality effect have
come from the comparisons of the stress responses under proportional and non-
proportional loading with the "same” strain range. Since both stress and strain
are tensorial qualities, the scalar quantities, equivalent stress and equivalent
total /plastic strain, were generally employed in the comparison. Equivalent
stress is either based on the Tresca or von Mises criteria. The total equivalent
strain is defined in a way similar to that used for the equivalent plastic strain
increment (refer to Equation (2.15)). It has often been stipulated that plastic
deformation is path dependent, which implies that the equivalent stresses are
usually not the same for the same equivalent strains if the loading paths are
different. The applicability of equivalent stress-strain for nonproportional
loading is questionable. In fact, utilizing equivalent stress or strain concepts
when comparing the proportional/nonproportional loading may more
realistically reflect path dependence.

When discussing nonproportionality, one always implicitly assumes that a
hardening rule alone does not account for this effect. However, this is not true.
As a matter of fact, all the discussed incremental hardening rules, including the
linear hardening rule of Prager-Ziegler, consider nonproportionality, irrespective
of the ability to correlate with experiments. A simple affirmation of this assertion
can be done by using these hardening rules to predict both proportional and

nonproportional loading and compare the results, as will be done later in the
text.



3. EXPERIMENTAL OBSERVATIONS

3.1. Infroduction

Experimental observations are the basis for most theoretical cyclic
plasticity formulations. Interest in ratchetting can be traced back to Bairstow
(1911) who made some careful obscrvations of strain accumulation in a steel
under cydlic uniaxial loading with tensile mean stress. Axial strain extension due
to unbalanced uniaxial loading was the subject of a number of early
investigations at elevated temperature (Kennedy, 1956; Lazan, 1949; Manjoine,
1949; Meleka and Evershed, 1960), as well as room temperature (Benham, 1961;
Benham and Ford, 1961; Coffin, 1960). Other observations of remarkable strain
accumulation at low temperatures have been cited in multiaxial nonproportional
loadings (Moyar, 1960; Moyar and Sinclair, 1962, 1963; Wood and Bendler, 1962).
Renewed interest in cyclic ratchetting is reflected by the recent experimental
works of Bower (1987, 1989), Chaboche ¢t al. (1991), Hassan and Kyriakides
(1992), Hassan et al. (1991, 1992), Inoue et al., (1985, 1989, 1991), Ishikawa and
Sasaki (1991), Kapoor and Johnson (1992), Lebey and Roche (1979), McDowell
(1991), Pellissier-Tanon et al. (1982), and Ruggles and Krempl (1989). Some of the
ratchetting experiments reported recently in the literature are summarized in
Table 1. Theoretical efforts have been made toward to modeling the
experimentally observed ratchetting (Chaboche, 1989¢, 1991; Chaboche and
Nouailhas, 1989a, 1989b; Chaboche et al., 1989, 1991; Drucker and Palden, 1981;
Garud, 1991; Guionnet, 1992; McDowell, 1992; Chno and Wang, 1991a, 1991c,
1993a, 1993b; Voyiadjis and Sivakumar, 1991).

In view of the investigations on cyclic ratchetting, few comprehensive
experimental studies have been conducted under multiaxial stress states,
complex loading paths, and for large numbers of cycles. Yamanouchi et al.,
(1976) conducted ratchetting tests on thin tubes of 316 stainless steel under cyclic
axial strain and constants internal pressure at both room temperature and high
temperature. They found that the progressive diametral increase of the tube
specimen followed a power law relation with respect to the number of loading
cycles. Lebey and Roche (1979) used thin tube specimens of 304 L steel and
applied cyclic shearing strain with constant axial stress. Consecutive axial
elongation was observed with loading cycles. Pellissier-Tanon et al. (1982)
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conducted some uniaxial ratchetting experiments on a stainless steel to evaluate
the material's ability to resist ratchetting deformation. Bower (1987, 1989) tested
two different materials for the ratchetting properties. A hard-drawn copper was
found to ratchet at approximately constant rates under load-controlled
proportional and nonproportional loading. A rail steel was found to display
ratchetting rate decay. Solid specimens were used in the nonproportional axial-
torsion testing and some computational difficulties were noted in the stress and
strain analysis since the measurements of the extension and twist angle were
made between the two loading grips (Bower, 1987, 1989). Hassan and Kyriakides
(1992), and Hassan ef al. (1991, 1992) conducted ratchetting tests under both
uniaxial tension-compression and biaxial axial-tension on two low carbon steels.
A 1020 steel displayed ratchetting at a nearly constant rate and the other steel,
1026, with slightly higher carbon content displayed ratchetting rate decay. One
deficiency in these experiments is that the ratchetting tests were conducted for
only a few dozen loading cycles. McDowell (1991) conducted ratchetting tests on
a rail steel and found that the material displayed long term ratchetting rate decay
under both proportional tension-compression and nonproportional axial-torsion.
The experimental ratchetting responses investigated in the literature were under
the condition that the stress magnitudes were maintained unchanged during the
entire loading history. The cyclic ratchetting behavior under multiple step
loading, in which the stress magnitudes change between loading steps, needs
further exploration. With this background, an experimental program was
initiated to explore the cyclic ratchetting behavior of 1070 steel. This study
focuses on the ratchetting phenomena for (i) a large number of loading cycles, (ii)
proportional and nonproportional loading, and, (iii) multiple step loading.

3.2. Experimental Procedure

The material used in this investigation is 1070 steel. Specimens were
machined from hot rolled bars which had been normalized at 870°C for 4 hours
followed by air-cooling. Chemical composition and mechanical properties of this
material are shown in Tables 2 and 3 respectively. The microstructure of 1070
steel is shown in Figure 3.1. Both uniaxial solid specimens and multiaxial tubular
specimens were used for the ratchetting tests. The geometry and dimensions of
the specimens are shown in Figure 3.2. The specimens were polished to about a
30 micron surface finish before testing. A 100kN digital control closed loop
servohydraulic lest frame was used for the uniaxial tests. A 12.7mm gauge
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length extensometer calibrated to 10% full scale was used to measure the axial
deformation and an extensometer with 12% to 15% capacity was used to measure
the diametral strain. The biaxial axial-torsion tests using tubular specimens were
conducted employing a digital control closed loop servohydraulic biaxial testing
machine which has axial and torsional load capacities of 222kN and 2260N-m
respectively. A 25mm gauge length extensometer was used to measure the axial
and torsional deformations(10% full scale axial and 5 degrees full scale torsional).
All data acquisition and control were performed with microcomputers. Testing
was conducted at room temperature using a sinusoidal waveform. All the tests
were conducted at a {requency of 0.5 Hz. Two kinds of tests were conducted on
both uniaxial solid specimens and biaxial tubular specimens. One is a single step
test in which the stress magnitudes are constant during the test. The other is a
multiple step test, which is composed of several single step tests.

For the selected loading cydle, the computer acquires 200 data points per
channel which are stored for subsequent analysis. During the ratchetting
experiments, caution has been taken to ensure that the deformation is not
excessively large so that the microstructural parameters, hence the basic material

properties, are not altered. Secondly, the load instead of the stress is the
controlled parameter in the test. When the total deformation is small, the stress
change during the test will be small, and the test can be defined as stress-
controlled. For the uniaxial tests, the cross-sectional area is corrected by the
measured diametral strain during data reduction and the true stress is calculated
with the instantaneous cross-sectional area. The true strain is obtained
accordingly and used in reporting the results. Uniaxial experiments verified the
plastic incompressibility condition during elastic-plastic deformation, and this
assumption was employed for calculating true stresses for the biaxial
experiments. The corresponding fatigue lives for the load level chosen are large
enough that no fatigue failure, nor any measurable crack growth, is expected.
Tests were conducted to failure to ensure that this assumption was valid.

3.3. Experimental Results

3.3.1. Basic Material Properties

Fully reversed uniaxial strain-controlled tests were performed to obtain
the fundamental properties of the material. A stair-step strain-controlled
sequence test with a combination of increasing-decreasing blocks in strain was
conducted using one specimen. For each loading block, the test was run unl the
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stress response stabilized. The stable stress-strain loops were identical to those
observed for the single strain level tests. Shown in Figure 3.3(a) are the stable
hysteresis loops for 1070 steel at different strain ranges. The non-Masing
character of the loops should be noted. Figure 3.3(b) shows the hysteresis loops
with matched upper branches, indicating that the non-Masing behavior of this
material can be characterized by an increase in the yield stress for the larger
stress/strain level. This indicates that a memory surface will probably be useful
in any subsequent deformation analysis.

3.3.2. Single Step Loading

Figure 3.4 illustrates the basic ratchetting phenomenon. The ratchetting
behavior is depicted for stress-controlled uniaxial loading with a compressive
mean stress. The stress-strain response is presented in Figure 3.4(a). In Figure
3.4(b) the ratchetting strains are plotted against the logarithm of the number of
cycles. The ratchetting strain is the average of maximum and minimum strains
in a cycle. Non-closure of hysteresis loops during ratchetting caused the use of
this terminology instead of mean strain. Noting the logarithmic intervals and the
logarithm scale selection in the figure, the ratchetting rate in both axial and
diametral directions decreases with the number of cycles. The volumetric strain,
which is the sum of the axial ratchetting strain and twice the diametral
ratchetting strain, remains unchanged during the ratchetting test. This result
indicates that the material satisfies incompressibility during ratchetting
deformation and the results are not masked by microstructural changes. Figure
3.4(c) shows the relationship between the axial ratchetting strain and the
diametral ratchetting strain. The relationship is linear and the rate of the
diametral ratchetting strain over the axial ratchetting strain is 0.5. This result also
confirms the plastic incompressibility condition.

Figure 3.5 illustrates typical ratchetting behavior for proportional axial-
torsion loading. In this case a tubular specimen is subjected to simultaneous
axial stress and shear stress so that the principal stress directions are unchanged.
The stress-strain responses in axial and shear directions are shown in Figure
3.5(a) and 3.5(b) respectively. In this experiment ratchetting is produced in both
axial and shear directions. The decay of strain accumulation with increasing
loading cycles is observed in both axial and shear directions. In Figure 3.5(c) the
shear ratchetting strain is plotted against the axial ratchetting strain. Notably,
the ratchetting deformation in the shear direction is linearly related to the
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ratchetting deformation in the axial direction for the proportional axial-torsion
condition.

Nonproportional axial-torsion tests have been conducted, and some
detailed results are presented in Figures 2.6 and 2.7. The loading paths, namely
the "ellipse” and "apple” shaped, represent typical nonproportional loadings
where the directions of the principal stresses vary with time. The axial and
torsional loading ranges for both loading paths are similar. As shown in Figure
3.6 for the "ellipse” shaped path, there is strain accumulation in the axial
direction, but practically no shear strain ratchetting. Under the "apple” shaped
loading path (Figure 3.7) however, ratchetting is observed in both axial and shear
directions. The ratchetting rate decay under nonproportional loadings is similar
to that observed for uniaxial and proportional loadings. From Figure 3.7(b) it can
be inferred that under nonproportional loading, the ratchetting in the shear
direction is not linear with respect to the ratchetting in the axial direction.

3.3.3. Multiple Step Loading

Shown in Figure 3.8 are representative stress-strain responses for a three-
step loading with an identical mean stress in each step. The stress ranges are
750MPa and 850MPa in the first and second loading steps respectively. Step 3 is
the repeat of step 1. The mean stress is 280MPa for all the three loading steps
and each step consists of 520 loading cycles. Note that the abscissa is broken for
the three steps, since they would have overlapped if placed on the same plot.
The ratchetting in step 1 is similar to that observed for a single step test (Figure
3.4). However, the ratchetting rate in step 2 is smaller when compared to the
single step test. When the stress range is reduced in step 3, the ratchetting rate is
considerably smaller than step 1 which has identical stress levels. A closer look
at the detailed data in step 3 shows that the axial strain ratchetting is about 0.03%
In the first 10 cycles and 0.01% for the rest of the cycles. The results from this test
indicate that for the step loading where mean stress is maintained constant and
Stress range varies, the ratchetting rate decreases with the number of cycles but
the ratchetting direction does not change.

It has been generally accepted that the ratchetting direction follows the
mean stress direction. However, this assertion does not always hold true.
Referring back to Figure 3.7, one can find that ratchetting in the shear direction
occurred without a shear mean stress. Clearly the ratchetting direction under
nonproportional loading is determined by the details of the loading path and
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history, as will be discussed later. In fact ratchetting direction can be opposite to
the mean stress even under uniaxial tension-compression.

Figure 3.9 shows the stress-strain response for a two-step loading test.
The stress range and mean stress are 830MPa and 415MPa respectively in step 1.
The stress range in step 2 is the same as that in step 1 but the mean stress is zero.
Again each loading step consists of 520 cycles. As expected for the loading in
step 1, plotted in dashed lines in Figure 3.9, the strain ratchets in the positive
direction. However, in step 2, plotted in solid lines in the figure, the strain
ratchets in the opposite direction. It has been experimentally verified that with a
compressive mean stress in step 1, and identical conditions for step 2, a mirror
image of this phenomenon will oceur. This indicates that with zero mean stress
under uniaxial tension-compression there may be ratchetting in one direction or
the other, dependent on the previous history. Furthermore it is possible that for
a positive mean stress loading, there may be negative ratchetting or vice versa.

The stress-strain respohse under a three-step uniaxial test is presented in
Figure 3.10. In this experiment, the mean stresses change with the loading steps
but the stress amplitude is maintained approximately constant for each step. The
number of cycles per step was not 520, as was the case in the previous
experiments. The mean stress is increased in step 2 and reduced in step 3 to
approximately the same level as in step 1. In all three steps, the mean stresses are
positive. The ratchetting follows the mean stress direction in steps 1 and 2.
However, when the mean stress is reduced in step 3, the ratchetting is in the
opposite direction observed for the two previous steps.

Figure 3.11 shows ratchetting for uniaxial four-step loading. The stress
range is about 400MPa in each loading step while the mean stress in each loading
step is different. The ratchetting for step 1 loading (mean stress is 208MPa) is
similar to that shown in Figure 3.4. When the mean stress is reduced to 77MPa in
step 2, the strain ratchets in the direction opposite to the mean stress direction.
When the mean stress is changed to -125MPa in step 3, the ratchetting is in the
negative direction. After step 3, the mean stress is reduced to -20MPa in step 4.
From the right plot of Figure 3.11(b) it can be ascertained that even with a
negative mean stress, the strain ratchets in the positive direction.

Similar results to those shown in Figure 3.9 have been reported by Dolan
(1965) on 4340 steel. Dolan noted that, "the plastic stretch of the specimen from
the previous cycling was gradually being partially recovered by a cyclic-
dependent shortening”. The back ratchetting after a tensile mean stress loading
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history might be explained by strain recovery. This implies that there might be a
tendency for the material to recover from a non-zero strain state to zero
deformation. However, the results shown in Figure 3.11(b) contradicts Dolan's
deformation-recovery explanation. Referring to Figure 3.11, the axial strains in
the four loading steps are all positive. According to the deformation-recovery
explanation the strain should have ratcheted in the negative direction in Step 4,
when in fact, the results show the opposite trend. The deformation may recover
to some degree, but dlearly such recovery is not significant.

To further define ratchetting phenomena for this material, more uniaxial
multiple step tests have been conducted, and the results are displayed in Figures
2.12 through 2.14. The stress ranges are 800MPa for both steps in the test shown
in Figure 3.12. The mean stresses are 200MPa and 77MPa in step 1 and step 2,
respectively. Step 1 experiences 64 cycles. The stress-strain response for step 1 is
produced on the left side, and the response for step 2 is shown on the right side
of Figure 3.12. In step 2, referring to the cycle labels in Figure 3.12, the strain
ratchets in the opposite direction to mean stress for about the first 250 cycles and
then shifts to the same direction for the remainder of the cycles of the block.
Comparing the two-step loading history of Figure 3.13 with Figure 3.11(a), it can
be found that the only difference between the two cases is that in the Figure
3.11(a) case, step 1 experiences 4100 cycles while in Figure 3.12 step 1 experiences
only 64 cycles. In other words, if step 1 in Figure 3.12 had experienced a higher
number of loading cycles, the strain in step 2 would ratchet in the opposite
direction for all the loading cycles. The ratchetting phenomenon displayed in
Figure 3.12 indicates that the duration of the previous loading step has a
profound influence on the ratchetting of the current loading step.

To illustrate the change in ratchetting direction further, consider the
results from a two-step test (Figure 3.13) where for step 1 the stress range is
800MPa and the mean stress is -200MPa, and for step 2 the stress range is
875MPa and the mean stress is -77MPa. It can be found in the left plot of Figure
3.13 for that step 2 the strain ratchets in the positive direction for about 1000
cycles, followed by a shift in ratchetting in the negative direction. Referring to
the ratchetting behavior in Figure 3.11(a), it is noted that if the stress ranges were
the same in both steps the ratchetting in step 2 would be all in the positive
direction opposite to the mean stress. This suggests that the relative ratio of the
stress ranges between the loading steps also plays a dominant role in the
ratchetting of the following step.
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In order to gain further insight into the previous history effect, the
influence of a single overload on the ratchetting behavior is shown in Figure 3.14.
Firstly the uniaxial specimen undergoes a monotonic tensile loading up to a
maximum stress of 830MPa, which corresponds to an axial strain of about 2 5%.
The subsequent loading has a stress range of 840MPa and a mean stress of
100MPa (maximum stress is 520MPa). Referring to the cycde labels in Figure 14,
it is found that the strain ratchets in the negative direction for the first 2000 cycles
and then switches to the positive direction. Obviously, the ratchetting direction
would agree with the mean stress direction if there had been no overload
involved.

Multiple step ratchetting tests under axial-torsion loading have been
conducted and some of the results are displayed in Figures 3.15 through 3.18.
The loading paths of a two-step proportional loading are shown in Figure 3.15(a).
Both axial and shear stress ranges in the two steps are the same. In step 1
loading, the axial mean stress is 310MPa and the shear mean stress is 118MPa. In
step 2, the axial mean stress is reduced to 78MPa and the shear mean stress is
reduced proportionally to 30MPa. The axial stress-strain responses for the two-
step loading are displayed in Figure 3.15(b) and analogous results are shown in
Figure 3.15(c) for the shear stress-strain response. It can be found that when the
mean stresses are reduced in step 2, the strains in both axial and shear directions
ratchet in negative directions opposite to the mean stresses. This phenomenon is
consistent with the uniaxial cases discussed previously (Figure 3.11).

A two-step axial-torsion loading path is shown in Figure 3.16(a) and the
axial stress-strain and shear stress-strain responses for steps 1 and 2 are shown
Figure 3.16(b) and Figure 3.16(c) respectively. Step 1 represents proportional
compression-torsion, where the axial mean stress is -300MPa and the shear mean
stress is -110MPa. In step 2, the axial mean stress is reduced to zero, while the
other loading parameters remain the same. In the right-hand side plots in these
figures, it can be seen that as a result of the change of axial mean stress, the axial
strain ratchets in the positive direction and the ratchetting in the shear direction
displays a complicated behavior. The shear strain ratchets in the positive
direction opposite to its mean stress during the first 60 cycles, then in the
negative direction for the remainder of the cycles. A similar phenomenon was
observed when, instead of changing axial mean stress from step 1 to step 2, the
shear stress is reduced to zero. In this case the shear strain ratchets in the
opposite direction to its previous direction in step 1, while the axial ratchetting
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direction changes during step 2. It should be noted that due to step 1 loading,
step 2 causes this path to be nonproportional.

In Figure 3.17 the results of a two-step axial-torsion nonproportional test
are presented. In each step the axial stress is constant while the shear stress is
cycled symmetrically. The axial mean stress in the first step is 300MPa and the
shear stress amplitude is 230MPa. In the second loading step, the shear stress
amplitude is 230MPa but the axial stress is reduced to 60MPa. The result of the
axial stress change, as shown in Figure 3.17(c), is that the ratchetting direction
changes in step 2. Clearly the mean axial stresses in both steps are positive and
the ratchetting in the negative direction during step 2 develops as a result of the
previous history.

In Figure 3.18 an "ellipse” shaped path with tensile mean stress in the axial
direction is followed by a pure shear loading. Due to the "ellipse" shaped

loading path in step 1, the pure shear loading in step 2 results in ratchetting in
the negative axial direction.

3.4. Discussion of the Experimental Resulis

The 1070 steel used in this investigation displays ratchetting rate decay
under single step loading. Although decay of strain accumulation is observed, it
does not result in ratchetting arrest (no ratchetting), even for tens of thousands of
loading cycles. However, strain ratchetting may accelerate under certain
circumstances in multiple step loading. Referring to Figure 3.12, due to the
change of ratchetting direction in step 2, the absolute value of the ratchetting rate
reaches its minimum (zero) at the moment of direction change. For example, the
ratchetting rate at cycle 512 is larger than the ratchetting rate at cycle 256 where
the ratchetting changes from negative to positive axial direction. Nevertheless,
the ratchetting rate acceleration is short-lived for 1070 steel. For long term
loading histories, a decrease in the ratchetting rate is always observed for this
material.

From the experimental results of multiple step proportional loading, it is
noted that when the mean stress does not vary between the loading steps, the
ratchetting direction is unaltered. When the mean stress is reduced in magnitude
yet maintains the same sign after a loading step, the material memory of the
previous loading history will alter the driving force for the current loading step.
The material will display a tendency to ratchet in the opposite direction of the
mean stress and a minimum rate phenomenon will occur as discussed in the
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previous paragraph. The magnitude of this material memory is dependent on
the details of the previous loading history, including the loading amplitudes and
number of cycles. Again, the memory of prior loading history dissolves with
increasing loading cycles. It seems that carbon content of the steel plays a
significant role in the ratchetting rate decay observed. AISI 1020 carbon steel
displayed a near constant ratchetting rate (Hassan and Kyriakides, 1992). Slow
ratchetting rate decay was found in 1026 carbon steel (Hassan and Kyriakides,
1992; Hassan et al., 1992). Due to the limited number of cycles in these tests, it is
unclear whether there is no decay, or that lowered carbon content merely delays
this decay. The 1045 steel (Kurath, 1993) and 1070 steel which contain a higher
percentage of carbon display greater ratchetting rate decay (or at least earlier) in
comparison to a 1026 steel. Higher carbon content steels may be expected to
exhibit even faster ratchetting rate decay. It should be noted that heat treatment

may also play a determinant role in the qualitative ratchetting behavior of a
carbon steel.

3.5. Description of Strain Ratchetting under Constant Amplitude Loading

All the experimental ratchetting data has been carefully analyzed. The
following expression is found to be appropriate for describing the ratchetting
rate for both single step and multiple step stress-controlled loading,

%;f—-.: caNm + 2, GD

where g, represents ratchetting strain in a specified direction, N is the number of
cycles counting from the beginning of each loading step, and c¢;, ¢, m are
constants. From Equation (3.1) it follows that the ratchetting strain is,

Cr1

&$m+1

N**licnInN+egg , (3.2)

where & is a constant. To maintain consistency with regard to the integration,
only cases where m#-1 will be considered. The case of m=-1 is considered with
the second term of Equation (3.1). Equations (3.1) and (3.2) can describe the
ratchetting for a wide range of materials. When m=0, the first term in Equations
(3.1) and (3.2) represent constant ratchetting which was observed in copper
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(Bower, 1989) and low carbon steel (Hassan and Kyriakides, 1992; Benham and
Ford, 1961).

For the single step loading cases, the ratchetting rate can be adequately
described by Equation (3.1) with c;;=0. Figure 3.19 contrasts the prediction of
Equation (3.2) along with the experimental data. The description of ratchetting
under multiple-step loading using Equation (3.2) is shown in Figure 3.120. It
should be noted that ¢,720 was necessary to describe multiple step loading. From
all those caiculations on 1070 steel the exponent m ranges from -0.5 to -1.0,
depending on the stress magnitudes and stress state.

In general the relationship between the constants in Equations (3.1) and
(3.2) with the loading parameters is more complicated. For example, these
equations cannot describe the ratchetting behavior under random stress cycling.
The presentation of these equations serves two main purposes. The first is that
these equations represent a simple mathematical form to characterize ratchetting
for constant amplitude loading. With this simple relationship, the ratchetting
results can be extended to a large number of loading cycles where experiment or
theoretical simulation is very time consuming. The second purpose is that this
description could serve as a "benchmark” for evaluating the constitutive models
for predicting ratchetting behavior. A plasticity model unable to mimic these
equations is certainly deficient in more complex ratchetting predictions.

3.6. Conclusions

The experimental results on 1070 steel under various loading conditions
lead to the following conclusions:

(1) The 1070 steel displays non-Masing behavior which can be
characterized by an increase in yield stress for the larger stress ranges. During
ratchetting deformation, the plastic incompressibility condition is valid.

(2) The ratchetting direction is coincident with the mean stress direction
under single step proportional loading. There is no inevitable relation between
the mean stresses and ratchetting directions when the loading is
nonproportional.

(3) Under single step loading conditions, the ratchetting rate decreases
with increasing number of loading cycles under both proportional and
nonproportional loadings, and can be described by a power law relation.

(4) Under multiple step loadings, the material exhibits a strong memory of
the previous loading history. The material could ratchet in a direction opposite
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to the mean stress or could reverse ratchetting direction with time. Due to this
memory effect the strain ratchetting of 1070 steel may accelerate under certain
circumstances. Such memory has a great influence on the subsequent
ratchetting, and tends to dissipate with an increased number of loading cyeles.

(5) The multiple step test provides a means to refine ratchetting models
utilizing the basic framework of cyclic plasticity.
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4. EVALUATION OF EXISTING PLASTICITY MODELS

In this chapter, six existing plasticity models will be evaluated and
comparisons will be made with the experimental results under both strain and
stress controlled conditions. Emphasis will be placed on the capabilities of the
maodels to predict ratchetting behavior. The models under consideration are,
Armstrong-Frederick (1966), Bower (1987), Chaboche (1979, 1983), Garud (1981a,
1981b), Mroz (1966), and Ohno-Wang (1991a, 1991c, 1993a, 1993b). The
Chaboche model refers to the initial form proposed by Chaboche ef al. (1979)
represented by Equation (2.23). The Ohno-Wang model refers to Ohno-Wang
Model II, Equations (2.22) and (2.27). Due to the insignificance of the transient
behavior of the materials investigated, the transient behavior will be neglected in
the theoretical simulations. All of these models were presented in Chapter 2.

In the simulations 800-4000 incremental steps are used for a cycdle.
Numerical analyses were conducted employing double precision. Precautions
have been incorporated into the programming to avoid possible numerical
overflow and accumulation of numerical errors. During active loading the
program checks to insure that the stress state is always on the yield surface. It
should be pointed out that the large number of incremental steps selected for a
loading cycle in the simulations is not suggesting that these plasticity models
always need so many increments. Instead, itis a practical way to insure that the
simulations mimic the character of the model rather than any step size sensitivity
displayed by different models.

4.1. Strain-Controlled Balanced Loading

Experimental results of SAE 1045 steel are taken from Fatemi (1985) and
Kurath (1993). Stress-strain hysteresis loops from fully reversed uniaxial strain-
controlled tests (Kurath, 1993) are used to determine the material constants in all
the plasticity models. The constants used in the models are presented in Tables
4-7. Five terms are used in the backstress series expansion (M=5) for the
Chaboche and Ohno-Wang models. The 90 degree out-of-phase nonproportional
axial-torsion results (Fatemi, 1985) under a strain-controlled condition are taken
to compare with the simulations from different plasticity models. The two
loading paths, namely Path I and Path II, with different strain amplitudes are
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shown in Figure 4.1. The comparisons between experimental and predicted
results are present in Figures 4.2 through 4.5.

In Figure 4.2 the stress responses obtained using the Armstrong-Frederick,
Bower, and Chaboche models are compared with the experimental results. The
Bower and Armstrong-Frederick models produce very similar predictions for the
two loading paths. The stress levels predicted by the Chaboche model are very
close to the experimental data. Figure 4.3 demonstrates the Ohno-Wang model’s
capability with the selection of ¥ =0 and +~ (i=1, 2, 3, 4, 5). With either
selection of ¥, the Ohno-Wang model predicts approximately identical results
and very close agreement is observed between predictions and experiments.
Clearly the selection of ¥ in the Ohno-Wang has an insignificant influence on
the prediction of the stress response for this loading condition. Furthermore, by
comparing Figure 4.2 with Figure 4.3 it is evident that all the Armstrong-
Frederick type models produce practically identical predictions. It is
understandable that the Chaboche and Ohno-Wang models correlate with
experiments better than the Armstrong-Frederick and Bower models, because the
former models contain more material constants.

The constant N; in Figure 4.4 and Figure 4.5 represents the number of
surfaces employed when evaluating the Mroz and Garud models. The predicted
stress responses by the Mroz and Garud models are practically identical when
the number of surfaces are the same. For a path with small plastic strains (Path
D), the number of surfaces in the Mroz and Garud models does not have any
significant influence on the predicted resuits. However, the number of surfaces
influences the predicted results when the loading magnitude is increased (Path
II). This effect on the prediction for the Mroz type models is mainly attributed to
the change in the translation directions of the surfaces. Recall that the translation
dircction is dependent on the positions of the active and next surfaces. The
number of surfaces was found to have an insignificant influence on the plastic
modulus function, h. The correlation with the experiment by the Mroz and
Garud models is inferior to the Armstrong-Frederick type models when
predicting stress response for strain-controlled nonproportional loading.

Similar to many materials, the nonproportionality effect was reported for
1045 steel (Fatemi, 1985; Fatemi and Kurath, 1988; Fatemi and Socie, 1988; Fatemi
and Stephens, 1989). The predicted results in Figures 4.2 and 4.3 suggest that
these six models are able to consider the nonproportionality effect, since the
calculated stresses are greater than or equal to the experimental observations.
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The Mroz and Garud models display a higher nonproportionality effect than the
Armstrong-Frederick type models. This is consistent with the previous
discussion on nonproportionality (see Section 2.6.3). ‘

4.2. Stress-Controlied Unbalanced Loading

The experimental results for 1070 steel are used to evaluate the ability of a
Plasticity model to predict ratchetting. The material constants for each model are
listed in Tables 4-7. The basic material constants in the models are obtained by
fitting the uniaxial stress-strain hysteresis loop of a 1% strain amplitude test. The
stress-strain ratchetting data of the selected cycles is recorded from the
experiment. The ratchetting strain, which is the average of two extreme strains in
a cycle, is obtained for each of these cycles. Cubic spline fitting is employed to
compute the experimental ratchetting rate (the amount of ratchetting strain per
loading cyclé). For an impartial and strict evaluation of a plasticity model's
ability to predict ratchetting, the ratchetting rate is used when comparing
predicted and experimental results whenever it is possible. It has been noted
that for 1070 steel under constant amplitude loading, the ratchetting rate
decreases with increasing number of cycles. The relationship between the
ratchetting strain and the number of cycles can be best described by a power law,
which is often presented on log-log scales. However, due to the possible sign
change of the ratchetting direction under the multiple step loading conditions,
ratchetting rate cannot be shown in logarithmic coordinates for all tests.
Therefore, in the following discussion, both the accumulated ratchetting strain
and the ratchetting rate are used in the comparison of the predicted and the
experimental results.

4.2.1. Armstrong-Frederick, Bower, Chaboche, Mroz, and Garud Models

An "ellipse” shaped nonproportional loading path under stress-controlled
axial-torsion is shown in Figure 4.6(a). The strain responses for the first 16 cycles
are shown in Figure 4.6(b). Predicted strain responses for the first 16 cycles by
the Armstrong-Frederick, Bower, Chaboche, Garud, and Mroz models are shown
in Figure 4.7. Experimental ratchetting strains in both axial and shear directions
for the first 100 cycles are summarized in Figure 4.8, along with the predictions of
the five plasticity models. From Figure 4.7 and Figure 4.8, it can be found that
there are two major aspects of the experimental ratchetting that the models fail to
capture. One is the ratchetting rate decay. Except the Bower model, the other
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four models predict constant ratchetting. Experimentally, the ratchetting rate
decreases continuously with more loading cycles. The Bower model produces
ratchetting rate decay for a limited period of loading cycles, followed by
ratchetting arrest (zero ratchetting). The other aspect is that all five models
predict ratchetting in the shear direction while the experimental results show
minimal ratchetting in this direction. The Bower model predicts a ratchetting
direction change in the shear direction. It has been forwarded by Chaboche
(1989D) as a general comment, that the Mroz and Garud multiple surface models
always produce fully closed siress-strain loops. However, the Mroz and Garud
models predict constant ratchetting (hysteresis loops not closed) and the
predicted results do not coincide with the experiments (Figure 4.7(d), Figure 4.8).
As was observed for strain-controlled loading cases, the Garud and Mroz models
are practically identical in predicting ratchetting. These models not only
overestimate the ratchetting strain but also often predict incorrect ratchetting
direction. Improvements in the capabilities of the five models discussed would
be desirable, especially for long history ratchetting predictions.

4.2.2, Ohno-Wang Model

Figures 4.9 and 4.10 provide an overview of ratchetting experiments and
predictions by the Ohno-Wang model for typical proportional and non-
proportional loading paths. The solid lines in Figures 4.9 and 4.10 are obtained
from a uniaxial test and a nonproportional axial-torsion test respectively. The
nonproportional axial-torsion experiment consists of fully reversed shear with
superimposed static axial stress. The stress-strain response for this loading has
been presented in Figure 2.17(b). In Figure 4.10 the ratchetting in the shear
direction is not shown because in this case both the experiment and the
predictions by the model demonstrate no shear ratchetting. In both cases, the
experimental axial ratchetting rate varies from around 103 per cycle at the
beginning of the loading to on the order of 10 per cycle after a few thousand
cycles. Since the experimental results are approximately a straight line on log-log
coordinates, the ratchetting rates follow a power law. Predictions presented in
the two figures with dotted lines are obtained by using the Ohno-Wang model
with a different set of exponents ¥® (i=1, 2, ..., 10); x® ranges for 0 to +eo.

From the predictions of the Ohno-Wang model, it is obvious that the
exponents ¥ (i=1, 2, ..., M) in the model control the predicted ratchetting rate.
This contrasts with the insensitivity observed for y® previously for fully
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reversed strain-controlled loading. The larger the exponents @ (i=1, 2, ... M),
the faster the model predicts the ratchetting rate decay. For the uniaxial test, the
model with x® =0 (i=1, 2, ..., 10) produces slow ratchetting rale decay for the first
100 cycles before constant rate. When x® = 4o (i=1, 2, .., M), no ratchetting is
predicted for the uniaxial loading. This is because the model with 30 = 4en (i=1,
2, ..., M) produces a perfect hysteresis loop closure. For the nonproportional
loading consisting of fully reversed shear with constant axial stress (Figure 4.10),
the Ohno-Wang model predicts ratchetting rate decay for any selection of (),
When x® = +e (i=1, 2, ..., M), the model predicts ratchetting decay for about 50
cycles before ratchetting arrest. The inability of the model to predict constant
ratchetting may prevent the model from being applied to materials exhibiting
constant ratchetting under nonproportional loading. This will be further
discussed later.

Naturally, the exponents ¥ (i=1, 2, ..., 10) are not necessary all the same.
With the help of diagrams similar to Figures 4.9 and 4.10, an approximate
conjecture can be made for the exponents x® (i<1, 2, ..., 10). With an estimation
of the ranges for the exponents @ (i=1, 2, ..., 10), a trial-and-error procedure can
be employed and a judicious selection of the exponents x =0 (i=1, 2, ..., 10) can
be made based on the fitting of the prediction with the experiment. For the
material investigated, 1070 steel, it is found that the Ohno-Wang model with
A =05, 3P =2, 3@ =y®=5, and 3Oy ©)= A=y @)=y D=y 0= ¢ offers a best

fit with the experimental results for tension-compression (A—;i=405 MPa,

Om =205 MPa). The final fit using these constants is shown in Figure 4.11. Next,
the results predicted for other loading cases when using the model with this
selection of the exponents x® (i=1, 2, ..., 10) are examined (Figures 4.12-4.20).

Ilustrations of the nonproportional loading paths and multiple step
loading paths accompany each of the figures with ratchetting results. The solid
lines represent the experimental results and the dotted lines are always the
predictions of the Ohno-Wang madel. All the comparisons are based on either
the accumulated ratchetting strain or ratchetting rate when possible. The
abscissa in each of these figures represents the number of cycles and is in
logarithmic scale. When the ordinate denotes ratchetting rate, a logarithmic scale
is used. The absolute value is used when the ratchetting rate is negative, as
would be the case for ratchetting in the compressive direction. A linear scale is
used when the ordinate is the accumulated ratchetting strain.
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The comparisons made in Figures 4.11-4.20 are self evident, and do not
require elaborate explanation. Generally speaking, the Ohno-Wang model can
correlate with the experimental results very well for various loading conditions
as well as for a large number of loading cycles. The model captures the
experimentally observed power law ratchetting rate decay. Equally important,
the model is able to consider the previous history effect and predict ratchetting
opposite to the mean stress direction (see Figure 4.15 and Figures 4.17-4.19) for
multiple step loading. In the cases where the accumulated ratchetting straing are
used in the comparison, the error of the prediction from the experiment is
accumulated with the loading cycles. For example, the difference between the
theory and experiment in step 2 of the loading shown in Figure 4.19 is mainly
attributed to the error accumulated in the first step.

* Inspection of the results from Figure 4:11 to Figure 4.20 resolves the first
discrepancy between the prediction and experimental data. In Figure 4.14(b),
where the results of the shear ratchetting strain are presented for the "apple”
shaped loading path, the Ohno-Wang model predicts minimal ratchetting in the
shear direction, while the experiment shows a significant strain accumulation in
the positive shear direction. Figures 4.16 and 4.17 indicate that the model] does
not adequately predict the change of the ratchetting direction for the second
loading step. This disagreement is more obvious in the case of Figure 4.16 where
the experiment shows a clear change in ratchetting direction for the second step,
while the model predicts near zero ratchetting for this loading step. Compared
with the other cases, the agreement for the three-step case shown in Figure 4.18 is
even less desirable.

The results presented in Figure 4.20 reveal the major deficiency in the
model. The uniaxial case shown in the upper plot is for a small mean stress or
low stress level, which was referred to by Chaboche and Nouailhas (1989a,
1989b) as quasireversed. The case in the lower plot represents the high mean
stress (high stress level) case, or quasirepeated (Chaboche and Nouailhas, 1989a,
1989b). From Figure 4.20, the Ohno-Wang model overestimates the ratchetting
rate for a higher stress level loading and underestimates ratchetting rate for a
lower stress level loading. Therefore, some consideration should be put into
incorporating the stress level effect in the Ohno-Wang model. This stress level
effect may be partially responsible for the diminished agreement between

predictions and experiments found in the cases of multiple-step loadings (Figure
4.16, Figure 4.18).
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4.3. Discussion

The Mroz multiple surface models can appropriately duplicate the
experimentally observed Bauschinger effect for proportional loading. However,
these multiple surface models have difficulty characterizing transient cyclic
plasticity behavior. From the comparisons of the theoretical predictions with the
experiments, it has been noted that the Mroz/Garud multiple surface models
provide results inferior to the Armstrong-Frederick type models in stress
response prediction for the strain-controlled balanced loading. Clearly, the
Mroz/Garud models are not able to predict ratchetting for the proportional
loading, yet these multiple surface models are able to predict strain ratchetting
for the nonproportional loading. The predicted ratchetting results are not in
agreement with the experiments. As was pointed out earlier, the models’
inability to correlate with the experiments is caused mainly by the inappropriate
specification of the backstress translation direction of the yield surface. In other
words, the hardening rules, Equations (2.31)-(2.34), do not give the correct
translation direction under the basic framework of cyclic plasticity. Without
going into further discussion, it can be concluded that the multiple surface
models of Mroz and Garud do not capture the characteristics of cydlic plasticity
for the nonproportional loading and therefore, their applications may be limited
to balanced proportional loading. Because of this, the two-surface models, which
are the simplifications of the Mroz/Garud multiple surface models, possess
similar disadvantages, hence, are not suitable for gencral cyclic plasticity
prediction. From the practical application point of view, the Mroz/Garud
models are more complicated mathematically and computer simulations are
much more time consuming than the Armstrong-Frederick type models.

All the Armstrong-Frederick type models can adequately predict the
stress responses for the strain-controlled balanced loading. The basic Armstrong-
Frederick model, Equation (2.18), serves as a fundamental basis for the
Armstrong-Frederick type models. Due to its simple mathematical form, the
basic Armstrong-Frederick model can provide adequate stress responses for the
strain-controlled balanced loading; but is not sufficient for the general cyclic
plasticity predictions. In the Armstrong-Frederick type models, a series
expansion of backstresses improves the predicted stress responses for the strain-
controlled balanced loading. For example, the Chaboche model can predict
satisfactory stress response for the strain-controlled balanced loading when M,
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the number of backstresses, is 5. For balanced proportional loading, increasing
the number of backstresses should increase the accuracy of the slress-strain loop
description. For nonproportional loading cases, an increase in the number of
backstresses also changes the evolution of the total backstress which determines
the subsequent plastic deformation. The influence of the number of the
backstresses for an Armstrong-Frederick type model is asymptotic in nature.
This effect is more profound for unbalanced loading than for balanced loading.
The Bower model and the basic Armstrong-Frederick model produce very
similar stress response for the strain-controlled balanced loading. Due to the
introduction of the additional internal variable B the Bower model, Equation

(2.20), can predict ratchetting with a sign opposite to the mean stress for
proportional loading, and can predict ratchetting rate decay for any loading case.
However, this plasticity model always predicts a ratchetting arrcst after a certain
number of loading cycles and it cannot predict the ratchetting direction change
when the variablep neutralizes as the loading cycles increase. By adjusting the

material constants in the model the predictions can be improved to some degree,
but such adjustment of the material constants cannot change the overall tendency
of the model. For example, when the constant ¢ in Equation (2.20) is a smaller
number the period of the ratchetting rate decay predicted will be longer.
However, in this case, the overall ratchetting prediction will be very different
from the experiment. Despite the inaccuracy of the predictions, the Bower model
displays some advantages. The additional internal variable B enables the model

to predict decreasing, increasing, and constant ratchetting. The variable B on the

other hand serves as a means to memorize the previous loading history. From
the experimental observation on the ratchetting behavior under both single and
multiple step loadings, it seems that such an internal variable may be necessary
and promising. An improvement can be made on the Bower model by
employing the same decomposition of the backstress similar to that used in the
Chaboche model and the Ohno-Wang model (Equation (2.21)). A possible
advantage of such generalization of the Bower model over the Ohno-Wang
model would be that the former is able to predict constant ratchetting for any
loading cases, knowing that B;j=0 recovers the Chaboche mode! which predicts
constant ratchetting. As will be discussed in a torthcoming chapter, an
Armstrong-Frederick model can be interpreted with a limiting surface concept
and the variable E represents the center of the limiting surface.
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The Ohno-Wang and the Chaboche models predict similar stress response
for strain-controlled balanced loading. For the balanced loading the exponents
x® (i=1, 2, .., M) in the Ohno-Wang model have minimal influence on the
predicted results. The characteristics of the Ohno-Wang model are reflected in
the ratchetting predictions. Of all the plasticity models evaluated, the Ohno-
Wang model is the only one that can appropriately correlate with the ratchetting
experiments for a material which displays ratchetting rate decay. It should be
pointed out that the ratchetting strain is a second order effect; therefore, it is
extremely difficult for a model to predict the ratchetting accurately for large
number of loading cycles. The simulation of transient behavior with this model,
though insignificant for 1070 steel, has not been included. Considering all these
factors and the performance of the Ohno-Wang model when predicting the
ratchetting for the 1070 steel, the Ohno-Wang model is promising for general
cydlic plasticity.

One shortcoming of the Ohno-Wang model is its inability to predict
constant ratchetting for nonproportional loading. This is because when y®=0
(i=1, 2, ..., M) the Ohno-Wang model does not recover to the Chaboche model
which predicts constant ratchetting for any loading path. For the proportional
loading case, the Ohno-Wang model at xW=0 (i=1, 2, ..., M) and the Chaboche
model predict similar ratchetting results. However, for nonproportional loading
the difference betwcen the predictions by the two models is significant (Jiang and
Sehitoglu, 19932, 1993b). In fact, the Chaboche model is represented by Wi =1
while the Ohno-Wang model at ¥ ¥=0 results in W@ = (n:L®) which is not equal
to unity for the nonproportional loading (refer to Equations (2.22), (2.24), (2.27)).
A plasticity model that possesses the essential characteristics of the Ohno-Wang
model and at the same time is able to predict constant ratchetting for any loading
path would be an improvement on the Ohno-Wang model, which is in fact the
subject of the next chapter. Furthermore, the stress level effect may be
considered to improve the Ohno-Wang model in predicting ratchetting for
different stress levels. For the general cases, the Ohno-Wang model should
consider all the transient material properties, such as cyclic hardening, the stress
level effect, the non-Masing behavior, and the additional nonproportionality
effect.

Ratchetting and stress relaxation are two reflections of one material
property. The mechanism of strain ratchetting under the stress-controlled
condition and stress relaxation under the strain-controlled condition is the same.
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A model that can adequately predict strain ratchetting should also predict stress
relaxation as well.

4.4. Conclusions
The evaluation of the existing plasticity models with experiments leads to
the following conclusions:

1. The unbalanced loading is critical for the evaluation of a plasticity
model.

2. All the Armstrong-Frederick type models discussed are able to predict
reasonable stress response for the nonproportional strain-controlled loading. For
strain-controlled balanced loading, the Bower model and the initial Armstrong-
Frederick model produce very similar results, and the Chaboche and Ohno-
Wang models with the same number of backstresses predict practically identical
stress response. The exponents x® (i=1, 2, ..., M) in the Ohno-Wang model do
not have any significant influence on the predicted results for the balanced
loading.

3. Mroz and Garud multiple surface models are approximately identical
for the prediction of stress-strain response. The predicted stress response by the
Mroz/Garud models are inferior to Armstrong-Frederick type models for
nonproportional strain-controlled loading. The Mroz/Garud models are able to
produce strain ratchetting under stress-controlled nonproportional loading.
However, the models are not suitable for ratchetting prediction.

4. The Ohno-Wang model is the best of all the models evaluated. The
predicted stress response by using the Ohno-Wang model for strain-controlled
loading is in very close agreement with the experiments. More importantly, the
model can appropriately correlate with the experimental ratchetting of the 1070
steel for various loading conditions. A shortcoming of the Ohno-Wang model
lies in its inability to predict constant ratchetting for nonproportional loading. In

addition, the transient cyclic material behavior should be incorporated in the
model.
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5. DEVELOPMENT OF A NEW PLASTICITY MODEL

Based on the evaluation and discussion of the available plasticity models,
it has been concluded that the predictions oblained using the Mroz/Garud
multiple surface models do not quantitatively agree with the experimental
results for either strain-controlled nonproportional balanced loading or the
stress-conirolled unbalanced loading. Hence, multiple surface concepts will not
be incorporated into the new model. The Armstrong-Frederick type models
predict reasonable stress values for both proportional and nonproportional
strain-controlled loading. The Ohno-Wang model, with the introduction of a
threshold, correlates with single-step experimental ratchetting observations even
for long term loading histories. |

Due to its demonstrated capability of predicting some of the ratchetting
phenomena discussed in Chapter 4, the Ohno-Wang model will be used as a
basis for the new model. One shortcoming of the Ohno-Wang model is its
inability to predict constant ratchetting for nonproportional loading, a
characteristic which will be overcome in the new formulation. In addition, the
transient cyclic material behaviors such as cyclic hardening, non-Masing
character, and the stress level effect on the strain ratchetting will also be
incorporated. The new model will use limiting surfaces with a series expansion
of the backstresses. The concept of a limiting surface will provide a new avenue
by which the class of Armstrong-Frederick models can be interpreted.

5.1. A General Class of Hardening Rules

A series expansion of backstresses, as was expressed in Equation (2.21) is
used in the current formulation and, it is assumed that each backstress part g
takes the following tensorial form,

do® = £®(p - £ LO)dp  (=1,2,..M) . (5.1)

The quantity n is the unit normal (Equation (2.11)), dp is the equivalent plastic
strain increment (Equation (2.15)), and L® is the unit vector of the ith backstress
(Equation (2.28)). The quantities f(li’ and fg} in Equation (5.1) are scalar functions
of the backstresses, which satisfy the following conditions,
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CONDITION 1 f(li) is single-valued and non-negative, and

CONDITION 2 > n: L® when ] g® | =16 (1) >0).
Equation (5.1) and the two aforementioned conditions will be used to construct a
limiting surface concept. From Equation (5.1), it can be derived that,

dg®; LO= ff) (g: Lo - ffo_i) LO: L(i)) dp= fgi) (!li L9 - f(zi) ) . 62

According to CONDITION 1, f(li) is greater than or equal to zero. The equivalent
plastic strain increment, dp, is also non-negative. Therefore from Equation (5.2),
the sign of the quantity dg®: L® is the same as the sign of the quantity
(n:L®-£7) Knowing that £2n:L® when |g®] =) (CONDITION 2),
examination of Equation (5.2) leads to the following inequality,

dg:(i); L(i) <0 when I g(i) I =1i) | (5.3)

Since the backstresses are initially zero, the previous inequality implies that
whenever ¢ reaches a surface with a radius ), the increment of a®, da®,
makes an obtuse or right angle io g®. As a result of this characteristic of the
translation of a backstress part, the backstress part will never go beyond a surface
which has a radius of ) and is centered at the origin. This surface will be
referred to as a limiting surface for a backstress part in subsequent discussions.
The framework characterized by Equation (5.1) with CONDITION 1 and
CONDITION 2 represents a class of nonlinear hardening rules where the total
backstress is divided into several parts and each part of the total backstress has a
limiting surface. It can be found that all of the Armstrong-Frederick type
hardening rules, including those of Chaboche et al. (1979, 1987, 1991) and Ohno-
Wang (1991a, 1991c, 1993a, 1993b), are specific cases within this framework. For
example, the Chaboche hardening rule without a threshold is represented by
£ = cr® and f‘zi) = [%;)i (refer to Equation(2.24)), which also satisfy the two
conditions. The basic Armstrong-Frederick rule, Equation (2.18), is the case for
which M=1, f(ll) = a,, f{zl) = %z-l o | For this model, there is a limiting surface for the

total backstress g with a radius of 1) = i—‘*. With this generalization, the existing
a

Armstrong-Frederick type hardening rules can be explored with a limiting
surface concept. In other words, a prevalent characteristic of all the Armstrong-
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Frederick type hardening rules is the current interpretation of the limiting
surface for a backstress part. The difference between the Armstrong-Frederick
type hardening rules lies in the distinctive specification of the magnitude and
direction of a backstress part within a limiting surface. Such an interpretation
allows the material constants for these models to be determined via a standard
procedure, which will be the focus point of the next chapter. More importantly,

the limiting surface concept provides a convenient framework to construct
refined hardening algorithms.

5.2. A New Hardening Rule

Assume that the total backstress g is divided into M parts (Equation
(2.21)). It is now proposed that each backstress part ¢® takes on the following
specific form,

. o) e
dg® = O | - Y L9/ dp (i=1,2,.., M) . (54

In general, ¢, r®, and x® are three sets of non-negative and single-valued scalar
functions. A geometric interpretation of the new hardening rule is presented in
Figure 5.1. The limiting surface for the ith backstress part g® has a radius of 1.
If the exponent x®>>0, the nonlinear term in Equation (5.4) is approximately
zero when the backstress g is within the limiting surface (Ju®<®). As a
result of this inequality, the increment of this backstress part, dg®, follows the
normal direction, p , to the yield surface (Figure 5.1a) for both proportional and
nonproportional loading. The nonlinear term in Equation (5.4) is tully recovered
when the backstress is on the limiting surface (|g@| = 1) (Figure 5.1b), and dg®
is no longer in the normal direction to the yield surface. This condition is often
referred to as dynamic recovery in the literature. For proportional loading, L@ is
either consistent with n or opposite to it (i.e., L®=+n ). Therefore, for
proportional loading when g is on the limiting surface, da® is either zero
(LY = n) or opposite to g@ (L® = ).

The resulting plastic modulus function corresponding (o the new
hardening rule (Equation (5.4)) is,

M ) o) x(l) +1
h= Y c(l)r{i)(l - (|&_|)

= L(i):g) +12 % , (5.5)
1=1
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or,

M
h= Y h® +\/2‘%kp- , (5.6)

i=1

where,

oy e 1
. o 6] 1P .
h) = iy (1 (l_gr,(_)l L(":p.) (i=1,2,..,M) . 6.7

The quantity h® represents the contribution of the ith backstress to the plastic
modulus function.

Comparing Equation (5.4) with the Ohno-Wang II hardening rule
(Equations (2.22) and (2.27)), one can find that the difference between the two
hardening rules is that the Ohno-Wang rule includes the MacCauley bracket
term {L®: ). The implication of the forma is that when a backstress part g is
on the limiting surface, the increment of this backstress part, dg®, is in the
direction tangential to the limiting surface (L¥:n >1) or follows the normal
direction to the yield surface (L®:n <1, refer to Figure 2.2). When g® is within
the limiting surface, translation of the backstress part is again in a direction
normal to the yield surface. In contrast to the Ohno-Wang model, in the current
hardening rule, dg®® always makes an obtuse angle with g for nonproportional
loading when g is on the limiting surface (refer to Figure 2.2 and Figure 5.1).
The new hardening rule differs little from the Ohno-Wang model for the
deformation modeling of proportional loading, especially when ¥ (i=1, 2, ..., M)
are large numbers. Nonproportional loading is where the effects of this term
become important. It should be noted that when x® =0 (i=1, 2,... M) the new
hardening rule duplicates the initial Chaboche model (Chaboche et al., 1979;
Chaboche, 1987) represented by Equation (2.24). Since the Chaboche model has
the ability to predict constant ratchetting for any cyclic loading, the new
hardening rule will be able to overcome the Ohno-Wang model's inability to
predict constant ratchetting for nonproportional loading. The presence of non-

zero ¥ terms enables the new hardening rule to model materials that display
ratchetting rate decay.
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5.3. A Memory Surface’

The purpose of a memory surface is to consider the cyclic material
behavior which is neither a monotonic function of the loading history nor a direct
function of an internal variable such as the backstress. A memory surface is
introduced in the deviatoric stress space to improve the prediction of transient

behavior. A scalar function g is used to represent this surface,

g=|a|-Ru<0, (5.8)

where| ¢ | is the magnitude of the tolal backstress g as defined by Equation (2.2).
The evolution for the variable Ry, the radius of the memory surface, is,

dRy =H(g) (L : dg ) -cM<1-I—%|—>dp . (5.9)
Rm
The tensorial quantity L is defined in terms of the total backstress as follows,

L= (5.10)

e

Again, H in Equation (5.9) is the Heaviside step function (H(x)=1 if x>0 and
H(x)=0 if x<0). The initial value for Ry is zero. In numerical analysis, it is often
practical to assume Ry to be a small number. A schematic illustration of the
proposed memory surface is presented in Figure 5.2. When the total backstress
¢ Is on the memory surface and is moving outward (Figure 5.2(a)), the memory
surface expands so that the condition of Equation (5.8), g =0, is satisfied. When
the backstress is moving within the memory surface, the memory surface may
contract (if cm>0) with subsequent plastic deformation (Figure 5.2(b)). This
ability of the surface to contact mirrors experimental results where the memory
of prior events decays with additional cycling. The cyclically stabilized memory
surface will have a radius which is the maximum Ia| of the g locus for the
loading history under which the material stabilized. This geometrically implies
that the memory surface and the ¢ locus inscribe at one point (Figure 5.2(c)).
The current value of Ry more strongly reflects the recent prior loading history
rather than the entire history.

Several memory surface concepts have been developed. The difference
between the existing memory surface concepts lies in the choice of plastic strain
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space and stress space, the "stress/strain range” or "maximum stress/strain" to
measure the memory effect, and whether there is a recovery term. Chaboche et
al. (1979), Ohno (1982), and Ohno and Kachi (1986) developed memory surfaces
based on plastic strain space and used the "strain range" as a measure for the
prior history effect without a recovery term. McDowell (1985a) incorporated a
recovery term in the evolution equation of the surface in strain space employing
"strain range" as a measuring parameter. Within the framework of a two-surface
model, Bruhns et al. (1992) introduced a memory surface in stress space, also
including a recovery term that allowed the surface to contract. They used
"maximum stress" to quantify the memory effect.

A stress based memory surface was chosen for the current model. The
interpretation of "stress range" or "maximum stress" as a measure for stress level
effect was based on the results of two different tests. Recall the stress level effect
displayed in the comparisons of the experiments with the Ohno-Wang model
predictions shown in Figures 4.11 and 4.20. The uniaxial ratchetting tests have
approximately the same stress range. The difference between these uniaxial tests
is the maximum stress. The other test was for the non-Masing behavior. Shown
in Figure 5.4 are two hysteresis loops at cycle 4100 for two uniaxial tests with
different maximum stresses but similar stress ranges. It can be concluded from
this figure that a "maximum stress” is a more appropriate measure for the
memory surface than the “stress range”, because the larger maximum stress test

has a smaller plastic strain range. This is reflected by the choice of maximum] g |
as the radius of the memory surface.

5.4, Cyclic Hardening
Transient behavior can be considered by allowing the constants, c®, D), or
%V, utilized in the limiting surface concept (Section 5.2) to become functions of

loading variables. Cydlic hardening can be considered with c@® being functions of
the accumulated plastic strain,

c® = cff (1 + aflebi’? 4+ afde-bP'p) (=1.2,...M) , (511
where cf?, alV, af?, b{?, and b are material constants. This expression is similar to

that proposed by Marquis (1979), but Equation (5.11) contains one more term.
When the material displays monotonic hardening or monotonic softening, only
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two terms in Equation (5.11) are necded. When the malerial behavior is mixed
hardening/softening, all three terms are necessary.

In a modification of the Ohno-Wang hardening rule, Equations (2.22) and
(2.27), McDowell (1992) suggested that the cyclic hardening be considered
through coefficients r® (i=1, 2, ..., M) as functions of the accumulated plastic
strain. In this case, there is a possibility for a backstress gV to be outside of the
limiting surface, which violates CONDITION 2 and may lead to qualitative
changes in the translation of the backstress part. To illustrate this possibility,
consider a uniaxial tension-compression test. Assume that a material is
undergoing elastic-plastic deformation and a backstress ¢® has been saturated
(on a limiting surface with radius D). According to either the Ohno-Wang or the
new hardening rule, g® should stay on the limiting surface as long as the
uniaxial loading is maintained in the same direction. Furthermore, consider that
the limiting surface is allowed to contract with plastic deformation when
simulating cyclic softening. Contraction of a limiting surface when the backstress
g has been saturated could result in g@® being outside of the limiting surface, if
additional conditions are not enforced. In order to avoid unnecessary
complexity, the use of ¢ when modeling this behavior eliminates a possible
inconsistency.

The 1070 steel used for a majority of the comparisons does not display
appreciable cyclic hardening, hence an alternate material is chosen to examine
the performance of Equation (5.11) in conjunction with the new hardening rule
for cyclic hardening. Uniaxial test results of 6061-T6 aluminum alloy (Kurath,
1992), which displays significant cyclic hardening, are compared with the
simulations in Figure 5.4. Because the material displays monotonic cyclic
hardening, only the first two terms in Equation (5.11) are considered. In the
simulation, the constant M in Equation (5.11) is 5 and other material constants are
listed in Table 8 for the aluminum alloy. Clearly, the new hardening rule

incorporating Equation (5.11) duplicates the experimentally observed cyclic
hardening.

5.5. Nonproportionality and Stress Level Effects on Ratchetting

It was demonstrated earlier in the text that the primary influence of the
exponents ¥ (i=1, 2, .., M) is on the ratchetting predictions. If stress level and
nonproportionality have effects on ratchetting, modification of 3@ seems
appropriate. The quantity (n : L®) is incorporated into the formulation of ® to
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consider the nonproportionality effect on ratchetting in the following
mathematical relation,

x® =92 pL®) (i=1,2,... M) , (5.12)

where xg) is a constant for a given stress level. The exponent xg) can be further
related to the size of the memory surface, Ry, to consider the stress level effect on

ratchetting. The following relationship is found to be suitable to model the stress
level effect,

xP= Qi (1 +a,ebeRn) (i=1,2,.., M) , (5.13)

where QU (i=1, 2, ..., M), ay, and b, are constants. Combining Equation (5.12)
with Equation (5.13) results in,

x(i) = Q(i) (2 - Q:L‘(i)) (I-i-axebeM) . (514)

Because (n : L®) can be interpreted as a measure of nonproportionality, the term
(2-n:L®) takes into account the nonproportionality effect on ratchetting.
Roughly speaking, Equation (5.12) implies that the exponents ¥ (i=1, 2, .., M)
are larger under nonproportional loading than under proportional loading. The
term (1+a,€%R%} in Equation (5.13) accounts for the stress level effect. For higher
stress levels, the memory surface is larger. As a result, %@ is larger. Therefore,
the predicted ratchetting rate will be smaller than when ¥® is a constant. This is
consistent with the experimental observations on 1070 steel and those reported
by Chaboche and Nouailhas (1989a, 1989b).

5.6. Non-Masing Behavior

Jhansale (1975) suggested that the non-Masing behavior be modeled by
considering changes in the yield stress. Ellyin et al. (Lefebvre and Ellyin, 1984;
Ellyin, 1985; Golos and Ellyin, 1988) also used a similar concept to incorporate
non-Masing behavior when refining a fatigue damage parameter. The non-
Masing results on various materials (Abdel-Raouf et al., 1977: Golos and Ellyin,
1988; Jhansale, 1975; Jiang and Sehitoglu, 1993d; Li and Laird, 1993; Winter, 1974)
indicate that the change in yield stress is a reasonable choice to model this
phenomenon. Because the non-Masing behavior is related to the recent loading
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history, the size of the memory surface can be used to model the non-Masing
behavior. For the 1070 steel, the following relationship is sufficient,

k=k; (1 +aesRy) (5.15)

where k;, a, and cy are constants. It can be derived that the consideration of the
non-Masing behavior through k will automatically satisfy the condition set forth
for the increment of k (Equation (2.38)) in Section 2.5.5. The simulation of nori-
Masing behavior using Equation (5.15) in conjunction with the new hardening
rule and experimental resulls are shown in Figure 5.5. The material constants
used for 1070 steel are listed in Table 8. Equation (5.15) is able to capture the
phenomenon both qualitatively and quantitatively.

5.7. Generalization and Discussion

It should be noted that within the framework of hardening rules
previously introduced, the limiting surfaces for the backstresses (Equation (5.1))
do not translate at any time. A more general hardening rule with the limiting
surface having the ability to translate can be constructed. In this case, an
additional internal variable, B, to describe the center of the limiting surface

should be included. Mathematically, this general framework of hardening rules
can be expressed as,

M
=2 g, (5.16)

i=1 , (5~17)
dg® = £ (n - £ 1L®) dp (=1,2,..,M) ,  (5.18)
where,
. ald - B(i)
Lo-— (=1,2,..M), (519
Fy

lg(i) —B(i)l = (g(i) - E(i)): (gﬁ) -Eﬁ)} (i=1,2, .., M) . (5.20)
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The quantities t(li) and f(zi) are functions of the backstresses, which satisfy the
following general conditions,

CONDITION 1a f(li) is a single-valued non-negative, and,

CONDITION 22 £ >y : L® when | o® - po | =18 () >0)
There is a limiting surface for the quantity (g(i) - E(i}). The limiting surface has a
radius of 1 and is centered at E(i) (Figure 5.6). The characteristics of this
limiting surface is similar to that discussed in section 5.2. The difference between
Equation (5.1) and Equations (5.15)-(5.1Y) is that in Equation (5.1) the center of
the limiting surface is fixed at the origin while according to Equations (5.16)-
(5.19), the center of the limiting surface can translate. With the additional
capability of translation for the limiting surfaces, Equations (5.16)-(5.19) represent
a class of hardening rules which theoretically could handle more complex
material behavior. These possibilities include additional anisotropy due to
preloading a material and nonproportional hardening beyond that inherently
predicted by the models. It is noted that the Bower model, Equation (2.20), is a
special case where M=1, f{" = a,, and £V = C_;i;l— I @-p I There is a limiting surface

for (g_z - B) which has a radius of r{l) = E%"T. Bower (1987) used this term to improve
the modeling of ratchetting rate decay.
Analogous to the new hardening rule presented in Section 5.2, a possible

choice for t(li) and fgi) could be,

£9 = clort) (=1,2,...M) , (5.21)
- ol - B(i) ! x@ 41
£ = ”—r{;):_ (=1,2,.., M) . (5.22)

A schematic illustration for the mode! described by Equations (5.21) and (5.22) is
presented in Figure 5.6

It should be noted that the evolution for the internal variable B(i) has yet to
be formalized. From the ratchetting analyses performed (discussed in the
subsequent chapter), such an additional variable is found unnecessary for 1070

steel. Therefore, the presentation of the more general framework of hardening
rules may be useful for future studies of different materials.
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In the previous sections, the cyclic hardening was related to the
accumulated equivalent plastic strain with a power law relation. The parameter
(0 : L) was used to characterize the nonproportionality effect on ratchelling,
and the size of the memory surface was used to consider the stress level effect on
both ratchetting and non-Masing behavior. It should be noted that for other
materials the detailed relationships for nonproportionality effects, stress level
effect, and consideration of non-Masing behavior could differ in form from those
forwarded in Equations (5.11)-(5.15). Based on the previous arguments
forwarded with regard to the limiting surface size, it may be convenient to set r®
(i=1, 2, ..., M) as constants, while the other two sets of coefficients, ¢ and ¥®
(i=1, 2, ..., M), can be further functions of the stress state to consider the transient

cyclic behavior. General expressions for ¢ and 3® could take the following
forms,

=0, Ry,n: LO)  (=1,2,..,M) , (5.23)
@ =TRy,n: L) (i=1,2,...M) , (5.24)

where Q% and ™ denote functions. Because x (i=1, 2, ..., M) have influence
only for the unbalanced loading, c® (i=1, 2, ..., M) should consider all the cyclic
transient material properties observed in balanced loading. Obviously, c® (j=1,
2, ..., M) are strong functions of the accumulated equivalent strain, p, for cyclic
hardening/softening materials. The nonproportionality effect can be significant
for materials such as stainless steel, where translation of the limiting surface (i.e.,
B(i)) may be an effective technique. The stress level effect on transient behavior

may also be considered for some materials within the constants for ¢® (i=1, 2, ...,
M). Further systematic experiments under both balanced and unbalanced
loading are needed for different materials before a detailed relationship
equivalent to Equations (5.11)-(5.15) can be formalized.

The model does not consider the cross-hardening effect observed in
stainless steel (Tanaka et al, 1985a, 1985b; McDowell, 1983a). As has heen
discussed previously, cross-hardening is material dependent. Because the
material im}estigated in this work, 1070 steel, displays insignificant cross
hardening, no attempt has been made to model this material behavior. However,
within the framework introduced in this chapter, it seems possible to consider
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the cross-hardening with the introduction of another memory parameter. Cross-
hardening is in fact a reflection of the nonproportionality effect when the loading
path changes. This effect fades with increasing number of loading cycles in a
subsequent loading step. With this in mind, a reasonable variable which can be
related to a memory parameter for describing the cross-hardening effect could be
L:n , where L is the unit vector of the total backstress (Equation (5.10)) and n is
the unit normal on the yield surface at the stress state (refer to Figure 2.1). The
value of L:n characterizes the overall nonproportionality. For proportional
loading, |L:n|=1. For nonproportional loading, |L:n[<1. When a
proportional path (| L:n|= 1) is changed to another “proportional” path, the
value of | L,:n | experiences a sudden change from 1 to a value less than 1. As the
loading cycles increase in the subsequent loading history, the value of | L:n |
approaches 1. This change of the |L:n| value is consistent with the sudden
change in the stress response of the subsequent loading step. A parameter
memorizing | L:n |, which fades with loading history, may be constructed in an
analogous fashion to that forwarded for the memory surface described by
Equations (5.8)-(5.10). Additional coefficients in the ¢® (i=1, 2, ..., M) format
could be added for this memory parameter, which could then consider the cross-
hardening effect. The details of the formulation for cross-hardening are left for
future studies.

The stress-strain response of the first reversal (monotonic stress-strain
response) under uniaxial tension-compression can be very different from those of
the subsequent cycles. This is especially significant for medium and low carbon
steels which display a distinct upper yield strength which depends strongly on
the stress/strain rate of the loading. This first reversal behavior is difficult to
consider within the current framework of incremental plasticity. For balanced
loading, the first reversal behavior has no effect on the stabilized stress-strain
predictions. However, it has significant effect on the total ratchetting predicted
for stress-controlled unbalanced loading. For more accurate ratchetting
predictions, the first reversal behavior may need to be considered separately.
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6. DETERMINATION OF MATERIAL CONSTANTS

When a plasticity model involves a number of material constants, it is
always desirable that the material constants can be easily determined from the
results of simple experiments. In this chapter, a computational procedure is
introduced to determine the material constants for the mathematical model
developed in the previous chapter. While particular forms may differ, the
following procedure is applicable to the class of hardening rules introduced in
Section 5.2. The concept of a limiting surface for a backstress facilitates the

determination of the constants. The final format of the new model under
consideration is listed in Table 9.

6.1. Analysis of Uniaxial Tension-Compression

For the uniaxial tension-compression test, let ¢ = 55 and eP= Elii represent
the axial stress and axial plastic strain respectively. Consideration of the one
dimensional problem results in the following simplifications,

la®] =2 [af], (6.12)
(i

®_ %1 _ 2

Ln_l_ﬁ)l i\/—g , (6.1b)

mp=x § . (61C)

In order to determine the material constants, assume that the uniaxial
loading begins from the most compressive stress state where all the backstresses

are saturated. With this initial condition, Equation (2.15) takes the following
form,

dp = \/%- da) | (6.2)
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where Ag® is the axial plastic strain range measured from the strain state
corresponding to the most compressive stress state. When the hardening rule,
Equation (5.4), is simplified for the one dimensional problem, it results in,

@ @ [\x° @)
d( i‘x{:u)___ [1_(}/:% Iau ) v_gau} d(c(i)Aep)

130 aty

(=1 2,...M) . (6.3)
Equation (6.3) represents a differential equation where Ac®, the plastic strain
range, is the only independent variable and aﬁ (i=1, 2, ..., M) are the functions of

A€’ as was stipulated for Equation (5.4).
Without loss of generality, let,

o
. Y2 u !
x = cAEP; Y= and m=y® . (6.4)

The differential equation, Equation (6.3), simplifies to,
el RIMIER A (6.5)

Because the loading begins from the most compressive stress state where all the

backstresses were assumed to be saturated in that direction, the initial condition
is,

off =-/2:0  when A=0 (6.62)
or corresponding to the simplification in Equation-(6.5),
¥lheo=-1 . (6.6b)
The differential equation, Equation (6.5), with the initial condition

stipulated in Equation (6.6b), can be solved numerically using a Gaussian
integration method (Gerald and Wheatley, 1984). Three solutions, corresponding
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to m=0, 2, and +oe, result from the implementation of the aforementioned
technique, and are shown in Figure 6.1. It can be found that all solutions to the
differential equation are curves which arc asymptotic at y=1. Subsequent
numerical analysis has verified that this asymptotic curve is valid for initial
conditions 12yl,.>-1. Since jg®] = ‘\/—%_ Ia(li” (Equation 6.1) for uniaxial
tension-compression, the asymptotic curve represents a limiting surface for the
one dimensional problem. Figure 6.1 reveals that the solution to the differential
equation does not have a strong dependence on the exponent m. When the

exponent m is larger than a certain value, the relationship between x and y is
approximately bilinear, leading to

y=1 whenx =2 . (6.7)

When the bilinear solution is incorporated into Equation (6.4), the
aforementioned solution (Equation (6.7)) is equivalent to,

of) =1/Zw0 when c®AeP=2  (i=1,2,..M) .  (68)

Again, applying the stipulations inferred by Equation (6.1), Equation (6.8) can be
summarized as follows,

(i
1)

1

|

=1 when c®AeP=2 (=1,2,.. M) , (6.9)

3

where A’ is the plastic strain range at which the ith backstress part g® is
saturated. Invoking the concept of a limiting surface has allowed a special
relation between c® and Ae® to be formulated. This relationship will be vital
when attempting to determine ¢ and r® in subsequent sections. Two methods
will be discussed in Sections 6.2.1 and 6.2.2 to determine these constants.

6.2. Determination of ¢c@ and r®

While ¢® (i=1, 2, ... M) and k, the yield stress, may be used as functions to
model transient behavior, it is assumed that they remain constant for a given
reversal. If no lransient behavior is considered, the stabilized deformation
should be used. Also assume that @ (i=1, 2, ... M) are infinitely large. Since y
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has its most pronounced influence on ratchetting, which is not under
consideration here, this assumption has minimal cffect on the quantilative values
for the constants, c® and ©® (i=1, 2, ... M). The major implication of this
assumption is that the uniaxial stress-strain curve predicted is piece wise linear.
One of the solutions to the differential equation, utilizing these assumptions,
becomes,

g(i)l x(i) +1 . i

oy =0 when [g®] < r® | (6.10a)
@] xD+1 N

(I%l)—l-) =1 when [g®] =@ | (6.10b)

where | g®| = ¥ infers saturation of the ith backstress ¢®. Manipulating
Equation (6.10) and Equation (5.5), the plastic modulus function can be expressed
in the following form when only the backstresses, j=1to (i-1), are saturated,

M
hgy = D, cird (6.11)

j=i

The scalar hg) is the value of the plastic modulus function between the intervals

corresponding to point i and point i+1 (Figure 6.2). If Aef;y denotes the plastic
strain range at which the ith backstress g is saturated, then,

cOAel) =2 (i=1,2,..M) . (6.12)

Equations (6.11) and (6.12) govern the two sets of material constants c® and r®.

However, these two equations alone are not sufficient for the determination of
the constants c¢® and .

6.2.1. Determination of ) with Presumed c(

When transient behavior such as cyclic hardening is ignored and c® (j=1,
2, ... M) remain constant, a simple procedure can be proposed to calculate the
constants r® (=1, 2, ... M). Select M points in the Ac - Ae” curve from the uniaxial
test (refer to Figure 6.2) so that the stress range, Acg, and plastic strain range,
Ael,, are known for any point i. Note that again Ae) denotes the plastic strain
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range at which the ith backstress ¢ is saturated, and Aoy is the stress range
corresponding to Aefyy. From Equation (6.12) it follows that,

cd=_2_ (i=1,2,.., M) . (6.13)
Acfy

For the uniaxial test the plastic modulus function at point i is computed
according to Equation (6.11). Utlizing the results of Equation (6.13), the radius

of the ith limiting surface can be computed as follows,

=2 Bo -Hany

i=1,2,.., M) , .
3 ) ¢l ) (6.14)
where
Hyy = 2207 8% (i=1,2, ., M) , (6.15)
AE(i) - AS(M)
AG(0)= ZGy = 2‘1’? k ’ (6.16&)
Ay =0;  Hopy =0 . (6.16b)

The yield stress oy in Equation (6.16a) is half the linear elastic portion in Figure
6.2. The constant k is the yield stress in pure shear and is related to uniaxial

loading via the von Mises criterion. The maximum stress range, Aoy, satisfies
the following condition,

M
AG) = ACmax =2 4 53 Y 42 Oy , (6.17)
i=]

where AGp, is the maximum stress range that the model is intended to simulate,
often the saturation strength in the positive direction. The procedure (Equations
(6.13)~(6.15)) is repeated until all ¢® and (i=1, 2, ..., M) have been determined.

6.2.2. Determination of c® with Presumed ()

Within the context used to derive the current model (Section 5.4), the radii
of the limiting surfaces, i (i=1, 2, ..., M), are assumed to be constants. This
method of determining ¢® and 1® (i=1, 2, ..., M) is somewhat more complex.
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However, when considering cyclic hardening through c¢® (i=1, 2, .., M), this
format will be useful to determine the constants in Equation (5.11). If a
maximum stress range is given and the yield stress has been determined, from
Equation (6.17) it follows that,

3 w0 e (A‘;mx : oy) . (6.18)
i=1

M
Once 2 ) is calculated from Equation (6.18), individual r® can be selected.

i=1
Again, in Figure 6.3, Acf; denotes the plastic strain range at which the ith
backstress o) is saturated. The strategy is to find the stress and plastic strain
ranges of each point in the stress-strain curve where the corresponding
backstress part is saturated. This procedure begins from point M and follows the
order M-1, M-2, ..., 1, 0. The plastic strain range at point M, Aelyy,, is obtained
from the experimental stress-plastic strain curve, Ac = f(Ae?), for a selected
maximum stress range Acpg. When Aoy, and Agfyy, are known, ¢ is calculated
from Equation (6.13). Now assume that the stress and strain ranges
corresponding to points i+1, i+2,..., M have been found so that ¢ (j=i+1,i+2, ...,
M) are all known. The next step is to determine the (i-1)th point. The slope of
the line linking the point (i-1) and point i in the stress-strain reversal can be
calculated using the following formula,

Hg

i

M
%Z DD (6.19)
j=i

This segment of the stress-strain curve is modeled as piece wise linear and can be
described by,

Ao = Aoy + Hg (AeP - Aef)) (i=1,2,., M) . (6.20)
Point (i-1) is one of the piece wise linear segment points that intersects the

experimental stress-plastic strain curve, Ac = f(AeP) (Figure 6.3). Once the
coordinates at point (i-1) are obtained, c(-1) is calculated employing Equation
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(6.13) for a known Aef, ;;. The procedure is repeated until all M segments have
been calculated.

There is one additional consideration that should govern the choice of r™,
In order that the other intersection points of the curve Ac =f(Ae") and line
Ao = Aoy + Howy (AEP - AE?M)) correspond to a lower stress/plastic strain, the

slope of the straight line Hyyy should be larger than the tangent of the curve
AG = f(A€”) at point M. Mathematically, this implies,

df(Aeq)

H(M) = —3- C(M}I'(M) -
2 d(Ac)

(6.21)

Using Equation (6.21) with the condition forwarded in Equation (6.13) results in
the following form for this inequality,

P p
M) Ep df(aepny) , (6.22)
d(Ac)
d{Ao)
Ao = f(A"), at point M.

represents lhe derivative of the stress-plastic strain curve,

6.2.3. Discussion

The determination of the material constants c® and i) (i=1, 2,..., M) was
based on the assumption that the exponents @ (i=1, 2,..., M) were large enough
so that the plastic modulus function can be treated as a step tunction in terms of
the plastic strain. In fact, the exponents x® (i=1, 2,.... M) have little influence on
the stress-strain prediction for fully reversed tension-compression. Figure 6.4
shows the simulations using the new model for y¥=0 and XV = oo (i=1, 2,..., M)
along with the experimental result. When x® = +oo (i=1, 2, M), the predicted
stress-strain hysteresis loop is piece wise linear. When yx®=0 (i=1, 2,.., M), the
predicted stress-strain loop is smooth. In either case, the predicted stress-strain
results are in close agreement with the experimental data. This indicates that the
material constants c® and 9 (i=1, 2,..., M) can be determined following the
procedures introduced previously without considering the values of x® (i=1, 2,...
M). Referring to Figure 6.2 and Figure 6.3, it should be noted that points are
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arranged beginning with the lowest stress/strain range. Because c® is inversely
proportional to Aef,, (Equation (6.13)), it follows that ¢ > c@>.__> ¢M)s(. The
constant ril) represents the radius of a limiting surface, therefore, ri)>0 (i=1, 2, ...,
M).

The first method (see Section 6.2.1) is very easy to implement. The values
of ¢ (i=1, 2, ..., M) are obtained directly from a stress-strain curve and (@ (i=1, 2,
-+ M) are calculated. This method can be used in the cases where cyclic
hardening is neglected, so there is no further relation of the constants c( with the
loading history. For 1070 steel which displays minimal cyclic hardening, either
procedure results in very similar predicted stress-strain curves. Cydlic hardening
for some materials is considered through the constants c® (i=1, 2,..., M) in the
hardening rule, Equation (5.4), the radii of the limiting surfaces ) (i=1, 2,..., M)
are presumed to be constants irrespective of loading condition and history. The
procedure introduced in Section 6.2.1 should be utilized to determine the () (i=1,
2,..., M) from the stabilized cyclic stress-strain curve. Therefore, the procedure
Introduced in Section 6.2.2 should be used to determine ¢t (i=1, 2,..., M) for some
selected stress-strain hysteresis curves which are representative of the transient
behavior. Equation (5.11) is asymptotic at large number of cycles. When
considering cyclic hardening, it is noted cf? (i=1, 2, ..., M) are the values of c®
(i=1, 2,..., M) for the stabilized stress-strain relation in Equalion (5.11). The first
procedure introduced in Section 6.2.1 can also be used to determine of (i=1, 2, ...,
M) by analyzing the stabilized stress-strain curve. Following the procedure in
Section 6.2.2 and using the r® and ¢ (i=1, 2, ..., M) previously obtained, the c®
(i=1, 2,..., M) corresponding to given cycles displaying cyclic hardening can be
determined. These c® (i=1, 2,..., M) are plotted against p, the accumulated plastic
strain, and then the relationship between c® (i=1, 2., M) and p can be
established. From the c@-p (i=1, 2, ..., M) relations , the constants a®, ad, b® and
b{" in Equation (5.11) can be determined through a best fit technique. When only
cyclic hardening or softening is considered, the constants a) and b (i=1, 2, ..,
M) can be set to zero and the fitting technique can be simplified.

6.3. Non-Masing Behavior

Non-Masing behavior is considered through k which is proportional to
the size of yield surface. By testing fully reversed strain-controlled tension-
compression at different strain amplitudes, the k-Ry relationship can be
established. This can be achieved by conducting an increasing/decreasing step
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test with one specimen. In each step, the number of the loading cycles should be
large enough so that the stress-strain responses stabilize. A certain percentage of
offset can be employed to determine the yield stress from one of the stabilized
loops. While the stabilized value of k may change slightly with the offset chosen,
the model is not very sensitive to this choice. In general, the offset should be
much less than the 0.2% offset typically reported for tensile testing (ASTM, 1993).
Examination of Figure 3.3 and Tables 4 -8 reveal the lower values chosen for k.
Then a shift of the loops as in Figure 3.2b allows determination of the change in
yield stress, hence the change in k, for different siress levels. Since it was chosen

to model the non-Masing behavior, a function of the memory surface, the
following equation applies,

Ry = \/%“ (Cmax - Oy) = \/gf (Omax - V3 k) , (6.23)

where Ong is the maximum stress in the stabilized stress-strain hysteresis loop,
Oy is the yield stress for the stress level under consideration. From several
selected stress/strain levels and their associated values of k, the k-Ry
relationship using the format suggested in Equation (5.15) can be established.

The constants, kg, ay, and by in Equation (5.15), can be obtained using a best fit
technique.

6.4. Memory Surface

There is only one constant ¢y associated with the concept of a memory
surface (Equations (5.8) and (5.9)). For the purpose of discussion, consider two
steps from the decreasing portion of the increasing/decreasing step test
discussed in the previous sections. For this constant, ¢y, the transient, not
stabilized behavior will be considered. Since the stress amplitude in the second

step is smaller than that of the first step, during the second step loading, H(g) = 0,
and]| | < Rm. Therefore, : _

dRpM = -¢pm (1 - LR%,I;—) dp , (6.24a)

or,

8p
RM = RMU - Cmf (1 - II%—;) dp ; (6.24b)
o M
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where Ap is the accumulated plastic strain with reference to the beginning of the
second loading step. R is the stabilized memory surface size from the first
step. It is assumed that during the second loading step, there is no more cyclic
hardening/softening behavior. Therefore, any change in the siress response is
attributed to changes in the yield strength which are related to changes in the
size of the memory surface, Ry. The changes in yield stress can be determined
from the experimental stress-strain response in a manner analogous to the
previous section. Then the instantaneous memory surface size, Ry, is calculated
using Equation (5.15). The constant cy is then determined by the trial and error
fitting of Ry-Ap relation. It should be noted that Equation (5.15) is valid for any
loading state. Also, if a small-large cycle sequence were employed, the
assumption of no further strain hardening could be more difficult to justify.
Furthermore, the term containing the constant ¢y in Equation (5.9) would be
inactive for this sequence. These are the primary reasons why a large-small
sequence was chosen to determine this constant.

6.5. Determination of Exponents y®

At this point all constants for the new model except ¥® have been
established. The exponents ¥® (i=1, 2, .., M) have an insignificant influence on
the balanced loading, therefore they are determined from unbalanced loading
tests, specifically ratchetting tests. For a given stress level, the memory surface
size, Ry, is a constant, and hence xg) is a constant. The coefficients xg) (i=1, 2, ...,
M) can be determined from a uniaxial ratchetting test for a given stress range and
mean stress. A change in the range and/or mean stress will alter the coefficients
xg) (i=1, 2, ..., M). Using the coefficients xg) (i=1, 2, ..., M) obtained for several
different one-step tests at different stress levels, the constants xg ), 8, and by in
Equation (6.13) can be determined using trial and error fitting.
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7. VERIFICATION AND DISCUSSION OF THE NEW MODEL

The same experimental results forwarded in Chapter 4 which were
employed to evaluate the existing plasticity models are again used to verify the
new model. A detailed description of the experimental results will not be
repeated here. Once again, due to the insignificant cyclic hardening
experimentally observed for 1045 and 1070 steels, no cyclic hardening is
considered in the simulations (i.e., in Equation (5.11), al = 2= 0 (=1, 2, ..., M)).
A limited number of tests employing a 6061-T6 aluminum, which displays strain
hardening were discussed in Section 5.4 to verify the format proposed for strain
hardening (Equation (5.11)). The same methodology as was discussed in Section
4.1 is incorporated into the current numerical analysis.

7.1. Strain-Controlled Balanced Loading :

For 1045 steel under strain control, the number of terms, M, for the
backstress expansion in the new hardening rule, Equation (5.4), is set to be 5. The
material constants ¢ and 1® (i=1, 2, 3,4, 5) in the new hardening rule are
obtained employing the procedure outlined in section 6.2.2 and are listed in
Table 8. The non-Masing effect and stress level effect on ratchetting are not
considered for the balanced strain-controlled cases (i.e., ay=0 in Equation (5.13)
and a,=0 in Equation (5.14)). Additional experimental data for 1045 steel would
be needed to determine these constants, but they have little influence for the
loading paths discussed for this material.

Figure 7.1 presents a comparison between experimental results and the
new model simulation for the strain-controlled nonproportional loading paths,
Path I and Path II, shown in Figure 4.1. Close agreement between experimental
and predicted results is observed. As was previously inferred, numerical values
of the exponents ¥ do not influence the predicted results significantly for
balanced loading. The two extreme values for %D, 0 and +eo, are examined to
verify this stipulation. For Path I where the plastic strains are small, the values of
the exponents 3@ (i=1, 2, ..., M) have some influence on the predicted stresses.
However, for Path II where the strain amplitudes are larger, the predicted stress
response 1s almost independent of the selection of the exponents.
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It may be worthwhile at this time to compare the results of the Chaboche,
the Ohno-Wang, and the new model when predicting the stress response for the
nonproportional strain-controlled balanced loading. From Figure 4.2, Figure 4.3,
and Figure 7.1, it is clear that all the three models produce nearly identical results
for those two loading paths. It is noted that all three hardening rules represented
by these three models are in the general structure expressed by Equation (5.1).
Also the conditions (CONDITION 1 and CONDITION 2, Section 5.1) set forth for
fgi) and f(zi) in Equation (5.1) are satisfied by all three models. All three models
utilize the relationship f(li) = ¢@rl), but the choice of f‘zi) ditters for the models. The

. @)
Chaboche hardening algorithm uses f(zl) = l—%(;)—l; the Ohno-Wang model employs

. L) . B

£ =(%)—Ir (:L9), and the new hardening rule assumes fJ’ =(I—c—r~'&g—~l- . The
similarity of the predictions obtained using these three models indicates that the
difference in the mathematical forms characterized by fg) in Equation (5.1) for
these three models does not have any significant impact on the numerical
simulation of balanced loading. One characteristic of balanced loading is that the
locus of g form a closed path. While differences in £ may affect the
instantaneous position of ¢, the similar stress predictions indicate that the loci
of g® (i=1, 2, ..., M) display a similar correspondence. Therefore, balanced
loading does not provide an avenue to differentiate these models for different
specifications of backstress translation within the limiting surface.

It should be noted that the comparisons of the predictions by the three
models were based on the same numerical conditions: an identical number of
terms (M) for the backstress expansion, no consideration of the transient cyclic
behavior, and the same number of incremental steps for a cycle in the
simulations. All the material constants with the same symbols have identical
values regardless of model (refer to Table 6, 7, and 8 for 1045 steel). This reflects
that the procedures presented in Sections 6.2.2 and 6.2.3 for the determination of
the material constants c® and r{i) can also be applied to the Chaboche and Ohno-
Wang models. Minimal improvement can be made for the Chaboche, the Ohno-
Wang, and the new model predictions for balanced loading if (i) M being a larger
number, (ii) consideration of the transient cyclic behavior, and, (iii) an
appropriate selection of x for the Ohno-Wang and new models.
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7.2. Stress-Controlled Unbalanced Loading

Experimental data for 1070 steel previously discussed in Figures 4.6 to 4.20
are again utilized to examine the new model's capability to predict unbalanced
loading. The number of terms for the backstress expansion, M, is now 10 because
a larger number of terms is needed to model ratchetting. Again, cyclic hardening
is neglected and the material constants ¢® and r® (i=1, 2, ..., 10) are the same as
those for the Ohno-Wang model (refer to Tables 7 and 8). In Figures 7.2 and 7.3
the experimental ratchetting rates are presented on logarithmic coordinates along
with simulations obtained using the new model with different values for x @
(i=1, 2,..., 10). These two figures demonstrate the pronounced influence of the
exponents ¥ on the ratchetting rate predicted for both proportional and
nonproportional loading. They are similar to Figures 4.9 and 4.10 where
predictions using the Ohno-Wang model were presented. Clearly, the larger the
numerical values of the exponents y® (i=1, 2,..., 10), the faster the models predict
ratchetting rate decay. Comparing Figure 7.2 and 4.9 reveals that both models
predict similar quantitative ratchetting rate behavior for the uniaxial simulation.
In fact it can be inferred that the two models are practically identical when
predicting ratchetting for proportional loading, Comparison of the results in
Figure 7.3 with those in Figure 4.10 indicates that the difference between the two
models lies in their predictions for the nonproportional loading case. When ®
=0 (i=1, 2, ..., 10) the new model predicts a slight ratchetting rate decay for the
first 100 cycles and then constant ratchetting. That is to say, when neglecting
cyclic hardening, the new plasticity model can predict ratchetting from near
constant rate to zero rate (ratchetting arrest) for both proportional and
nonproportional loading. This is an improvement over the Ohno-Wang model
which is unable to predict constant ratchetting rate for nonproportional loading.

For a specific material, the exponents @ (i=1, 2,..., M) in the new model
do not necessarily have the same values as indicated in the discussions of Figure
7.3. From the analysis of the one step uniaxial experimental ratchetting results
for 1070 steel, the constants in the expression for x® (i=1, 2, ..., M) (Equation
(5.14)) are determined via the procedures forwarded in Section 6.5 and are listed
in Table 8. The new model ratchetting predictions using these constants are
compared with the experimental results in Figure 7.4 through 7.11. An overview
of this data will lead to the conclusion that the new madel correlates the
ratchetting experiments very well. Improvements over the Ohno-Wang model
can be found in the following aspects. Comparing Figure 7.6 with Figure 4.14,
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the two models predict nearly the same axial ratchetting for the "apple" shaped
loading path, but the new madel correlates shear ratchetting better than the
Ohno-Wang model. In the multiple step cases (Figures 7.8 and 7.9), the new
model predicts the changes of ratchetting direction in very close agreement with
the experimental observation, while relatively the Ohno-Wang model does not
predict the ratchetting of the second loading step as well (refer to Figures 4.16
and 4.17). Figure 7.4 reveals that the current consideration of the stress level
effect on ratchetting is an improvement over the Ohno-Wang model (Figure
4.20).

For 1070 steel which exhibits ratchetting rate decay, the new plasticity
model differs little from the Ohno-Wang model for one step tests. It was noted
that in using the Ohno-Wang model, no memory surface was included. The
improved ratchetting prediction obtained for multiple step tests using the new
model is mainly ascribed to the consideration of the stress level effect. In other
words, if a memory surface is incorporated into the Ohno-Wang model, a better
correlation with experiments for a material which displays a stress level effect
would be expected. One fundamental difference between the Ohno-Wang model
and the new one lies in its capability to predict constant or near constant
ratchetting rates. This difference is reflected in the representation of f?i) in
Equation (5.1).

The number of terms for the backstress expansion, M, has a weak
influence on the predicted stress-strain responses for balanced loading, but a
strong influence on the ratchetting prediction for unbalanced loading. From the
aforementioned discussion, for ratchetting rate decay prediction, M should be
larger than 1. For the prediction of long term ratchetting rate decay, M=5~10
seems sufficient. Ratchetting predictions for a large number of loading cycles is
time consuming when both M and the number of incremental steps for a loading
cycle are large numbers. Compromises may have to be made between the
accuracy of the prediction and the number of loading cycles simulated. It is
suggested that detailed ratchetting predictions be made for a limited number of

loading cycles, and the results can then be extrapolated for longer loading
histories using Equation (3.1) or Equation (3.2).

7.3. Generalization of the Characteristics of @

It has been pointed out that the exponents ¥® (i=1, 2,..., M) have an
insignificant influence when using the new model or the Ohno-Wang model to
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predict balanced loading. As was indicated in Figures 7.2 and 7.3, the exponents
x@ (i=1, 2,..., M) control the ratchetting rate predicted. In fact, by adjusting x®
(=1, 2,..., M), the new model can predict ratchetting that mimics a variety of
experimental observations. Figure 7.12 displays the sensitivity of the selection of
A® (i=1, 2,..., M) and the type of ratchetting predicted. Except y® (i=1, 2,..., M),
the other material constants used in the simulations are those previously used for
1070 steel (Table 8). When x® =1 (i=1, 2,..., 10), the model predicts ratchetting
rate decay for about 300 cycles, for both proportional and nonproportional
loading, after which a constant rate is predicted. When (19 is changed from 1 to
+oo while maintaining all the other conditions, the predicted ratchetting rate is
identical to that when x® =1 (i=1, 2,..., 10) for about 200 cycles. No constant
ratchetting rate will be predicted when y(19= +4es. Instead, ratchetting arrest is
expected after about 10* cycles. These observations indicate that the exponent
%™ has minimal influence on the prediction of the ratchetting rate for the initial
loading cycles. However, the long term ratchetting is mainly controlled by this
exponent, ™. It should be noted that the material constants r)>0 (i=1, 2, ..., M)
have been arranged in the order ¢ 2 c¢®>...> c™20 consistent with the
procedure to derive these constants. For single step loading, each x® has a
significant influence on the predicted ratchetting rate for a limited range of
loading cycles. The exponents x® with small i's have strong control over the
initial ratchetting rate, and a weak influence on the long term ratchetting. The
exponents x® with large i's on the other hand control the ratchetting predicted
for a large number of loading cycles at a given stress level. ‘

There are four possible ratchetting rate tendencies (refer to Figure 7.13),
namely, Region I decayed ratchetting, Region II: constant ratchetting, Region IIT:
ratchetting arrest, and Region IV: increasing ratchetting. A material subjected to
a certain loading condition may display combinations of these four regions.
From the previous discussion on the relationship between %@ (i=1, 2, ..., M) and
the ratchetting rate tendency predicted, the new model can handle the first three
types of ratchetting. According to Hassan and Kyriakides (1992) and Hassan ef
al. (1992), ratchetting rate acceleration is related to the continuous cyclic softening
of a material. Therefore, increased ratchetting rates can be predicted using the
new model with ¥®=0 (i=1, 2, ..., M) and considering cyclic softening. The
relationship between x® (i=1, 2, ..., M) and the ratchetting rate tendency
predicted shows the flexibility and the ability of the new model to predict
various ratchetting rate tendencies.
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It should be pointed out that in the aforementioned discussion on the
influence of %@ (i=1,2, ..., M), all loadings considered were for one step tests at a
given stress level. This choice serves well for the purpose of the discussion, but
conclusions made excluding the stress level effects are valid from a general point
of view. This property of the new model further illustrates how the exponents
x® (i=1, 2, ..., M) would be selected in Section 6.5. It is noted from Figure 7.14
that the new model with the same material constants predicts the same
ratchetting rate tendency for both proportional and nonproportional loading.
This is one of the improvements in the new model in comparison to the Ohno-
Wang model. These differences are attributed to the specification of fg) in
Equation (5.1) rather than the general tendencies for .

7.4. Mechanics of Ratchetting

In this section, discussion of the o loci for balanced and unbalanced
loading will be presented. To theoretically explain the mechanics of the new
model for the ratchettting rate decay under general nonproportional loading is
difficult. However, it may be helpful to discuss a cydlically stable unbalanced
uniaxial simulation (Figure 7.14). For a cyclically stable material, the stress-strain
response is totally determined by the variation of the plastic modulus function, h,

or plastic modulus, H. Simplifying Equation (2.10} for uniaxial tension-
compression, it follows,

do = % hdeP | 7.

where ¢ and &P denote axial stress and axial plastic strain, respectively. For the
stress-controlled condition, the following integrals apply,

r3 3
do = %h deP =0 | (7.22)
i 1

or,
r ?

/i

h dep+] hdeP=0 . (7.2b)
2

The lower and upper limits for the integral refer to the stress/strain states
corresponding (o minimum and maximum stress/strain in a reversal, as
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illustrated in Figure 7.14. According to Equation (5.5), the plastic modulus
function is,

M M ( x(\') +1
i=1 =1 !

where LO:n = +1 and | g®| = \/%: [aﬁ) for uniaxial tension-compression.

A rafchetting rate (ratchetting strain per cycle) can be expressed as,

de; _ [ deP . (7.4)
1

Manipulating Equations (7.2)-(7.4), one can obtain the following forms for the
ratchetting rate,

2l

M
dep _ N de?
i~ g, A (7.5)
where
2 o) 3 o
DNV +1 ) W Nx”+1 ]
deﬁi) - 1 2
dN M
E et
j=1
(i=1,2,..,. M) . (7.6)

The term, %, in the previous equations represents the contribution to
ratchetting rate by the variation of an individual backstress. It is difficult to
express the ratchetting rate in a concise and closed form. However, a few
characteristics can be extracted from the examination of Equation (7.6). The
denominator on the right side of Equation (7.6) is a constant since a cyclically
stable material was assumed. I g varies symmetrically (i.e., no mean value), it
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can be derived that the integral on the right-hand side of Equation (7.6) is zero,

(@) .
which results in %‘\T =0. Knowing that r® is the size of a limiting surface for the

. ) .
backstress g infers that hx:——-'— <1. Since x is assumed to be greater than or
& T

| ® [)x“’ +1
r®

equal to zero, the quantity( is equal to or less than 1.0. Therefore, if

(1) .
x® = 4eo, then % = 0 because of the aforementioned inequality. When g® does
_Ja®]
nol vary, then the quantity o is a constant that may be removed from the
integral. The fixed vector, L%, whose scalar product with n will change sign for
loading 1 to 2 and 2 to 3 (refer to Figure 7.14) should cause the sum of the

‘ (1)
integrals to be approximately zero, and hence gd-%—z 0. Qualitatively, the larger

the mean value of a backstress, the larger the contribution of this backstress to
the ratchetting rate. However, there must be a mean value and amplitude if that
backstress part contributes to ratchetting.

Figure 7.15 shows the variations of the backstresses using the new model
with the loading cycles for a fully reversed uniaxial test. It should be noted that

for the one dimensional problem of tension-compression, g’ can be represented
. oD

by the value of the component ). The term, \/_25 —;(li-)l—, is a normalized quality
representing the backstress o) for the uniaxial case. In Figure 7.15, the number
of terms for the backstress, M, is 5 since the desire is to qualitatively display the
behavior of ¢®. The material constants employed are listed in Table 10 and were
chosen (o illustrate the phenomenon. It should be noted that the selection of the
material constants does not qualitatively alter the ensuing points of discussion.
In Figure 7.15(b), all the backstresses vary symmetrically, and are independent of
the loading history. When the backstress parts have an amplitude but no mean
value, no ratchetting is predicted.

Identical material constants are used for a two step unbalanced uniaxial
loading. The predicted ratchetting rates for both steps are shown in Figure
7.16(b), and the variations of the backstresses with the loading history are
presented in Figure 7.16(c). During the first step loading, ratchetting rate decay
is predicted. The corresponding variations of the backstresses shown on the left
side of Figure 7.16(c) are responsible for the ratchetting rate decay. The
magnitudes of backstress variations are in an order consistent with the size of c®



(i=1, 2, 3, 4, 5). Subsequently, the mean values of a(zll) and aﬁ) saturate to zero
with increasing cycles and the mean values of aé‘? and oc(lsl) increase at the same
time. The amplitudes of the backstresses do not change with loading cycles.
According to Equation (7.6), for the same variation of the backstress and 1, a
larger value of c®r® will result in a larger ratchetting rate. Because it was
assumed that D) = f®= (3= )= 9, a larger c® results in a larger ¢Or®). The
decrease of the mean values of a(lll) and aﬁ? (corresponding to larger ctix(®
values) mainly contributes to the initial ratchetting rate decay predicted. It
should be noted that the mean value of the total backstress is proportional to the
mean stress of the stress-controlled uniaxial loading cycle. Therefore, the sum of
all the backstress has a fixed mean value for a given step in the loading. The
decrease in the mean values of a{!) and aﬁ) is consistent with the increase of the
mean values of oc(l? and a(lsl). It is this shifting of the mean values of the
backstresses in combination with the smaller amplitude of 02(141) and Ot(lsl) that
contributes to the continued ratchetting rate decay.

When the mean stress is zero in the second loading step, the new model
predicts ratchetting in the direction opposite to that in the first step. From the
right side of Figure 7.16(b), the ratchetting rate (absolute value) also decreases
with increasing number of loading cycles, which again can be explained by the
variations of the backstresses (refer to the right side of Figure 7.16(c)). When the
loading for the second step with a different mean stress begins, there are sudden
changes in the backstresses, which corresponds to a change in the ratchetting
rate. The backstresses a{) and of with their mean values initially being
negative contribute to the ratchetting rate in the negative direction, while the
other three backstress parts with positive mean values produce ratchetting in the
positive direction. As was previously stipulated, a larger amplitude of a
backstress contributes more to the ratchetting rate, hence the overall ratchetting
rate is negative. Because the mean stress in the second loading step is zero, all
the mean values of the backstresses will approach to zero with increasing
number of loading cycles. As a result, the ratchetting rate decreases with
increasing number of cycles. For ratchetting under nonproportional loading, the
ratchetting predicted using the new model may be explained in a similar way.
However, for nonproportional loading, the ratchetting rate is not only dependent
on the variations of the backstresses but also the variations of L®:n (i=1,2, ..., M).
A straightforward discussion is more difficult for unbalanced nonproportional
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loading. It may be worthwhile to point out that for a material which does not
exhibit ratchetting rate decay the new plasticity model will not predict
ratchetting in the direction opposite to the mean stress for uniaxial loading, nor
will the ratchetting direction change as was observed in 1070 steel. Further

experimental study of multiple step tests are needed for a material displaying
constant ratchetting rate for a one step test.

7.5. Physical Interpretation

Plastic deformation is attributed to the motion of dislocations, which are
defects in the crystalline lattice of a solid metal's microstructure (Kuhlmann-
Wilsdorf, 1989; Kuhlmann-Wilsdorf and Laird, 1979). Continued plastic
deformation is often responsible for the generation of more dislocations (strain
hardening), which interact and hinder each others subsequent motion (Bruhns et
al., 1992). A macro-scale uniform polycrystalline material is composed of many
crystalline regions, each exhibiting different properties. From the microstructure
point of view, even a single crystal displays an inhomogeneous distribution of
dislocations (Hesagawa et al, 1986), and the local and internal stress distributions
are extremely inhomogeneous. Peak stress values occur in the tangled cell walls
and low values are observed in the cell interior (Hesagawa ef al, 1986). The
macro-mechanical behavior reflects the response of the various material elements
ability to resist external loads. It was empirically implied for the new hardening
rule that a material is a combination of many material elements possessing
different properties under cyclic loading. A material element does not
necessarily represent a crystal, but a polycrystalline continuum which displays
distinctive responses when subjected to the external loads. Each component,
although having different values for the constants, is expected to display the
same qualitative behavior. On the other hand, since a single term is used for a
memory surface, it represents a single property of a polycrystalline material
component.

Drucker (1987) stated that "The behavior of metals and alloys in the plastic
range is enormously, essentially infinitely, complex. No mathematical
expressions, no matter how elaborate, can portray the response in completely full
and accurate detail. No finite number of experiments, no matter how carefully
done, can provide all the physical information.” A complementary difficulty is
that, as a practical matter, the loading paths that can be explored experimentally
are extremely limited. Microstructural interpretation of mechanical material
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behavior has been limited to single crystal and simple loading conditions such as
uniaxial or torsional loading (Asaro, 1983; Cuddy and Bassim, 1989; Dollar et al.,
1988; Hill, 1965; Kuhlmann-Wilsdorf, 1982; Mughrabi, 1983; Pedersen, 1987;
Peirce et al., 1982; Umakoshi et al., 1984; Weng, 1979). The microstructural
changes in a polycrystalline material subjected to nonproportional cyclic loading
are still awaiting further experimental investigations. There may be a long way
to go before there is a quantitative relation between microstructural details and
phenomenal cyclic plasticity models for polycrystalline materials. Attempts to
model the cyclic plasticity always have limitations. Accuracy referred to when
evaluating a plasticity model is from the macro or engineering point of view,
instead of microstructural perspective. Despite the fact that the current
experimental facilities are not able to conduct all the possible triaxial stress states
and nonproportional loadings, one rule always applies; that if a plasticity model
cannot capture some basic character of cyclic plastic deformation for a simpler
stress state, it is generally not applicable for the more general analysis.
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8. CONCLUSIONS AND RECOMMENDATION FOR
FUTURE WORK

This dissertation deals with deformation that involves cyclic plasticity,
both theoretical and experimental. The research focused on three major topics: (i)
an experimental investigation of the ratchetting behavior of 1070 steel, (i) a
survey of the existing plasticity theories and a comparison with experimental
ratchetting observations, and (iii) development and verification of a new
plasticity model. The incremental plasticity theories under consideration utilize
the yield surface concept and describe kinematic hardening by specifying
different translations for the yield surface. The study has been limited to
considerations of path-dependent plasticity in which effects of rate and
temperature dependence are neglected. The ensuing section will summarize the
major conclusions from the three major topics.

8.1 Conclusions

The ratchetting experiments on 1070 steel under various loading
conditions lead to the following conclusions:

1. The balanced loading experiments indicate that the material displays
minimal cyclic hardening, however, non-Masing behavior is observed. For both
balanced cyclic plasticity and ratchetting deformation, the plastic
incompressibility condition is confirmed.

2. The ratchetting direction is coincident with the mean stress direction
under single step proportional loading. There is no simple relation between the
sign of the mean stress and ratchetting direction when the loading is
nonproportional.

3. Under single step loading, the ratchetting rate decreases with increasing
number of loading cydles for both proportional and nonproportional loadings,
and can be fit using a power law relation.

4. For multiple step loading, the material exhibits a memory of the
previous loading history. The material could ratchet in a direction opposite to
the mean stress or could reverse ratchetting direction with time. Due to this
memory effect the strain ratchetting may accelerate under certain circumstances,
although such an acceleration in ratchetting rate is short-lived. The material's
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memory of prior loading history has a greal influence on the subsequent
ratchetting, and dissipates with increasing number of loading cycles.

The literature survey has focused on a critique and comparison of existing
cyclic plasticity models with an emphasis on the ability of the models to predict
ratchetting. Plasticity models under consideration can be classified as either the
Mroz multiple surface type or the Armstrong-Frederick type. The following
conclusions can be drawn from the survey and comparison with experimental
results:

5. The Mroz and Garud multiple surface models are approximately
identical for the prediction of stress-strain response. The predicted stress
response by the Mroz and Garud models is inferior to the Armstrong-Frederick
type models for nonproportional strain-controlled loading. The Mroz and Garud
models produce fully closed stress-strain loops and do not predict ratchetting for
proportional loading, but predict strain ratchetting for stress-controlled
nonproportional loading. These models are not suitable for general cyclic
plasticity predictions. All the Armstrong-Frederick type models discussed are
able to predict reasonable stresses for nonproportional strain-controlled loading.
For strain-controlled balanced loading, the Bower model and the initial
Armstrong-Frederick model produce very similar results, and the Chaboche and
Ohno-Wang models with the same number of backstress parts predict practically
identical stresses. Balanced loading does not provide an avenue to differentiate
plasticity models, and hence ratchetting experiments are critical when evaluating
plasticity models.

6. A prevalent characteristic of all the Armstrong-Frederick type
hardening models is the interpretation that a limiting surface for a backstress
part exists. The difference between the Armstrong-Frederick type hardening
rules lies in the distinctive specification of the magnitude and direction for the
translation of a backstress part within a limiting surface. Such an interpretation
also allows the material constants for these models to be determined via a
standard procedure, and the limiting concept provides a convenient framework
to construct refined hardening algorithms.

7. The Ohno-Wang model is the best of all the existing models evaluated.
The predicted stress response by using the Ohno-Wang model for strain-
controlled loading is in very close agreement with the experiments. More
importantly, the model can appropriately correlate with some of the
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experimental ratchetting observed for 1070 steel. A shortcoming of the Ohno-
Wang model is its inability to predict a constant ratchetting rate for
nonproportional loading. In addition, the transient cyclic material behavior
should be incorporated.

When analyzing the new experimental data, certain difficulties were
encountered with existing plasticity models that resulted in a new set of
constitutive relations being developed. An attempt has been made to develop a
model that better describes a wider range of cydlic ratchetting. A limiting surface
concept is generalized and used in the development of a new hardening rule.
The total backstress is divided into many parts. A memory surface is intraduced
to consider the stress level effect on plastic deformation. Transient cyclic
behaviors are then incorporated into the hardening rule. Cyclic hardening is
considered through the coefficients ¢ (i=1, 2, ..., M) in the hardening rule as
power functions of the accumulated plastic strain. The non-Masing behavior is
considered through the yield stress as a function of the memory surface size. The
exponents ¥ (i=1, 2, ..., M) in the hardening rule, which control the type of
ratchetting predicted, are related to the size of the memory surface to consider
the stress level effect. The following conclusions are related to this new plasticity
model:

8. The new plasticity model was applied to the ratchetting predictions of
1070 steel. Its capability to improve long term ratchetting and multiple step
ratchetting predictions was demonstrated.

9. The material constants in the new plasticity model can be divided into
two independent groups; one group, ¢® and r® (i=1, 2, ..., M), which describes
balanced loading and the other group, x® (i=1, 2, ..., M), which characterizes
unbalanced loading. The independence of the two groups of material constants
and the interpretation of the model with a limiting surface concept facilitate the
determination of material constants. A procedure to determine the material
constants in the models from simple uniaxial experiments was described in
detail.

10. A large number of established models are used and new ones are being
proposed. In addition to evaluating them via experimental evidence, it is
particularly important lo verify their mathematical properties such as
uniqueness, reliability, and consistency so that desired results are obtained once
they are implemented in numerical solutions. The relationship between
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plasticity model terminology and the micro-mechanical behavior such as
dislocation movement needs future study. The limiting surface and memory

surface concepts may eventually be related to microstructural changes at least
qualitatively.

8.2. Future Work

Future work on cyclic plasticity should include more experiments and
theoretical refinements. The experimental ratchetting program presented in this
thesis provided a broader understanding of cyclic plasticity. The proposed
plasticity model provides a basis for future applications. Capabilities and
limitations encountered lead to following suggestions:

a) Even with the experiments conducted in this investigation, a very limited
number of experiments exist to evaluate current and future theoretical
formulations. Therefore, more complex loading paths such as multiple
ratchetting experiments consisting of proportional /nonproportional and
nonproportional /nonproportional loading need to be conducted.

b) Rate and temperature dependence needs to be incorporated into the model
to facilitate analysis of high temperature applications. This could be done by
modifying the detailed relationships for the coefficients ¢, ), and W,

¢} The cross-hardening behavior, which has not been included in the
proposed model, could also be incorporated following the outlines in Section 5.7.
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Table 2 Chemical Composition of Normalized 1070 Steel

C Si Mn P S Cu Ni Cr Mo

Fe

070 | 029 | 072 | <0.05| 0.041 | 0.09 | 0.04 | 0.07 | <0.02

balance

Note: weight percent is reported

Table 3 Baseline Material Properties of 1070 Steel

1. Monotonic Properties

Young's Modulus, E 210000 MPa
Poisson’s Ratio, |1 0.3

0.2% Offset 449 MPa
True Fracture Stress, of 1250 MPa
True Fracture Strain, & 0.53
Reduction in Area 30%

2. Cyclic Stress-Strain Relation

1
A_zp,. = (A_%Q)n K=1485 MPa n=0.170

£
(at a strain amplitude of 4—“2& =1.0%)
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Table 4 Material Constants Used in the Armstrong-Frederick Model

1045 Steel k=100 MPa a,= 87674 MPa  ¢,=412

L__10708teet | k=115MPa__ a,= 96188 MPa 285 |

Table 5 Material Constants Used in the Bower Model

2= 123690 MPa  cy= 665 cypm 40

1045 Steel

1070 Steel

k=100 MPa
k=115 MPa

ap=127680 MPa o= 420 oy 40




Table 6 Material Constants Used in the Chaboche Model

1045 Steel ﬂ c=691 c@=161 =28 c@=2] <G5)= 0.91 =
k=100 MPa
M=5 =1D=1C)=1r=71.4MPa 5 =314.4 MPa
— T c¢M=1510 c(2)=_461 cB=177 ®=77 6)=139
k=115 ;Ea c)= 20 cMN=12 c®=67 =48 c10)= 2 7
M=10 D= 12 = 18)= 1= 1= 16} =((7) = 1®) = (9 = 63.5 MPa
r19= 245MP5
Table 7 Material Constants Used in the Ohno-Wang Model
1045 Steel- =691 c@=161 cB®=28 c@=21 =091
k=100 MPa =1D=1C)=r=714MPa 5 =314.4 MPa
M=5 XD =y D=y 3= r®=yG)= or XV =@=B= A D=y = 4o
c=1510 c@=461 cB=177 D= 77 o9=39
c®=20 cMN=12 c®=67 =48 ci0= 2 7
1070 Steel
k=115 MPa D=0 =r3)=r@=rG)=r(6) =) =K8) =1 =63.5 MPa
M=10

r10=245MPa

x(l)z 0.5 x(2)= 2 x(3)= x(4)=5 x(s)m x(6)=x(7)= x(8)=x(9)= x(10)= 6
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Table 8 Material Constants Used in the New Plasticity Model

'=691 =161 cP=28 W2 ¢ =091
al=a,0=0 (i-1, 2, 3, 4, 5
10455teel | D=714MPa r@=714MPa r3)=714MPa 1 =71.4 MPa
1) = 314.4 MPa
Y AP0 o ) PP
eM=0 ki;=115MPa  a,;=0
BEET IR P-177 =77 P-z |
=20 =12 Ps7 Poygg O,
all=a, V=0 (i=1, 2, ..., 10)
= 1@ = 1B)= r)= 1= £l6) =M = 1®) . 1O = 63.5 MPa
1070 Steel H10)= 245MPa
M=10 ay = 0.0293 by = 0.0128 MPa’!
Q"=025 QP=10 Q=¥ =23
QBS) _ Qf,‘) _ ng) - fo) - Qég) =275 Qém) —45
cM=10  k1=02 7 MPa a=0.0361 cx=0.0094 1/MPa
M =4576 (1 - 0.74 e16%) @ =2267, (1-0.86 ¢092%p)
i ALSO6LTE cH=386(1-094e1™p) 4 =33(1-0.97e27
¢ =2 (1 - 0.99 e420p)
M=s | D) =@ = (3) = 14 = 1) = 57.2 MPa
X(()I)M_XéZ)_X(()?))_X(g@*xg)S)
cM=0 kj=115MPa a =0
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Table 10 Material Constants Used in the Simulations Shown in

Figures 7.15 and 7.16
%
M=5
V=514 P=8y P =25 V=38 =2

aP=ad=0 (i=1,2, 3,4, 5)

D) = 2 =r(3) =rl4) =¢(5) =131 MPa

X% =1 xP=10 xP=50 =100 <1000 ay=0
k; =110 MPa 2;=0 oym=0
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FIGURES
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&=

Yield Surface

Figure 2.1 Generalized von Mises Yield Surface with Kinematic
Translation in Deviatoric Stress Space
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Figure 2.3 Typical Field of Mroz Constant Plastic Modulus Functions
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S33

Figure 2.4 Schematic of the Mroz Hardening Rule Illustrating Translation
Direction
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Figure 2.5 Schematic of the Garud Hardening Rule Illustrating Translation
Direction
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Figure 2.6 Possible Changes in the Hardening Modulus when Transient
Behavior Occurs
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Figure 3.4 Experimental Ratchetting for Uniaxial Loading
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Figure 3.5 Experimental Ratchetting for Proportional Axial-Torsion Loading
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Figure 3.6 Experimental Ratchetting for an "Ellipse” Shaped Axial-Torsion
Loading Path
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Figure 3.14 Experimental Ratchetting after a Single Tensile Overload
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Figure 4.5 Comparison of Experimental Data and the Garud Predictions
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Figure 4.6 Experimental Ratchetting of 1070 Steel for an "Ellipse” Shaped
Axial-Torsion Loading Path
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Figure 4.7 Stress-Strain Response Predicted by Different Plasticity Models for
an "Ellipse” Shaped Axial-Torsion Loading Path (Figure 4.6(a))
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Figure 4.7(cont.) Stress-Strain Response Predicted by Different Plasticity Models for
an "Ellipse” Shaped Axial-Torsion Loading Path (Figure 4.6(a))
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Figure 4.9 Relationship between x(i) and the Ratchetting Rates Predicted by the
Ohno-Wang Model for Uniaxial Loading
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Figure 4.10 Relationship between xm and the Ratchetting Rates Predicted by the
Ohno-Wang Model for a Nonproportional Axial-Torsion Loading
Consisting of Alternating Shear with Constant Axial Stress
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Figure 4.20 Comparison of Experimental Data and Ratchetting Rates Predicted by the
Ohno-Wang Model for Uniaxial Tests with Different Mean Stresses
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Figure 5.3 Experimental Non-Masing Behavior Observed for Unbalanced
Uniaxial Loading
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Figure 5.6 A Generilzed Shematic of the Limiting Surface Concept
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Figure 6.1 Numerical Solutions to the Differential Equation
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Figure 6.2 Hlustration of the Procedure to Determine @) and r® from a Uniaxial
Stress-Plastic Strain Reversal
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Figure 6.3 Procedure Used to Determine c() from a Uniaxial Stress-Plastic Strain
Reversal with Presumed r(®
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Figure 6.4 Influence of x(i) on Predicted Stress-Strain Loop for

Uniaxial Balanced Loading
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Figure 7.2 Relationship between xm and Ratchetting Rate Predicted

by the New Model for Uniaxial Loading



Axial Ratchetting Rate, 1/cycle

155

%=0 (i=1,2,...,10)
\ J’

10
- -—--—----—.1
10"
; -2
15 1070 Steel
A >—Experiment
80/2=0 ©,=300MPa L \20 4 b
A/2-230MPa 7_=0 ““1 =4o0 \ .
10°® :
i L§ T l'l‘llll 1 L1 llflll’ L) ] I]I'lil 1 L] lli‘lT'T
1 10 100 1000 10000

Number of Cycles

Figure 7.3 . Relationship between xm and Ratchetting Rate Predicted by the
New Model for Nonproportional Axial-Torsion Consisting of
Alternating Shear with Constant Axial Stress (Figure 3.17(b))
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Figure 7.5 Comparison of Experimental Data and Ratchetting Results Predicted by the
New Model for an "Ellipse” Shaped Axial-Torsion Loading Path (Figure 3.6)



158

4

10
1070 Steel

s w—— Expariment
10 - New Model
Ac/2=225MPa ¢, =-225MPa

g At/2=-215MPa < =0

ere—
L L ilIl'llI L 4 L) Illlll; T IIlII’Il L]

Axial Ratchetting Rate, 1/cycle

1 10 100 1000 10000
Number of Cycles

(a) Axial Ratchetting Rate s. Number of Cycles

0.020 —
£
g = Experiment
D015 — - New Model
o
£
200104
O
©
(0
& 0.005 =
(0]
o
0'000“| 1 T lflllil T k] lllll!i T ) lrlllll 1 ¥ IIIITIT
1 10 100 1000 10000

Number of Cycles
(b} Shear Ratchetting Strain vs. Number of Cycles
Figure 7.6 Comparison of Experimental Data and Ratchetting Results Predicted

by the New Model for an "Apple" Shaped Axial-Torsion
Loading Path (Figure 3.7). ‘



159

((®11°¢ andyy) Surpeo rerxerun doig-om] e 10] [9PON MaN 2}
4q paprpa1] ureng Sumoypiey pue vreq reyuswiradxy jo uosuedwo)y /- am8ny

S810A7 J0 JaquinN $8{0AD JO JBqLUNN

0001 0ot 0L 0001t 001 ot 3

°°.° l..P L L —.—--n L L “--- L L ---—.— L 1 . m-hnn- i 1 m-p-- i i —wn-- 1 [ m Oo;o
100 - " — 10°0
¢0°0 - ~ <070
T1 R R [reeo—— e —£0°0
¥0'0 — . —10°0
S0°0 = —C0°'0

531043 017

zdag sap4o 001 f
dng
aon [
®JNBL = "0
u&amovu%q BJNRZ="D {0

CINEDY = 5ty

1S Bumsyorey jeixy

.

uiel



(21°¢ 2an3y]) 3urpeoT] rerxenun) daig-oM] ® 105 SO MIN] Y3
3y} £q pajipa1 ureng Sunisyorey pue ejeq rejuewinadxy jo uosedwo) g/ Sy

$8j0AD 0 JequnN 8[0AD 40 Jequinn
00004 0001 0014 01 0l 3
i —-u-- L1 i —--n— L1 L _n_.—_.- L.l Il n-__u— Ll 1 W- W [l pr.nm-%nW— w‘ i W-»-— -
$00°0 S00°0
.....\..1\.

0L0°0 - 0100

§10°0~ —GL0°0
o [OPOI MBN wovevuen
= JUBLLLBAXT mus

0200 Z doig 10815 00+ | dais 0200

591940 Qpp9]
g da1g 53J242 gg
1 doig
o (]
BHINGL = Ew F
PANS6E =ty earor = P ¥ P

BINI6E = 1y

uens Sumesyorey jeixy



161

(€1°¢ am3ry) Burpeo] [eixeiur) daig-om], & 10§ [SPO MIN ) ‘
3y} 4Aq paipai] ureng Sumapyey pue eec] reyusunzadxy jo uostredwo)y ¢/ amBig

$8j049) J0 JequinN S8[0AD Jo JaquinN

0001t 0014 01 00014 0ol ot 8
vo.o.l:... L1 ligaas g Lisssss s TR L1 basas e g & [T I Littai: 1 ] $0°0-
€0°0-~ e ~ £0°0-
c0'0- - —c0°0-

[SDOIN MBN reveorre

EITTIN[:Te ¢ [
10°0- juewieda . Lioo-

18815 0401 IIF delg

00°0 - E - 00°0

sappka 00LY

n..._%wﬁae _ 1 daig
AN |
‘ K edWII-="D §0
L =0 egnsor= &

RdALEY = py

UreNlS bumlayoley [eixy



162

(01°¢ 31nB1y) Surpeo [eyxeun dsig-saay], € 10] [PPOIN M3IN] )
a1 4q paipasg ureng Supmsydiey pue vieq [eruswnadxy jo uospedwoy g1z andig

$6/049 J0 JequInN sejoAD Jo 1equIiny 860D Jo Jequiny
0000t 00O} 001 0l 0001 6ol ol 0001 001 (1} I
’ TE..L'—EELLI._EF.IL.EE 2 W DR TYTT WS SR YT U N W S VYT P TP TE SN TTTE W AR TV T TR T | .

00°'0 ~ 000
[OPORY MBI e
| —

100 - juewedxg oo

v\-i%!\.l.

%00 -20°0

£00 7 1eels 0.01 —~£0°0

00 = I—Em oo

59[949 (078 BP0 se
1942
£ 615 zdag Ldag "

o U b

‘ edWLiL ="p
BINI6E uqu YdWZ0Z = Mb BINBL = Eb“ o
SINS6E = By VINEOH = gy

ureng bumeyoiey emy



163

(£1°€ 2m3yy) 5830 [RIXY JULISUCD Yim TEays
Bupeusalpy jo Buonsisuo)) Burpeo uoisiof-jerxy feuoniodorduop doyg-om] e 10
[BPON MaN a3 £q papipaid uieng Sumayoiey pue ejeq [eiuswadxy jo uosuedwio) 11z anSiy

$8[04") JO JequnN

sejohD) Jo JequinN

0001 001 04 0001 001 0l
Oc.c — -u-- Il ' —-u-.- 3 Il _--_n L '] 1 .n-—-n- ] 'l i —--- 1 Il 4 __-- 1 L | ] Qo.o
[BPOW MBN eorssns
LBLLIIBAX]
10°0 ~ 1ueiiltedx3 100
0="1 edWoce=2nv .
€00 - BAWN09="D 0=z/ov 200
2 doig
€0°0 - | co0
e ———— 0="2 edwoez=z1v
¥0°0 - BdN00E="D (O=Z/0V - ¥0°0
1].!?
18818 001" E
G0°0 — 500
1l

7 dag ——

|

[ dag

1S Bumeyoley [exy

uel

.



164

(1]
©
)
L
- 10°
£ =1 (i=1,2,...10)
o f
> 10
= Ac/2=400MPg
% 6,,=200MPa

-5
% 10
& %o =1 (i=1.2.....9)
- {10}
.g o =+

-6
< 10 i ¥ l!llul| T llllllli T :-:nnl T llliilll T llll'rl'lT

4] 1 2 3 4 5
10 10 10 10 10 10
Number of Cycles
(a) Uniaxial Loading
{10
QD
— T
Q. -3
o 10
- (i) .
) X =1 (i=1,2,...,10)
i)
o -4 t
o 10
o 40/2=0 o©,=300MPa
= . AT2=230MPa 1_=0
2 10 _
g o =1 (i=1,2,...,9)
(10)
o . AL
10 ‘l T ¥ lll!!li T IlIlllll’ ¥ T lllllll 1 ] III!II! | IIII1TI'I'

O 2 be] 4 [

10’ 10 10 10 10
Number of Cycles

10

{(b) Nonproportional Axial-Torsion

Figure 7.12 Relationship between Qualitative Ratchetting Behavior Predicted
by the New Model and the Selection of the Exponent 3.



165

Region I: Decayed Ratchetting
Region II: Constant Ratchetting
/ I Region I J‘ Region T
| L

de
log N
logN
Ragion lli: Ratchetting Arrest
A iL Region I N Region III‘
1
de;
T
logN
Region IV: increasing Ratchetting
i Region IT
VL Region IV N gion N
| |
dg
log aN

logN

Figure 7.13 Schematic Dllustration of Different Ratchetting Tendencies



166

oo
n I,L,
[#% )
BB =

eP

Figure 7.14 Schematic Representation of Strain Ratchetting for a
Uniaxial Simulation



167

800 =

Stress-Controtled

400~ 20126 500MPa
ﬁ-; AT+
= 200-
g
2 o
7]
T -200=
5
Lo

-400

-800 T T .

-0.010 -0.005 0.000 ©.008 2.010
Axial Strain
(a) Stress-Strain Response

O

V3

2 10

L3 L] &
Number of Cycies

)
Lt

)

Vi

£ € 8
Number of Cycles

52

T8

9

Vi

=
2

4 L] ]
Number of Cycles

Figure 7.15 Stress-Strain Response and Variations of a(‘)

e

o

@

63

T T T T
-2

4 3 a
Number of Cycles

oty

i

e e

Vi

Fop

4 &
Number of Cycles

() Variationof of} with Loading History

Predicted by the New Model

for Fully Reversed Uniaxial ].Dadmg



168

ol Aiﬁ =350MPa G,,=350MPa

-SSOMPa Om=0

5
\/\/\/\/\/\;
wiie WV VV V™

Step 2
100 cycles

(a) Two-Step Uniaxial Loading

0.0010 A —~ 0.0010

a)
©
%)
~
= 0.0005 - - 0.0005
@ .
Fur]
4]
o4
o)
£
par
)
< 0.0000 0.0000
ol
(= 4
B8
X
<

-0'0005 T T T T TTTIIT T TT AR | I L L | TTIH T T1YTr '0‘0005

2 4 € 8 2 4 €8 2 68 2 4 6 8
1 10 100 1 10 100
Number of Cycles Number of Cycies

{b) Ratchetting Rate

Figure 7.16 Demonstration of Ratchetting Rate Decay Predicted by the New Model
for a Two-Step Uniaxial Loading



m
bt 18
i

Vi

@
%y
2

16

3y
%
16

i

0]
%y
)

V3

3
%y
15}

Vi

169

TR m—

e W W

0

1

e —— ‘__

4]
Tttt ettt st eeoeees oo
1

() e e e —— e e e—

. 1 ] 1 ¥ L) =5 i T T T 3 = s rTryYT

Q 4 4 6 8 10 1] 88 100 ) 2 4 ] B 10 6 98 100
Number of Cycles Number of Cycles

(c) a‘f{ Variations with Loading Cycles

Figure 7.16(cont.) Demonstration of Ratchetting Rate Decay Predicted the
New Model for a Two-Step Uniaxial Loading



170

BIBLIOGRAPHY

Abdel-Raouf, H., Topper, T.H., and Plumiree, A., 1977, "Cyclic Plasticity and
Masing Behaviour in Metals and Alloys," Fracture 1977, ICF4, Vol.2, Waterloo,
Canada, pp.1207-1215

Armstrong, P.J. and Frederick, C.O., 1966, "A Mathematical Representation of

the Multiaxial Bauschinger Effect," Report RD/B/N 731, Central Electricity
Generating Board

Asaro, R.]., 1983, "Crystal Plasticity," ASME Journal of Applied Mechanics,
Vol.50, pp.921-934

ASTM, 1993, "Standard Test Methods for Tension Testing of Metallic
Materials,” E-8-93, 1993 Annual Book of ASTM Standards, Vol.03.01, Metals Test
Methods and Analytical Procedures :

Bairstow, L., 1911, "The Elastic Limits of Iron and Steel under Cyclical

Variations of Stress," Philosophical Transactions of Royal Society, Ser.A, Vol.210,
pp.35-55

Bayerlein, M., Christ, H-]., and Mughrabi, H., 1987, "A Critical Evaluation of
the Incremental Step Test," Low Cycle Fatigue and Elasto-Plastic Behaviour of
Materials, Rie, Ed., Elsevier Applied Science, pp-149-154

Benallal, A., Cailletaud, G., Chaboche, J.L., Marquis, D., Nouailhas, D., and
Rousset, M., 1989, "Description and Modeling of Non-proportional Effects in
Cyclic Plasticity," Biaxial and Multiuxial Fatigue, EGF3, Brown and Miller, Eds.,
Mechanical Engineering Publications, London, pp-107-129

Benallal, A. and Marquis, D., 1987a, "Constitutive Equations for
Nonproportional Elastio-Viscoplasticity,” ASME Journal of Engineering Materials
and Technology, Vol.109, pp.326-336

Benallal, A. and Marquis, D., 1987b, "Constitutive Equations Describing
Nonproportional Effect in Cyclic Plasticity,” Proceedings of the Second International
Conference on Constitutive Laws for Engineering Materials: Theory and Applications,
Sedai et al., Eds., Tuscson, Arizona, pp-505-512

Benallal, A., LeGallo, P., and Marquis, D., 1988, "Cyclic Hardening of Metals
under Complex Loadings," Proceedings of MECAMAT, Internal Seminar on the
Inelastic Behavior of Solids: Models and LItilization, Besancon, France, pp-361-371



171

Benallal, A., LeGallo, P., and Marquis, D., 1989a, "The Role of Mean Strain on
the Stress Response in Nonproportional Cyclic Plasticity," Advances in Plasticity,
Proceedings of Plasticity'89, Second International Symposium on Plasticity and
Its Current Applications, MIE University, Tsukuba, Japan, Khan and Tokuda,
Eds., Pergamon Press, Oxford, pp.203-206

Benallal, A., LeGallo, P., and Marquis, D., 1989b, "An Experimental
Investigation of Cyclic Hardening of 316 Stainless Steel and of 2024 Aluminum

Alloy under Multiaxial Loadings," Nuclear Engineering and Design, Vol.114,
pp-345-353

Benham, P.P., 1961, "Axial-Load and Strain-Cycling Fatigue of Copper at Low
Endurance,” The Journal of the Institute of Metals, Vol.89, pp.328-338

Benham, P.P. and Ford, Hugh, 1961, "Low Endurance Fatigue of a Mild Steel

and an Aluminum Alloy," Journal of Mechanical Engineering Science, Vol.3, No.2,
pp.119-132

Besseling, ].F., 1958, "A Theory of Elastic, Plastic, and Creep Deformations of
an Initially Isotropic Material Showing Anisotropic Strain-Hardening, Creep
Recovery, and Secondary Creep," ASME Journal of Applied Mechanics, pp.529-536

Bower, Allan Francis, 1987, "Some Aspects of Plastic Flow, Residual Stress
and Fatigue due to Rolling and Sliding Contact,” Ph.D. Dissertation, Emmanuel
College, Department of Engineering, University of Cambridge

Bower, AF., 1989, "Cydlic Hardening Properties of Hard-Drawn Copper and
Rail Steel," Journal of Mechanics and Physics of Solids, Vol.37, No.4, pp.455-470

Bower, A'F. and Johnson, K.L., 1989, "The Influence of Strain Hardening on
Cumulative Plastic Deformation in Rolling and Sliding Line Contact," Journal of
Mechanics and Physics of Solids, Vol.37, No 4, pp471-493

Bruhns, O.T. and Pape, A., 1989, "A Three Surface Model in Nonproportional
Cyclic Plasticity,” Proceedings of International Conference on Constitutive Laws for

Engineering Materials, Chonging, China, Fan and Murakami, Eds., Pergamon
Press, Vol 2, pp.703-708

Bruhns, O.T., Lehmann, T., and Pape, A., 1992, "On the Description of
Transient Cyclic Hardening Behavior of Mild Steel CK 15," International journal of
Plasticity, Vol.8, pp.331-359

Budiansky, Bernard, 1959, "A Reassessment of Deformation Theories of
Plasticity," ASME Journal of Applied Mechanics, pPp-259-264



172

Burlet, H. and Cailletaud, G., 1987, "Modeling of Cyclic Plasticity in Finite
Element Codes," Proceedings of the Second International Conference on Constitutive

Laws for Engineering Materials: Theory and Application, Desai et al., Eds., Tucson,
Arizona, pp.1157-1164

Cailletaud, G., Kaczmarek, H., and Policella, H., 1984, "Some Elements on the

Multiaxial Behaviour of 316 L Stainless Steel at Room Temperature,” Mechanics of
Materials, Vol.3, No 4, pp.333-347

Chaboche, J.L, 1986, "Time-Independent Constitutive Theories for Cyclic
Plasticity,” International Journal of Plasticity, Vol.2, No.2, pp-149-188

Chaboche, J.-L., 1987, "Cyclic Plasticity Modeling and Ratchetting Effects,"
Proceedings of the Sccond International Conference on Constitutive Laws for

Engineering Materials: Theory and Applications, Tucson, Arizona, Desal ef al., Eds.,
Elsevier, pp.47-58

Chaboche, J.L., 1989a, "Constitutive Equations for Cyclic Plasticity and Cyclic
Viscoplasticity," International Journal of Plasticity, Vol.5, pp.247-302

Chaboche, J.-L., 1989b, "A New Kinematic Hardening Rule with Discrete
Memory Surfaces," Rech. Aérosp., n° 4, pp.49-69

Chaboche, J.-L., 1989¢, "A New Constitutive Framework to Describe Limited
Ratchetting Effects,” Advances in Plasticity, Proceedings of Plasticity'89, Second
International Symposium on Plasticity and Its Current Applications, MIE

University, Tsukuba, Japan, Khan and Tokuda, Eds., Pergamon Press, Oxford,
pp-211-214

Chaboche, J.L., 1991, "On Some Modifications of Kinematic Hardening to
Improve the Description of Ratchetting Fffects,” International Journal of Plasticity,
Vol.7, pp.661-687

Chaboche, J.-T.., Dang Van, K., and Cordicr, G., 1979, "Modelization of the
Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel," Structural
Mechanics in Reactor Technology, Transactions of the Fifth International
Conference on Structural Mechanics in Reactor Technology, Div. L, Berlin, L11/3

Chaboche, J.L. and Nouailhas, D, 1989a, "Constitutive Modeling of
Ratchetting Effects-Part I: experimental Facts and Properties of the Classical

Models," ASME Journal of Engineering Materials and Technology, Vol.111, pp.384-
392

Chaboche, J.L. and Nouailhas, D, 1989b, "Constitutive Modeling of
Ratchetting Effects-Part II: Possibilities of Some Additional Kinematic Rules,"
ASME Journal of Engineering Materials and Technology, Vol.111, pp.409-416



i73

Chaboche, J.L., Nouailhas, D., Pacou, D., and Paulmier, P., 1989, "Problems of
Describing Ratchetting Effects in Cyclic Plasticity and Viscoplasticity,” Rech.
Aérosp., n° 1989-1, pp.63-79

Chaboche, J.L., Nouaithas, D., Pacou, D., and Paulmier, P, 1991, " Modeling of
the Cyclic Response and Ratchetting Effects on Inconel-718 Alloy," European
Journal of Mechanics, A /Solids, Vol.10, N°1, pp.101-121

Chang, K.C. and Lee, G.C., 1986a, "Biaxial Properties of Structure Steel under

Nonproportional Loading," ASCE Journal of E ngineering Mechanics, Vol.112, No.8,
pp.792-805

Chang, K.C. and Lee, G.C., 1986b, "Constitutive Relations of Structure Steel

under Nonproportional Loading," ASCE Journal of Engineering Mechanics, Vol.112,
No.8, pp.806-820

Coffin, L.F,, Jr., 1960, "The Stability of Metals under Cyclic Plastic Strain,”
ASME Journal of Basic Engineering, Vol.82, Ser.D, No.3, p-671

Cuddy, J. and Bassim, M. Nabil, 1989, "Study of Dislocation Cell Structures
from Uniaxial Deformation of AISI 4340 Steel," Material Science and Engineering,
Al13, pp.421-429

Dafalias, Y.F., 1981, "A Novel Bounding Surface Constitutive Law for the
Monotonic and Cyclic Hardening Response of Metals," Transactions of the 6th
International Conference on Structural Mechanics in Reactor Technology, L3/4

Dafalias, Y.F and Popov, E.P.,, 1975, "A Model of Nonlinearty Hardening
Materials for Complex Loading," Acta Mechanica, Vol.21, pp.173-192

Dafalias, Y.F and Popov, E.P., 1976, "Plastic Internal Variables Formalism of
Cyclic Plasticity,” ASME Journal of Applied Mechanics, Vol.43, pp.645-651

Dolan, J.T., 1965, "Nonlinear Response under Cyclic Loading Conditions,"

Proceedings,” Ninth Midwestern Mechanics Conference, University of Wisconsin,
Madison, Wisconsin, pp.2-21

Dollar, M., Bernstein, M., and Thompson, A.W., 1988, "Influence of -

Deformation Substructure on Flow and Fracture of Fully Pearlitic Steel," Acta
Metallurgy, Vol.36, No.2, pp-311-320

Doong, Shiing-Hwa, 1989, "A Plasticity Theory of Metals Based on the
Dislocation Substructures,” Ph.D Dissertation, Department of Mechanical and
Industrial Engineering, University of Illinois at Urbana-Champaign



174

Doong, S.H. and Socie, D.F., 1991, "Constitutive Modeling of Metals under

Nonproportional Cyclic Loading," ASME Journal of Engineering Materials and
Technology, Vol.113, pp.23-30

Drucker, D.C., 1951, "A More Fundamental Approach to Plastic Stress-Strain

Relations," Proceedings of the First U.S. National Congress of Applied Mechanics,
ASME, pp.487-491

Drucker, D.C., 1960, "Plasticity in Structural Mechanics", Proceedings of the

First (1958) symposium on Naval Structural Mechanics, Goodier and Hoff, Eds.,
Pergamon, Macmillan, New York, pp.331-350

Drucker, D. C., 1984, "Material Response and Continuum Relations; or From
Microscales to Macroscales," ASME Journal of Engineering Materials and
Technology, Vol.106, pp.286-289

Drucker, Daniel C., 1987, "Some General Preliminary Comments on
Anisotropic/Cyclic Plasticity,” Proceedings of the Second International Conference on

Constitutive Laws for Engineering Materials: Theory and Applications, Tucson,
Aricona, Elsevier, Desai et al., Eds., Vol.], pp.95-97

Drucker, Daniel C., 1988, "Conventional and Unconventional Plastic Response
and Representation,” Applied Mechanics Review, Vol.41, No 4, pp.151-167

Drucker, D.C. and Palgen, L., 1981, "On Stress-Strain Relations Suitable for
Cydlic and Other Loading," ASME Journal of Applied Mechanics, Vol 48, pp.479-485

Ellyin, F., 1985, "Effect of Tensile-Mean-Strain on Plastic Strain Energy and

Cydlic Response,” ASME Journal of Engineering Materials and Technology, Vol.107,
pp.119-125

Fatemi, Ali, 1985, "Fatigue and Deformation under Proportional and

Nonproportional Biaxial Loading," Ph.D Dissertation, Mechanical Engineering,
The University of ITowa

Fatemi, A. and Kurath, P., 1988, "Multiaxial Fatigue Life Prediction under the

Influence of Mean-Stresses", ASME Journal of Engineering materials and Technology,
Vol.110, pp.380-388

Fatemi, Ali, Socie, D.I',, 1988, " A Critical Plane Approach to Multiaxial
Fatigue Damage Including Out-of-Phase Loading", Fatigue and Fracture of
Materials and Structures, Vol.11, No.3, pp.149-165

Fatemi, Ali and Stephens, R.I., 1989, "Cycdlic Deformation of 1045 Steel under
In-Phase and 90 Deg Out-of-Phase Axial-Torsional Loading Conditions,”



175

Multiaxial Fatigue; Analysis and Experiments, AE-14, Leese and Socie, Eds., Society
of Automotive Engineers, pp.139-147

Garud, Y.S., 1981a, "Multiaxial Fatigue of Metals", Ph.D Dissertation,
Mechanical Engineering, Stanford University

Garud, Y.5,, 1981b, "A New Approach to the Evaluation of Fatigue under

Multiaxial Loadings", ASME Journal of Engineering Materials and Technology,
Vol.103, pp.118-125

Garud, Y.S., 1982, "Prediction of Stress-Strain Response under General
Multiaxial Loading," Mechanical Testing for Deformation Model Development, ASTM
STP 765, Rohde and Swearengen, Eds., American Society for Testing and
Materials, pp.223-238

Garud, Y.5., 1991, "Notes on Cyclic Dependent Ratchetting under Multiaxial
Loads Including Bauschinger Effect and Non-Linear Strain Hardening,"
Transactions of the 11th International Conference on Structural Mechanics in Reactor
Technology, Tokyo, Japan, Shibata, Ed., Vol.L, 1.23/ 1, pp.511-518

Gerald, Curtis F. and Wheatley, Pairick O., 1984, Applied Numerical Analysis,
Chapter 4, Third Ed., Addison-Wesley Publishing Company

Golos, K. and Ellyin, F., 1988, "A Total Strain Energy Density Theory for

Cumulative Fatigue Damage," ASME Journal of Pressure Vessel Technology,
Vol.110, pp.36-41

Guionnet, C., 1992, "Modeling of Ratchetting in Biaxial Experiments,” ASME
Journal of Engineering Materials and Technology, Vol.114, pp.56-62

Hasegawa, T. and Takou, T., 1986, "Forwar and Reverse Rearrangements of

Dislocations in Tangled Walls," Materials Science and Engineering, Vol.81, pp.267-
276

Hashiguchi, K., 1988, "A Mathematical Modification of Two Surface Model

Formulation in Plasticity,” International Journal of Solids and Structures, Vol.24,
pp-987-

Hashiguchi, K., 1993a, "Fundamental Requirements and Formulation of

Elastoplastic Constitutive Equations with Tangential Plasticity,” International
Journal of Plasticity, Vol.9, pp.525-549

Hashiguéhi, K., 1993b, "Mechanical Requirements and Structures of Cydlic
Plasticity Models," International Journal of Plasticity, Vol.9, Pp.721-748



176

Hassan, T., Corona, E., and Kyriakides, S., 1991, "Ratchetting in Cyclic
Plasticity: Experiments and Predictions,” Transactions of the 11th International

Conference on Structural Mechanics in Reactor Technology, Tokyo, Japan, Shibata,
Ed., Vol.L, L23/2, pp.519-525

Hassan, Tasntin and Kyriakides, Stelios, 1992, "Ratchetting in Cyeclic

Plasticity, Part I Uniaxial Behavior," International Journal of Plasticity, Vol.8,
pp-91-116

Hassan, T., Corona, E., and Kyriakides, S., 1992, "Ratchetting in Cyclic
Plasticity, Part II: Multiaxial Behavior" International Journal of Plasticity, Vol.8,
pp.117-146

Hill, R., 1965, "Continuum Micro-Mechanics of Elastoplastic Polycrystals,”
Journal of Mechanics and Physics of Solids, Vol.13, pp.89-101

Hunsaker, B, Jr., Vaughan, D.K., and Stricklin, J.A., 1976, "A Comparison of
the Capability of Four Hardening Rules to Predict a Material's Plastic Behavior,"
ASME Journal of Pressure Vessel and Technology, pp.66-74

Inoue, T, Igari, T., Yoshida, F., Suzuki, A, and Murakami, S., 1985, "Inelastic
Behaviour of 2?}: Cr-Mo Steel under Plasticity-Creep Interaction Conditions,"
Nuclear Engineering and Design, Vol.90, pp.287-297

Inoue, T.,, Ohno, N., Suzuki, A., and Igari, T., 1989, "Evaluation of Inelastic
Constitutive Models under Plastic-Creep Interaction for 2 i— Cr-1Mo Steel at 600 o
C." Nuclear Engineering and Design, Vol.114, pp.295-309

Inoue, T, Yoshida, F., Niitsu, Y., Ohno, Kawai, M., Niitsu, Y., and Imatani, S,,
1991, "Evaluation of Inelastic Constitutive Models under Plasticity—Creep
Interaction in Multiaxial Stress State,” Nuclear Engineering and Design, Vol.126,
pp.1-11

Inoue, T., Yoshida, F., Niitsu, Y., Ohno, N., Uno, T., and Suzuki, A, 1991,
“Inelastic Stress/Strain Response of 241_1 Cr-1IMo Steel under Combined Tension-

Torsion at 600 « C," Transactions of the 11th International Conference on Structural
Mechanics in Reactor Technology, Tokyo, Japan, Shibata, Ed., Vol.L, L01/1, pp.1-12

Ishikawa, H. and Sasaki, K., 1989, "Numerical Simulation of Nonproportional
Cyeclic Plasticity," Advances in Plasticity, Proceedings of Plasticity'89, Second
International Symposium on Plasticity and Its Current Applications, MIE

University, Tsukuba, Japan, Khan and Tokuda, Eds., Pergamon Press, Oxford,
pp-231-234



177

Iwan, W.D., 1967, "On a Class of Models for the Yielding Behaviour of
Continuous and Composite Systems," ASME Journal of Applied Mechanics, Vol.34,
pp.612-617

Iwata, K., 1991, "A New Constitutive Model for Cydic Plasticity," Transactions
of the 11th International Conference on Structural Mechanics in Reactor Technology,
Tokyo, Japan, Shibata, Ed., Vol.L, L22/4, pp-499-504

Jhansale, H.R., 1975, "A New Parameter for the Hysteric Stress-Strain

Behavior of Metals," ASME Journal of Engineering Materials and Technology, pp-33-
38

Jiang, Yanyao and Sehitoglu, Huseyin, 1993a, "Cyclic Ratchetting of 1070 Steel
under Multiaxial Stress State,” Submitted to International Journal of Plasticity

Jiang, Yanyao and Sehitoglu, Huseyin, 1993b, "Multiaxial Cyelic Ratc:hetting
under Multipie Step Loading," Submitted to International Journal of Plasticity

Jiang, Yanyao and Sehitoglu, Huseyin, 1993c, "An Analytical Approach to

Elastic-Plastic Stress Analysis of Rolling Contact,” to appear in ASME Journal of
Tribology

Jiang, Yanyao and Sehitoglu, Huseyin, 19934, Unpublished Data

Kanazawa, K., Miller, K.J., and Brown, M.W., 1979, "Cydic Deformation of 1
percent Cr-Mo-V Steel under Out-of-Phase Loads," Fatigue of Engineering
Materials and Structures, Vol.2, pp.217-228

Kapoor, A. and Johnson, K.L., 1992, "Ratchetting Failure and Low Cycle

Fatigue in Metals in Relation to Rolling/Sliding Contact,” Private
Communication

Kennedy, AJ., 1956, "Effect of Fatigue Stresses on Creep and Recovery,"
International Conference on Fatigue of Metals, The Institution of Mechanical
Engineers and ASME, London/New York, 1956, pp.401-407

Kiisinski, M., Mroz, Z., and Runesson, K., 1992, "Structure of Constitutive
Equations in Plasticity for Different Choices of State and Control Variables,"
International Journal of Plasticity, Vol.8, pp.221-243

Krempl, E., 1969, "Cyclic Plasticity: Some Properties of Hysteresis Curve of

Structural Metals at Room Temperature,” ASME Winter Annual Meeting, Los
Angeles, 69-WA /Met-4

Krempl, E., 1975, "On the Interaction of Rate and History Dependence in
Structural Metals," Acta Mechanica, Vol.22, pp-53-90



178

Krempl, E and Lu, H., 1983, "Comparison of the Stress Responses of an
Aluminum Alloy Tube to Proportional and Alternate Axial and Shear Strain
Paths at Room Temperature,” Mechanics of Materials, Vol.2, pp.183-192

Krempl, E and Lu, H., 1984, "The Hardening and Rate Dependence Behaviour
of Fully Annealed AISI Type 304 Stainless Steel under Biaxial in-Phase and Out-
of-Phase Strain Cycling at Room Temperature,” ASME Journal of Engineering
Material and Technology, Vol.106, pp.376

Krempl, E and Lu, H., 1989, "The Palh and Amplitude Dependence of Cyclic
Hardening of Type 304 Stainless Steel at Room Temperature,” Biaxial and

Multiaxial Fatigue, EGF3, Brown and Miller, Eds., Mechanical Engineering
Publications, London, Pp-89-106

Krempl, E. and Yao, D., 1987, "The Viscoplasticity Theory Based on
Overstress Applied to Ratchetting and Cyclic Hardening," Low-Cycle Fatigue and

Elasto-Plastic Behavior of Materials, Rie, Ed., Elsevier Applied Science Publishers,
pp.137-148

Krieg, R.D., 1975, "A Practical Two Surface Plasticity Theory," ASME Journal of
Applied Mechanics, Vol.42, pp.641-646

Kuhlmann-Wilsdorf, D., 1982, "Theory of Dislocation Cell Sizes in Deformed
Metals," Materials Science and Engineering, Vol.55, pp.79-83

Kuhlmann-Wilsdorf, D., 1989, "Theory of Plastic Deformation:-Properties of

Low Energy Dislocation Structures," Materials Science and Engineering, A113, pp.1-
41

-Kuhlmann-Wilsdorf, D. and Laird, Campbell, 1979, "Dislocation Behavior in
Fatigue; 1. Friction Stress and Back Stress as Inferred from an Analysis of
Hysteresis Loops," Materials Science and Engineering, Vol.37, pp.111-120

Kurath, P., 1992, "Cyclic Ratchetting and Fatigue of AL6061-T6 Alloy,”
Unpublished Experimental Results, Private Communication

Kurath, P., 1993, "Comparison of Life Predictions Based on Three Plasticity
Models,” SAE Fatigue Design and Evaluation Committee Meeting, Cincinnati

Lamba, H.S., 1976, "Nonproportional Cyclic Plasticity," T & AM Report,

No.413, Department of Theoretical and Applied Mechanics, University of Illinois
of Urbana—Chalnpaign

Lamba, H.S. and Sidebottom, Q.M., 1976, "Biaxial Cyclic Hardening of
Annealed OFHC Copper," Proceedings of the Second International Conference on



179

Mechanical Behavior of Materials, The American Society of Metals, Boston, Aug.16-
20, pp.48-52

Lamba, H.S. and Sidebottom, O.M. 1978a, "Cyclic Plasticity for
Nonproportional Paths: Part I--Cyclic Hardening, Erasure of Memory, and
Subsequent Strain Hardening Experiments”, ASME Journal of Engineering
Materials and Technology, Vol.100, pp.96-104

Lamba, H.S. and Sidebottom, O.M., 1978b, "Cyclic Plésticity for
Nonproportional Paths. Part II: Comparison with Predictions of Three

Incremental Plasticity Models," ASME Journal of Engineering Materials and
Technology, Vol.100, pp.104-111

Landgraf, R.W., 1970, "The Resistance of Metals to Cydlic Deformation,"

Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP467,
American Society for Testing and Materials, pp.3-36

Landgraf, RW., Morrow, J.D., and Endo, T, 1969, "Determination of Cydic
Stress-Strain Curve," Journal of Materials, Vol.4, pp.176-183

Lazan, B.J., 1949, "Dynamic Creep and Rupture Properties of Temperature-
Resistant Materials under Tensile Stress," Proceedings, American Society for
Testing and Materials, Vol.49, pp.757-787 '

Lebey, J. and Roche, R., 1979, "Tests on Mechanical Behaviour of 304 L
Stainless Steel under Constant Stress Associated with Cyclic Strain," Fatigue of
Engineering Materials and Structures, Vol.1, pp.307-318

Lefebvre, D. and Ellyin, F., 1984, "Cyclic Response and Inelastic Strain Energy
in Low Cycle Fatigue," International Journal of Fatigue, pp.9-15

Li, Yuanfeng and Laird, Campbell, 1993, "Masing Behavior Observed in

Monocrystalline Copper During Cyclic Deformation," Materials Science and
Engineering, A161, pp.23-29 :

Lindholm, U.S., Chan, K.S., Bonder, S.R., Weber, RM., Walker, K.P., and

Cassenti, B.M., 1984, "Constitutive Modeling for Isotropic Materials," Report
SWRI-7576/30, NASA CR-174980

Lu, W.Y. and Mohamed, ZM,, 1987, "A Two-Surface Plasticity Theory and Its
Application to Multiaxial Loading," Acta Mechanica, Vol.69, pp43-57

Manjoine, M.]., 1949, "Effect of Pulsating Loads on the Creep Characteristics
of Aluminum Alloy 14S-T," Proceedings, American Society for Testing and
Materials, Vol .49, pp.788-798



180

Marquis, D., 1979, "Etude Théorique et Vérification Expérimentale d'un
Modéle de plasticité cydique," Thése, Paris VI

Masing, G., 1926, "Eigenspannungen und Verfestigung beim Messing,"
Proceedings of the 2nd International Congress for Applied Mechanics, Zurich,
Swissland, pp.332-335

McDowell, D.L., 1981, "Multiaxial Nonproportional Cyclic Deformation”,
Report No.102, Design and Materials Division, Department of Mechanical and
Industrial Engineering, University of Hllinois at Urbana-Champaign

McDowell, D.L., 1983a, "Transient Nonproportional Cyclic Plasticity,” Ph.D
Dissertation, Department of Mechanical and Industrial Engineering, University of
Minois at Urbana-Champaign

McDowell, D.L., 1983b, "On the Path Dependence of Transient Hardening and
Softening to Stable States under Complex Biaxial Cydlic Hardening," Proceedings
of International Conference on Constitutive Laws for Engineering Materials, Desai and
Gallagher, Eds., Tucson, Arizona, pp-125-132

McDowell, D.L., 1985a, "A Two Surface Model for Transient Nonproportional

Cydlic Plasticity, Part I: Development of Appropriate Equations,” ASME Journal of
Applied Mechanics, Vol.52, pp.298-302

McDowell, D.L., 1985b, "A Two Surface Model for Transient Nonproportional
Cyclic Plasticity, Part Il: Comparison of Theory with Experiments," ASME Journal
of Applied Mechanics, Vol.52, pp.303-308

McDowell, D.L., 1985¢, " An Experimental Study on the Structure of

Constitutive Equations for Nonproportional Cydlic Plasticity,” ASME Journal of
Engineering Materials and Technolagy, Vol.107, pp.307-315

McDowell, D.L., 1987, "An Evaluation of Recent Developments in Hardening
and Flow Rules for Rate-Independent, Nonproportional Cydlic Plasticity," ASME
Journal of Applied Mechanics, Vol.54, pp.323-334

McDowell, David L., 1989, "Evaluation of Intersection Conditions for Two-
Surface Plasticity Theory," International Journal of Plasticity, Vol.5, pp.29-50

McDowell, D.L., 1991, "Nonproportional Cydlic Plasticity of Rail Steels," Final
Report for AAR, Contract META-91-290

McDowell, D.L., 1992, "Description of Nonproportional Cyclic Ratchetting
Behavior," Progress Report on AAR, Contract No. META-92-195



181

McDowell, D.L. and Lamar, A.B., 1989, "Modeling Ratchetting and
Anisotropic Deformation with Hardening Dynamic Recovery Format Models,"
Advances in Plasticity, Proceedings of Plasticity'89, Second International
Symposium on Plasticity and Its Current Applications, MIE University, Tsukuba,
Japan, Khan and Tokuda, Eds., Pergamon Press, Oxford, pp-247-251

McDowell, D.L. and Moyar, G.J., 1991, "Parametric Study of Cyclic Plastic
Deformation in Rolling and Sliding Line Contact with Realistic Nonlinear
Material Behavior," Wear, Vol.144, pp.19-37

McDowell, D.I.. and Socie, D.F.,, 1985, "Transient and Stable Deformation
Behavior under Cyclic Nonproportional Loading,” ASTM STP 853, American
Society for Testing and Materials, pp.64-87

McMeeking, Robert M., 1982, "The Finite Strain Tension Torsion Test of a
Thin-Walled Tube of Elastic-Plastic Material " Infernational Journal of Solids and
© Structures, Vol.18, No.3, pp.199-204

Meleka, A.-H. and Evershed, A.V., 1960, "The Dependence of Creep Behavior

on the Duration of a Superimposed Fatigue Stress,” Journal of the Institute of Metals,
Vol.88, pp.411-414

Moosbrugger, J.C. and McDowell, D.L., 1989, "On a Class of Kinematic
Hardening Rules for Nonproportional Cyclic Plasticity," ASME Journal of
Engineering Materials and Technology, Vol.111, pp-87-98

Moosbrugger, J.C. and McDowell, D.L., 1990, "A Rate-Dependent Boundary
Surface Model with a Generalized Image Point for Cyclic Nonproportional

Viscoplasticity,” Journal of the Mechanics and Physics of Solids, Vol.38, No.5, pp-627-
656

Morrow, JaDean, 1964, "Cyclic Plastic Strain Energy and Fatigue of Metals,”

Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, American Society
for Testing and Materials, pp.45-84

Morrow, JoDean and Sinclair, G.M., 1958, "Cycle-Dependent Stress

Relaxation,” Symposium on Basic Mechanisms of Fatigue, ASTM STP 237, American
Society for Testing and Materials, Pp-83-103

Moyar, G.J., 1960, "A Mechanics Analysis of Rolling Element Failure,” T.&
A.M. Report No.182 , University of Illinois at Urbana-Champaign

Moyar, G] and Sinclair, G.M., 1962, "Cyclic Strain Accumulation under

Complex Multiaxial Loading," T.& A.M. Report No.231, University of Illinois at
Urbana-Champaign



182

Moyar, G.J. and Sinclair, G.M., 1963, "Cyclic Strain Accumulation under
Complex Multiaxial Loading," Proceedings of Joint International Conference on Creep,
London

Mroz, Z., 1967, "On the Description of Anisotropic Workhardening," Journal of
Mechanics and Physics of Solids, Vol.15, No.3, pp-163-175 _

Mroz, Z., 1969, "An Attempt to Describe the Behavior of Metals under Cyeclic
Loads Using a More General Workhardening Model,” Acta Mechanica, Vol.7,
No.2-3, pp.199-212 ‘

Mroz, Zenon, 1981, "On Generalized Kinematic Hardening Rule with

Memory of Maximum Prestress,” Journal De Mechnigue Appliqué, Vol.5, No3,
pp.241-260

Mroz, Z, 1983, "Hardening and Degradation Rules for Metals under
Monotonic and Cyclic Loading,” ASME Journal of Engineering Materials and
Technology, Vol.105, pp-113-118

Mroz, Z. and Trampezynski, W.A | 1984, "On the Creep-Hardcening Rule for
Metals with a Memory of Maximum Prestress," International Journal of Solids and
Structures, Vol.20, No.5, pp.467-486

Mshana, ].S. and Krausz, A.S., 1985, "Constitutive Equation of Cyclic
Softening," ASME Journal of Engineering Materials and Technology, Vol.107, pp.7-12

Mughrabi, H., 1978, "The Cyclic Hardening and Saturation Behaviour of
Copper Single Crystals," Materials Science and Engineering, Vol.33, pp.207-223

Mughrabi, H., 1983, "Dislocation Wall and Cell Structures and Long-Rahg
Internal Stress in Deformed Metal Crystals," Acta Metall, Vol.31, pp.1367-1379

Murakami, H. and Chopra, A., 1987, "On Simulating Cydlic Hardening of
Metals," Proceedings of the Second International Conference on Constitutive Laws for

Engineering Materials: Theory and Applications, Desai, et al., Eds., Tucson, Arizona,
Vol. 1, pp.615-622

Ning, Jie and Chen, Xu, 1991, "On the Properties of Plastic Flow of Material

under Nonproportional Cyclic Loading," International Journal of Solids and
Structures, Vol.28, No.4, pp-403-412

Nouailhas, D., Policella, H., and Kaczmarek, H. 1983, "On the Description or
Cyclic Hardening under Complex Loading Histories," Proceedings of International

Conference on Constitutive Laws for Engineering Materials, Desai and Gallagher,
Eds., Tucson, Arizona



183

Ohashi, Y., Kawai, M., and Kaito, T., 19852, "Inelastic Behaviour of Type 316
Stainless Steel under Multiaxial Non-Proportional Cyclic Stressings at Elevated

Temperature,” ASME Journal of Engineering Materials and Technology, Vol.107,
pp-101-109

Ohashi, Y., Tanaka, E., and Ooka, M., 1985b, "Plastic Deformation Behavior of
Type 316 Stainless Steel Subjected to Out-of-Phase Strain Cycles," ASME Journal
of Engineering Materials and Technology, Vol.107, pp-286-292

Ohno, N., 1982, "A Constitutive Model of Cyclic Plasticity with a

Nonhardening Strain Region," ASME Journal of Applied Mechanics, Vol 49, pp.721-
727 : ' '

‘Ohno, N, 1990, "Recent Topics in Constitutive Modeling of Cyclic Plasticity
and Viscoplasticity," Applied Mechanics Reviews, Vol.43, No.1 1, pp.283-295

Ohno, N. and Kachi, Y., 1986, "A Constitutive Model of Cydlic Plasticity for

Nonlinear Hardening Materials,” ASME Journal of Applied Mechanics, Vol.53,
pp.395-403 -

Ohno, N and Wang J.-D., 1991a, "Nonlinear Kinematic Hardening Rule:
-Proposition and Application to Ratchetting Problems," Structural Mechanics in
Renctor Technology, Transactions of the 11th International Conference on Structural
iggrhanics in Reactor Technology, Shibata, Ed., Vol.L, Tokyo, Japan, L.22/1, pp.481-

Ohno, N and Wang J.-D., 1991b, "Transformation of a Nonlinear Kinematic
Har‘:iening Rule to a Multisurface Form under Isothermal and Nonisothermal
Con ditions," Infernational Journal of Plasticity, Vol.7, pp-879-891

_Q-hno, N and Wang J.-D., 1991c, "Nonlinear Kinematic Hardening Rule with
Criticq] gtate for Activation of Dynamic Recovery,” Anisotropy and Localization of
p last__gc Deformation, Proceedings of PLASTICTTY'91: The Third International
SYMPOSiim on Plasticity and Its Cutrent Applications, Boehist «xd Khan, Eds.,
Gren.oblc, Fraxiec, P 1)455-453 :

S Ohf‘.{), N. and _Wang J-D., 19934, "Kinematic Hardening Rules with Critical
taf% o.f Dynam;c Recovery: Part I--Formulation and Basic Features for
Ra’fchettmg Behavior," International Journal of Plasticity, Vol.9, Pp-375-390

- Ohno, N. and Wang J.-D., 1993b,.,' "Kinematic Hardening Rules with Critical

'] : :
state of Dynamic Recovery: Part II: Application to Experiments of Ratchetting
Behavior," International Journal of Plasticity, Vol.9, pp-391-403

Pedersen, O.B,, 1987,

"The Flow Stress in Co er," Acta Metal
PP.2567-2581 Pp a Metall, Vol.35,



184

Peirce, D., Asaro, RJ., and Needleman, A_, 1982, "An Analysis of Nonuniform

and Localized Deformation in Ductile Single Crystals,” Acta Metall, Vol.30, -
pp-1087-1119

Pellissier-Tanon, A., Bernard, J.L., Amzallag, C., and Rabbe, P., 1982,
"Evaluation of the Resistance of Type 316 Stainless Steel Against Progressive
Deformation,” Low-Cycle Fatigue and Life Prediction, ASTM STP 770, Amzallag,
Leis, and Rabbe, Eds., American Society for Testing and Materials, pp.69-80

Prager, W., 1945, "Strain Hardening under Combined Stress,” Journal of
Applied Physics, Vol.16, pp.837-840 :

Prager, W., 1955, "The Theory of Plasticity: A Survey of Recent

Achievements," Proceedings, Institution of Mechanical Engineers, London,
Vol.169, No.21, pp.41-57

Ruggles, M.B. and Krempl, E., 1989, "The Influence of Test Temperature on
the Ratchetting Behavior of Type 304 Stainless Steel,” ASME Journal Engineering
Materials and Technology, Vol.111, pp-378-383

Sehitoglu, H. and Jiang, Yanyao R., 1992, "Residual Stress Analysis in Rolli=g
Contact,” FRA/ERRI International Conference on Rail Quality and Maintenance for
Modern Railway Operation, Delft, The Netherlands, June 24-26

Shaw, P.K. and Kyriakides, S., 1985, "Inelastic Analysis of Thin-Walled T'ubes

under Cyclic Bending," International Journal of Solids and Structures, Vol.21,
pp.1073-1100 o '

Shield, Rich. Thorpe and Ziegler, Hans, 1958, " On Prager's Hardening Rule,”
Journal of Applied Mathematics and Physics (ZAMP), Vol. IXa, Fasc.3, pp.260-_.‘276

Takahashi, Yukio and Ogaia, Takashi, 1991, "Description of Nonpreportional
Cyeclic Plasticity of Stainless Steel by a Two-Surface Model,” ASME jOurnal of
Applied Mechanics, Vol.58, pp.623-630 : -

Tanaka, E.,sMurakami, S., and Ooka, M., 1985a, "Effects of; Plasfic TStr_ain
Amplitudes on Non-proportional Cyclic Plasticity," Acta Mechanica, VPL-57,
pp-167-182 . :

Tanaka, E., Murakami, S., and Ooka, M., 1985b, "Effects of Strain Patli'S;};iaf,eS

on Non-proportional Cyclic Plasticity," Journal of Mechanics and Physics of Solid>
Vol.33, pp.559-575 A

Tanaka, E., Murakami, S., and QOoka, M., 1987, "Constitutive Modeling of
Cyclic Plasticity in Non-Proportional loading Conditions," Proceedings of the



185

Second International Conference on Constitutive Laws for Engineering Materials:
Theory and Applications, Sedai et al., Eds., Tuscson, Arizona, pPp-639-646

Trampczynski, Wieslaw, 1988, "The Experimental Verification of the
Evolution of Kinematic and Isotropic Hardening in Cyclic Plasticity," Journal of
Mechanics and Physics of Solids, Vol.36, No.4, pp.417-441 -

Trampcezynski, W. and Mroz, Z., 1991, “Anisotropic Hardening Model and Its
Application to Cyclic Loading," Anisotropy and Localization of Plastic Deformation,
Proceedings of Plasticity'91: The Third International Symposium on Plasticity
and Its Current Applications, Boehler and Khan, Eds., pp467-472

Tseng, N.T and Lee, G.C., 1983, "Simple Plasticity Model of the Two-Surface
Type," ASCE Journal of Engineering Mechanics, Vol.109, pp.795-810

Tsuji, B., 1989, "Cyclic Plasticity Model of Two Surface Type," Advances in
Plasticity, Proceedings of Plasticity'89, Second International Symposium on
Plasticity and Its Current Applications, MIE University, Tsukuba, Japan, Khan
and Tokuda, Eds., Pergamon Press, Oxford, pp-273-276

Umakoshi, Y., Pope, D.P., and Vitek, V., 1984, "The Asymmetry of the Flow
Stress in Ni3 (Al Ta) Single Crystals," Acta Metall, Vol.32, pp.449-456

Valanis, K.C., 1971a, "A Theory of Viscoplasticity without a Yield Surface,
Part I. Application to Mechanical Behavior of Metals," Archives of Mechanics
(Archiwum Mechaniki Stosowanej), Vol.23, No.4, pp.535-551

Valanis, K.C, 1971b, "A Theory of Viscoplasticity without a Yield Surface,

Part II. General Theory," Archives of Mechanics, Archiwum Mechaniki Stosowanej,
Vol.23, No.4, pp-517-533

Valanis, K.C., 1980, "Fundamental Consequences of a New Intrinsic Time
Measure Plasticity as a Limit of the Endochronic Theory," Archives of Mechanics,
Archiwum Mechaniki Stosowanej, Vol.32, pp.171-191

Valanis, K.C., 1984, "Continuum Foundations of Endochronic Plasticity,"
ASME Journal of Engineering Materials and Technology, Vol.106, pp.367-375

Voyiadjis, George Z. and Sivakumar, Srinivasan M, 1991, "Constitutive Model
for Cydlic Plasticity with Ratchetting Effects,” Anisotropy and Localization of Plastic
Deformation, Proceedings of PLASTICITY'91: The Third International Symposium

on Plasticity and Its Current Applications, Boehler and Khan, Eds., Grenoble,
France, pp.473-476



186

Wang, J.-D. and Ohno, N., 1991, "Two Equivalent Forms of Nonlinear
Kinematic Hardening: Application to Nonisothermal Plasticity," International
Journal of Plasticity, Vol.7, pp.637-650

Weng, GJ., 1979, "Kinematic Hardening Rule in Single Crystals,” International
Journal of Solids and Structures, Vol.15, pp.861-870 '

Winter, A.T., 1974, "A Model for the Fatigue of Copper at Low Plastic Strain
Amplitudes," Philosophy Magazine, Vol.30, pp.719-738

Wood, W.A. and Bendler, H.M., 1962, "Effect of Superimposed Static Tension
on the Fatigue Process on Copper Subjected to Alternating Torsion," Transaction
of the Metallurgical Society of AIME, Vol.224, p.18-26

Wu, Han C. and Yao, Jen-Che, 1984, "Analysis of Siress Response to Various
Strain-Paths in Axial-Torsional Deformation of Metals," ASME Journal of
Engineering Materials and Technology, Vol.106, pp.361-366

Yamanouchi, H., Kino, H., and Nakano, S, 1976, "Ratchetting in Thin Tuhe
under Cyclic Axial Strain and Internal Pressure," Proceedings of the Second
International Conference on Mechanical Behavior of Materials, The American Society
of Metals, Boston, Aug.16-20, pp.53-57

Ziegler, H., 1959, "A Modification of Prager's Hardening Rule,” Quarterly of
Applied Mechanics, Vol.17, No.1, pp.55-65



187

VITA

Yanyao Jiang was born on December 2, 1963 in Zhejiang Province, China. He
finished high school in 1979 and was enrolled in the Northeastern University of
Technology in Shengyang, China. In 1983, he graduated with a Bachelor of
Science degree in Mechanical Engineering. After a competitive graduate
enrollment examination, he was admitted to the Graduate School of Zhejiang
University in Hangzhou, China. He studied Solid Mechanics for the required
three years, and earned the degree of Master of Science in June of 1986. After his
graduation, he worked in the Department of Mechanical Engineering at Zhejiang
Institute of Technology located in Hangzhou, China. Part of his responsibilities
during three and half years at the university included teaching undergraduate
classes such as Theoretical Mechanics, Mechanics of Materials, Engineering
Mechanics, and Experimental Mechanics. He also served as a supervisor for
senior undergraduate projects. Major research interest areas are Fracture and
Fatigue of Metals, Experimental Stress Analysis, and Machine Design. In the
Spring of 1990, he began his graduate study at the University of Illinois at
Urbana-Champaign pursuing a Doctor of Philosophy degree in Mechanical
Engineering. Ide has held Research Assistantships during his studies at the
University of Illinois. Primary areas of research include Rolling Contact,
Multiaxial Fatigue, and Cyclic Plasticity. Yanyao was married to Wei Wu on
December 14, 1991 in Champaign.



