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An approximate analytical method is developed to calculate strains at stress concentrators in
structures of clastic-plastic, isotropic material subjected to proportional and nonproportional
multiaxial nominal loading. The method uses anisotropic plasticity theory o define a
structural yield surface in nominal stress space that incorporates both the isotropic material
properties and the anisotropic geometry factors of the notch, and accounts for varying
degrees of constrained plastic flow at the stress concentrator. Plastic strain increments at the

stress concentrator and anisotropic work-hardening effects are then related to this yield

surface using standard methods of plasticity.

The method is applied to mildly and sharply notched shafts, and a plate with a central
through hole subjected to proportional and nonproportional nominal loading. The results of
these calculations are compared with experimental results of a mildly notched shaft subjected

to combined tensile and torsional load, and with extensive finite element analyses of all of

the structures.

The strain calculations agree well with both qualitatively and quantitatively with the
experiments and finite element calculations when using an appropriate uniaxial load-notch

plastic strain relationship, and are suitable for strain-life fatigue calculations.
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1 INTRODUCTION AND OBRJECTIVE

Engineering components usually have stress concentrators such as notches or holes. An
engineering component must typically be designed for specific forces the component is to
carry and the useful life the component is to have. Recent advances in the strain-life theory _
of fatigue have allowed the estimation of the fatigue life of a component from measured
strains at critical locations for general states of loading. However, the designer must estimate
these strains for the evaluation of a particular geometry, often only knowing the applied
loads, which in general may be multiaxial. Although nonlinear finite element analysis can be
used to determine strains at critical locations, it can be prohibitively time consuming when

considering histories of multiaxial loading.

The objective of this research is to develop an approximate method to calculate elastic-plastic
notch root strains for a given multiaxial loading history and t0 compare these results with

nonlinear finite element analysis and experimental results for proportional and

nonproportional loading.

The current methods of notch strain estimation and major experimental work on determining
elastic-plastic notch strains are reviewed in Chapter 2. The proposed method is developed in

Chapter 3, and specialized for a notched shaft and a plate with a hole.

In Chapter 4, the proposed method is compared with the experimental results of Hoffmann
and Seeger and the approximate technique developed by them for the analysis of

'proportionally loaded notched shafts.

Chapters 5, 6, 7, and 8 are analyses of different geometries. In Chapter 5, results using the
method are compared with finite element calculations of the Society of Automotive

Engineers {(SAE) notched shaft in proportional bending and torsion. In Chapter 6.



calculations are compared with finite element analyses and experimental results of a mildly
noiched steel shaft subjected to proportional and nonproportional tension and torsion. In
Chapter 7 a plate with a hole is examined, and in Chapter 8 a more sharply notched shaftis .
examined. Both of these geometries are compared with results from nonlinear finite element
analysis for proportional and nonproportional loading. Concluding remarks are presented in

Chapter 9.



2 BACKGROUND

Notches and stress concentrators have been of interest for many years, as these areas often
serve as sites for fatigue crack initiation and component failure. The work of the last century
and the first half of this century was focused on the elastic analysis of notches. Elastic stress
and strain states were ofien either computed from closed form solutions using elasticity
theory, or by careful photoelastic analysis. Peterson’s Stress Concentration Design Factors
(1966)! is an invaluable compilation of theoretical stress concentration factors that have been
determined using these methods. More recently, the finite element method has been

commonly used t0 determine elastic stress concentration factors for specific geometries.

The examination of ¢lastic-plastic stress and strain states at notches occurred later. Several
experimental investigations of strain states at holes in plates were motivated by the need for
lightweight, fatigue resistant aircraft components. Griffith (1948} tested aluminum panels
with a centrai circular hole in uniaxial cyclic loading, measuring strains using '
electromagnetic strain gages. Stresses were determined by comparing the measured strains
with the suess-sirain curve of uniaxial tension tests of aluminum coupons. Box (1931) also

studied plates with holes, using lines inscribed on the surface of the plates to determine the

strains.

These experimental investigations encouraged interest in analytical methods that could be
used to estimate both the stress and strain states using only the material stress strain curve,
notch geometry, and applied loads. Stowell (1950) used Griffith’s data to propose a formula

to estimate the stress concentration in the plastic range, and Hardrath and Ohman (1951)

'References are listed alphabetically at the end of the thesis, beginning on page 198.



modified Stowell’s formula for use with other geometries, and compared the resuits with the

experiments of both Griffith and Box, as well as their own experimental work on other notch

geometries.

The most well known approximate formula for determining the stress and strain state at a
notch was introduced by Neuber (1961) for the special case of a shear-strained prismatical
body with a notch, and made of material obeying a nonlinear stress strain law. Neuber’s
interest in this problem was a natural extension of his work in the theory of elastic stress
concentration of notched bodies (1946). For this notch, he showed that the geometrical mean
value of the stress and strain-concentration factors at any stress-strain law is equal to the

Hookian stress-concentration factor.,

Experimental investigations of notch behavior continued with Durelli and Sciammarella
(1963) who used the moiré method to determine strains near a circular hole in a plate
subjected to uniaxial loading, and the Prandlt-Reuss relations to compute stresses from these
strains. And later, Papirno (1971) compared the theories of Hardrath and Ohman with that of

Neuber for results obtained from mildly notched thin plates subjected to monotonic uniaxial

load, and concluded that the Neunber relation was more accurate.

Interest in determining notch stresses and strains increased as the strain-life theory of fatigue
gained continued use. Although Neuber’s rule, as it had become known by this time, was
derived for a particular geomeuy and for monotonic loading, it had been modificd for use
with other notch geometries and for cyclic loading (Wetzel 1968, Topper er al. 1969).
Although Neuber’s rule was restricted to uniaxial loading, investigations of its applicability
under various loading conditions were _carried out by Lies ez al. (1973), Wilson (1974), and
Conle and Nowack (1977). Further modifications to Neuber’s rule were suggested to

account for notch constraint of notched round bars by Walker (1977), and to situations



involving net section plasticity by Seeger (1980). Neuber’s rule had been incorporated in
strain-life fatigue prediction methods, of which several have been described by Brose (1977),
Landgraf et al. (1977), Dowling et al. (1977), and Socie et al. (1984). Tipton (1991) has
presented a review article describing the modifications made to Neuber’s rule for fatigue

analysis, and Seeger {1977) has presented a comparison of several notch estimation

techniques for notched plates.

An equivalent strain energy approach to calculate notch root stresses and strains from remote
stresses and strains was introduced by Molski and Glinka (1981), compared with Neuber’s
rule for several notch types (Glinka 1985a and Glinka et al. 1988) and used to calculate notch
stress-strain histories for cyclic loading (Glinka 1985b). This formula was proposed for

uniaxial loading, and was shown to predict local strains more accurately than Neuber’s rule.

Neuber’s rule and Glinka’s formula have also been investigated by Sharpe and co-workers
for monotonic loading (Sharpe and Wang 1991 and Sharpe et al. 1992) and cyclic loading
(Wang and Sharpe 1991) using a laser interferometric strain measurement technique (Guillot
and Sharpe 1983 and Sharpe 1991) for notched plates subjected to uniaxial load. Sharpe’s
results indicated that Neuber’s rule gave better results than Glinké’s formula for plane stress,

but that Glinka’s formula was better for situations involving large constraint.

Concurrently, the local stramn-life approach was extended to multiaxial states of loading using
multiaxial fatigne damage models (several of which are reviewed by Garud 1981; see also
Socie 1987), and methods were developed for determining the fatigue life of multiaxially
stressed components (Bannantine 1989, Chen and Keer 1991). Such methods relied upon
measuring strains, and using yield surface plasticity theory to calculate the stress state. Asa
natural consequence, the uniaxial notch stress and strain approximation techniques were

extended to states of multiaxial loading. Experiments on proportionally loaded notched bars



were carried out by Hoffmann er al. (1985a) and methods to estimate notch stress and strain
under these loading conditions were first considered by Hoffmann and Seeger (1985a-c,
1989a-b) and later by Klann et al. (1993). These methods extended stress and strain
calculation to multiaxial loading by using Neuber’s rule or other suitable approximate
uniaxial load-notch formula in conjunction with assumptions about the multiaxial
deformation of the material at the notch root. An extension of the energy density method to
proportional lnading was suggested by Ellyin and Kunjawski (1989), and Moftakhar and
Glinka (1992), with the analysis of the latter resulting in simultaneous algebraic equations to
be solved for the determination of the notch stress and strain state. Use of the finite element
method to calculate notch strains was employed by Tipton (1985) and Fash (1985) on the
SAE notched shaft subjected to bending and torsion, although it was restricted to simple

monotonic loading paths due to the computational complexity of nonlinear finite element

analysis.

Nonproportional loading has been the most recent area to be explored. Amstutz er al. (1988)
and Hoffmann et al. (1991) presented a method to estimate notch stresses and strains for
nonproportional loading. In the method, the multiaxial loads are first separated, and notch
root strain histories are calculated for the loads independently. A compatibility iteration is
then used to increase the accuracy of the results. The calculations were compared with finite
-element analyses. More recently, Barkey ez al. (1593) have introduced a method for
estimating multiaxial notch strains in notched bars subjected to cyclic proportional and
nonproportional loading, using the concept of a structural yield surface. With Glinka’s rule
as the basis of a load-notch plastic strain curve, the calculations agreed favorably for
nonproportional tension-torsion tests of a notched steel bar. The work presented in this thesis

will be comparison of the method with continued experimental work and with finite element

analyscs.



3 THE ANALYTICAL METHOD FOR STRAIN CALCULATION

The proposed method of calculating notch strains is based on observed strain behavior of
notched bars and the extension of methods of calculating the strain state in a smooth bar
subjected to multiaxial loading. Insight into this problem can be gained by examining
surface strain states developed in smooth and notched bars of isotropic material subjected to
uniaxial tension. The concept of a yield surface is used to calculate strain states in a smooth
bar subjected to multiaxial loading, and similarly a concept of a structural yield surface will
be used-to calculate notch root strain stateé for a notched bar subjected to multiaxial loading.
The discussions of rate independent yield surface plasticity will be taken from books on

metal plasticity theory which include those of Hill (1956), Mendelson (1968), and Lubliner

(1990}, as well as cited literature.

In this chapter, smooth and notched bar behavior will be discussed, a specific yield criterion
will be chosen to represent the structural yield surface, and appropriate equations will he

presented for cases of a notched round bar subjected to tension (or bending) and torsion, and

a plate with a hole subjected to biaxial loading.
3.1 Smooth bar and notched bar behavior

For a smooth bar of isotropic material subjected to uniaxial tension, ¢, below the yield

strength of the material, the elastic strains, €, €;, and €}, can be determined from generalized

Hooke’s law

(3.1)



specialized for a traction free surface of the bar.

-

For a given state of uniaxial stress, the elastic deformation in the loading direction is relaied -
to the stress and the modulus of elasticity, E, and the elastic deformation in the directions
transverse to the loading directions are equal, and are related to the axial strain by Poisson’s

ratio, v,

However, if the applied loads are large enough such that the yield strength of the material is
exceeded, plastic flow occurs, and Hooke’s law alone no longer applies. Total strains are
then decomposed into elastic and inelastic strains. For metals, plastic deformation 1s usually

assumed to be volume conserving, which can be expressed as zero dilatation of plastic

. normal strains

e +&l+ef =0. (3.2)

In addition, for a smooth bar subjected to uniaxial tension, the plastic strains transverse to the

loading directions are one-half the rxiagnitude and of opposite sign of the strain in the loading

direction, expressed as
1 ' (3.3)
The stress and strain states of the smooth bar subjected to uniaxial stress are shown in Figure

3.1.!

The uniaxial yield strength is extended to multiaxial states of stress by the assumption of a

yield criterion, which is a function of all the stress components that, when satisfied, defines

'Figures are collected ai the end of the thesis, beginning on page 56.



the onset of plastic flow. One such yield criterion for isotropic metals is iat proposed by
Mises (1928), although others are often used. If plotted in stress space, the yield criterion
creates a surface, of which ail combinations of stress are either inside, or on the surface, as
determined by the scalar value from the yield criterion. Those states of stress inside the yield
surface are elastic states of stress, in which case the strains are related to stress by Hooke’s

law, and those that lie on the yield surface are at the onset of plastic flow.

For states of stress on the yield surface, this defined yield criterion is treated as a potential
fanction, and partial differentiation of this function determines the direction of plastic strain
increments. A formula often used to relate the stress and plastic strain increments is the

normality flow rule, which states that the plastic flow is normal to the yield surface in stress

space.

For continuing applied loads, observed material work-hardening characteristics such as the
Bauschinger effect are related to the yield surface by deforming or translating the yield
surface in stress space, or by a combination of both. The choice of hardening rule depends
on the complexity of the loading path, as well as the material hardening characteristics.
These models have met with success in calculating strains for metals subjected to a variety of
loading paths, and have been the object of much research in the last few decades (Lamba
1978, McDowell 1985a-b, 1987). Within the last several years, yield surface plasticity has
been increasingly used in industry to determine stress or strain states for use with fatigue life

prediction techniques (Chu 1991).

Analogous to the strain behavior developed during a uniaxial tension test of a smooth bar, the
strain behavior developed during a uniaxial tension test of a notched bar will motivate a
mathematical description of an assumed structural yield surface of the notched bar. During a

uniaxial tension test of a notched bar in the elastic range, the notch root elastic strains may be



related to the applied loading through the use of a nominal stress, §,, and elastic stress
concentration factors. The nominal stress, as the name implies, is a fictitious quantity, and is

obtained by dividing the applied load by an area. Any area may be used, so long as the stress

concentration factors are defined accordingly.

Because the entire notch surface strain state must be known, a transverse stress concentration
factor (K.") must be determined for the notch, as well as the usual axial stress concentration
factor (K,). The transverse stress concentration factor is a measure of the elastic notch
constraint, and is a function of the geometry of the notch. Both the axial and transverse
stress conceniration factors can be determined by careful finite element analysis or by
experimental methods, or ih some cases, from closed form calculations using the theory of
elasticity (Neuber 1946).

Substitution of the non-zero components of local notch stress in terms of the nominal stresé

and stress concentration factors into Hooke’s law for a traction free element at the notch root,

é ]' 2 e
g = E[Kz —-VK ]S, €=

Ti_-[—v(zcz’ucz)]sz 34

g = %{Kz -vKk/]S,

results.

Equation (3.4) states that for a given applied axial nominal stress in which a multiaxial stress
field develops in the notch root, elastic deformation will result in the directions transverse
and normal to the notch root, as well as in the ioading direction. However, because of the
local multiaxial stress field, the transverse strains are no longer equal, and are no longer

related to the axial strain (€;) only by Poisson’s ratio, as is the case in the smooth bar.

10



Similar behavior accurs in the plastic range. The geometry of the notch, un-yielded material
around the notch, and the local multiaxial notch stress state developed under an applied
uniaxial norminal stress constrains the plastic deformation in the notch piane. ror an isotropic
metal, volume will still be conserved during plastic flow (equaton (3.2)), so this will
necessitate a larger plastic flow normai to the notch surface than in the notch plane (ef < €f),

making the inequality

3.5
G G-)

1
2
hold in general. The stress and strain states for the notched bar are shown in Figure 3.2.

In terms of nominal siress, the notch root strains exhibit preferred directions of plastic flow,
or anisotropy, when subjected to a uniaxial nominal stress. Therefore, the notch structure
may be treated as an equivalent eiement of anisotropic material that has a yield surface that
may be described by the developed theory of plasticity of anisotropic materials. In the
following section, one particular anisotropic yield criterion will be chosen to represent the
yield surface; however, other anisotropic yield criteria may be used as well, depending on

preference. or requirements of the analysis.

3.2 Anisotropic metal plasticity

Hill’s theory of plasticity of anisotropic materials (1948, 1989) was developed to model
metals that exhibited preferred directions of plastic flow, and his main application was to
study the forming of these metals. For this application, the material response was assumed to
be of interest only for monotonic loading in the plastic range with negligible amounts of
elastic strain, which are conditions under which the Lévy-Mises equations were developed

for isotropic materials. However, in the previous section, it was demonstrated that notch root

11



strains also exhibit directional behavior due to geometric constraint. Therefore, if the nature
of the notch is treated as an intrinsic material property, Hill’s theory of anisotropic metal
pla.éticity can be used for this application as well. This section outlines Hill’s theory of
anisotropic metal plasticity and presents the theory in a suitable manner for implementation

in an incremental cyclic plasticity approach.

3.2.1 A yield criterion

A material exhibiting directionally dependent properties is considered to be anisotropic. In
Hill’s theory, these directionally dependent properties are yield strengths that vary with
direction. and hence induce preferred directions of plastic flow in the material. To determine

the onset of plastic flow for a directionally dependent material, Hill introduced a yield

criterion which is

2f(S;)=F(S, - S,V +G(S,- S,V +H(S,~ S, (3.6)

+2LS; +2MSL+2NS? =1,

where the coefficients F, G, H, L, M and N are determined from the current values of the
directional yield strengths X, ¥, Z, R, §, and T associated with the directions of the stress

components S, 3, S;, S,,, S, and S, These relations are:

11 1 I

Trtre MR
1 1 1 1

2G =?+?—"Y—2 2M =§ (3.7
11 1 1

vz Mr

12



The values of X, Y, Z. R, §. and T are all determined from the initial values of the uniaxial or

simple shear yield strengths, X,, Y, Z,, Ry, Sy, and T, and a hardening parameter.

Hill’s yield criterion for anisotropic materials is a generalization of the Mises yield criterion
for isotropic materials, and there are some restrictions to its use. During the development of
the criterion, it was assumed that the material possesses three mutually orthogonal planés of
symmetry at every point, and the yield criterion is in the present form only when the
Cartesian coordinates are along the intersection of these planes, known as the principal
directions of anisotropy. The assumption of the existence of the planes of symmetry means

that elastic coupling between the shear and normal terms is not allowed in these directions.

. 3.2.2 The normality flow rule

As in Hill’s derivation of EEévy-Mises type equations for a rigid plastic material (I1ill 1956),

the yield criterion will be treated as a plastic potential function and the normality flow rule,

O (3.8)
e =5

can be used in the principal directions of anisotropy to develop equations analogous to the
Prandtl-Reuss equations of plasticity for isotropic materials. The partial derivatives in the
flow rule must be evaluated noting that for purposes of differentiation §; # §;;, for i # j, and

are presented as follows:

13



U i ey s of _ of _

an—H(Sx 5)-G(,-S,) BSK“LS”‘ aszy‘st

af:F(S ~8)-H(S.~S.) a—szS a—f=MS (3.9)
o5, y ot xSy 35, = 35, =

O _ie _oy_ree _ of _ of _

aSz-G(SZ S)-F(S,-5,) aS‘nys,y aSyX—NSyx.

These partial derivatives, when substituted into the normality flow rule, give the six unique

components of plastic strain increment tensor:

def = dA[H (S, ~5,)~ G(S, - 5,)] de?, = dA[LS, ]
de” = dA[F (S, ~S,)~ H(S, - 5,)] def, = dA[MS,.]

(3.10)
de? =dA[G(S, - 5,)— F(S, - S,)] de?, = dA[NS,,).

Built into this theory is the assumption that volume is conserved during plastic flow, or that

equaiion (3.2) holds identically.

3.2.3 A hardening parameter

The plasticity constant dA can be obtained if an assumption about the work-hardening
behavior is made. Hill’s assumption (Hill 1956) was that if there exiéts a pronounced
preferred orientation in the material, then this orientation will remain in the same directions
and in the same relative magnitude. If this assumption holds true, X =hX,, Y =hY,,..., and
from equation (3.7), F = F/h*,G = Gy/h*, ...,where the subscript zero denotes the initial

value and ""h 18 & parameter increasing monotonmcally from unity and expressing the amount

14



of hardening.”” These equations state that as hardening proceeds, the value of & increases,
the yield strengths increase from their initial value, and the coefficients decrease from their

initial value, thereby maintaining the equality in equation (3.6).

Hill (1956) then assumed an equivalent stress, and derived an expression for an equivalent

strain, and proved a relationship between the equivalent quantities. These expressions are

summarized as follows:

L 3.11
) .
S= 5 -

(Fo+Go+Hy)

L (3.12)
h=[FyS,— 8.+ Gy(S, =5, + Hy(S, =5, + 2LyS,, + 2M, S + 2N ST

3 \ , (3.13)
& =| 2| F,+ G+ B IF Godey - Hfle; 2+G Hode, - Fodes
3) V0 TN B G+ GoHy + HoF, % FoGo+ GoHy+ HyF,

) -
F.Gy+ G,Hy + H,F, L, M, N,

Fdef —Gde? | 2de?] 2def’ 2de?’
HQ[ oWy G(Jdey J_*_ E}’z +
dh=5de’. (3.14)

The equivalent quantities can be related to the uniaxial stress-plastic strain relationship as

follows:
i : (3.15)
E—‘ 3 : FO+GO 2S
“\2 )\ Fo+Gy+H, | *

1

F G AH L (3.16)
— 2Y( Fo+Go+H, )

15



The term dA is determined for a state of applied load, S;, from equation (3.14) using S from

equation (3.11) and de’ from the equivalent stress-plastic strain curve as indicated 1n Figure
3.3. The equivalent behavior is determined, in turn, from equations (3.15) and (3.16) and the

uniaxial behavior of the anisotropic material.

3.2.4 Proportional loading

A set of closed form equations relating proportionally applied ldads to plastic strains can now
be determined without further assumptions. These equations can be developed in the same
manner as presented in Mendelson (1983) for the determination of the Hencky equations
from the fiow equations of Prandt.l-Reﬁss. I£S;=K S,-ﬁ-', where S,f,-’ is an arbitrary reference
state of nonzero stress, and X is a monotonically increasing function of time, then /& = Kh,,
and F,...=Fy/K*h,..., and it can be seen that the explicit dependence on the stress state
drops out of the stress-plastic strain increment relations. The equations can be iniegrated,
and from it can be concluded that the plastic strains are a function of only the current state of

stress and not of the loading path for proportional loading. These equations are stated in

terms of the hardening parameter A, and the initial coefficients of anisotropy:

A A

Sf =";'5{H0(Sx _Sy)+G{)(Sx_Sz)} e};'z 2FLOSYZ
A A

& = SIF(S,~S)+HYS,=S)] €=M, G1D

(3 .
P _ A P A
€, —F[Go(sz_sx)"'Fo(Sz_Sy)] €y ”PNOSX?’
where A=S¢.

16



3.2.5 Nonproportional loading

The analysis of nonproportional toading requires the nse of an incremental approach to
determine the plastic strains, as they will generally be path dependent. The Bauschinger
eftect and effects ot work-hardening under nonproportional loading must also be taken into
account by the choice of a suitable hardening rule. Derivations of the incremental
stress-incremental strain relations will be presented in this section, and a specific kinematic
work-hardening model will be chosen to complete the description of the incremental

plasticity model.

Plastic straipn increment relations

For a given uniaxial material response of stress versus plastic strain, an instantaneous plastic
modulus, E,, can be found (Figure 3.4). It is necessary to relate the plastic modulus to the

slope of the equivalent stress-equivalent plastic strain curve, Ep, shown in Figure 3.3,

For the equivalent stress-strain curve,

(3.18)

-
3
1l
(=
1=t

From Hill's equations (3.15-3.16) reduced for uniaxial stress, S,, the equivalent plastic

modulus becomes:

7 3 _FotGo oS, (3.19)
P2\ Fo+ Gy+Hy Jde?”

17



The ratio dS./def is the plastic modulus of the uniaxial curve, E,,which when substituted into

equation (3.19) yields:

— 3{ F,+G, (3.20)
E, =2 ——"— |E
P\ Fo+Go+H, | P

The equivalen: plastic modulus will be used to determine the plasticity constant dA.

Re-arranging equation (3.18) and substituting into equation (3.14), yields

d (3.21)
E,

Ln|

di=

The expression for the numerator of equation (3.21) can be obtained from

_ — 3.22
SdSzd(lS'Jml o [3 ! hz}d&d. G2

27 )7 208,| 2(Fy+G,+Hy)

One-half the derivative of the square of the hardening parameter with respect to the stresses
is
1 9

553.‘; (hHdS, = Fy(S, = S48, — Fy(S, =SS, + G(S, - §,)dS,

—Gy(S, ~ S S, + Hy(S, ~ S,)dS, — Hy(S, ~ §,)dS, (3.23)

+L,S dS ; + Lo, 05, + MS..4S,, + N,S, S, +N,S,.dS .
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thereby making the expression for the proportionality constant,

1 (3.24)
(h "")dSk,:l =

P

" 3 1 {18

T 2F,+ Gyt Hy| 20y

for a given state of stress, §;, where the term in brackets is given by equation (3.23).

Finally, stating the plastic strain increments in terms of the initial coefficients of anisotropy

and the hardening parameter, the following resuits:

d dA

def = % [Ho(S; = 5,)+ Go(S, ~ 5] del, =— LyS,,
dr dA

def = [Fy(S, =)+ HyfS, = 5] aef, =2 M5, - (3.25)
dh di

def =3 (GylS. = 5+ Fo8, = 5,)] def, =3 NoS,.

The kinematic work-hardening model of Mréz

The work-hardening mo_dei of Mréz (1967) was developed to describe deformation induced
anisotropy for complex nonproportional loading paths. Several variations now exist (Krieg
1975 and Chu 1987, 1992), but the basic concept of all the models is that there exists a *“‘field
of work-hardening moduli’ that influence the work-hardening of the material. The model
that will be described here is the simplest of the models, and assumes that the field of moduli
can be described by the same functional relationship as the yieid criterion. The surfaces will

be allowed to translate in stress space, but will not be allowed to rotate, expand, or contract.
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The hardening ruie as first implemented by Mréz used a numbcr of discrete yield surfaces
representing the field of constant work-hardening moduli in stress space. Following that
model, the model used here will model the anisotropy of deformation by the movement of
geometrically similar and initially concentric surfaces in stress space. The initial surface in
the stress space is the initia! yield surface, and further surfaces are activated at higher values
of equivalent suess. The surfaces move in such a manner that the currently active surface (f)
translates in stress space along a path parallel to a line joining the active surface normal (n,)
at the stress point and a point located on the next surface (f},;) with the same normal (n,.,),

as illustrated in Figure 3.5.

The point on the next surface may be found by using the homogeneity of the yield function.

" Denoting the currently active surface by / and the next active surface by /+1, the expression

for the point on the next surface is

g(m) (3.26)

@+ _ 0+ O _ 0
Sif au E(I) S )))

where o; represents the center of each yield surface, and is often called the back stress

tensor.

The increment of translation of the currently active surface is given by

dag)mgl(‘;[(ﬁ“l) EU))S'(” ( E}‘Eﬂ.‘*”-ag*”i‘;’)], (3.27)
Sa

where the quantity dy is given by:
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3 .
s, (3.28)

di=————
(5670 - 50,
o

and is found by invoking the consistency condition, or the need for the current state of stress

(at the onset of plastic flow) to be located on the active yield surface.

Because the yield surfaces are allowed to translate in stress space, the expressions for the
yield criterion and strain increment will now be expressed in terms of the difference of the
stress state, §;;, and the center of the active yield surface, afj, and will be denoted by &f-j, where
. =S, —of. This expression can be directly substituted into the yield criterion and
stress-strain increment relations as the back stress tensor is not a function of stress and so

does not affect the differentiation involved in determining the stress-strain increment

relations.

3.3 Specialization for a notched round bar

This secidon outlines the application of Hill’s plasticity theory 1o a notched bar. The notched
bar will be treated as an anisotropic material subjected to the nominal stresses of the bar,
calculated elastically based on the net section. The yield criterion and equations for strain
increments will be expressed in terms of the variable &), where & =S, ~o; and the
superscript [ denotes the active yield surface. In the remainder of this chapter the equations

will be stated in terms of the active yield surface, and so the superscript ! will be omitted.

3.3.1 Elastic notch behavior

For states of noich stress for which the notch materiat is still in the elastic range, the saains

can be determined by using generalized Hooke’s law and by considering the multiaxial stress
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state at the notch root. As mentioned in Section 3.1, thése strains can be expressed in terms
of the axial nominal stress and axial and transverse stress concentration factors (K, and K,’,
respectively) and also the torsional nominal stress and shear stress concentration factor (K_).

The equations stated in terms of stress and strain increments are

e 1 ’ £ 1 ’ (3'29)
de; =K, - VK ]dS, de, =7 [V(K, + KIS,
e 1 . 1+v
de! == [K, - VK, 1dS, e, =—— K8,
and 1n terms Of total stresses and strains are
2 1 ’ 2 ]- r (330)
E= E [Kz - sz}&z . 8), = E [—V(KZ + Kz)}&-z
¢ 1 . 1+v
&=z [K.- VK, I, &="F K. L.

3.3.2 The yield criterion

Simplification of Hill’s yield criterion is possible if a traction free notch root element on the
surface of the shaft is considered. Further reduction is possible if the shaft is restricted to
only torsion and tension (or bending) nominal loading. In these instances, the yield criterion

becomes

2f(E,)=(F + G +2MEL. (3.31)

The hardening parameter also reduces, to

, d (3.32)
h={(Fy+G& +2ME.T.
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An assumption'made about the hardening rule was that vield strengths remained in the same
proportion, or equivalently, that the coefficients of anisotropy remain in proportion. The
general applicability of this assumption will be discussed after the coefficients of anisotropy

have been determined in terms of the stress concentration factors of the notched bar.

3.3.3 Uniaxial notch behavior

The equivalent stress-plastic strain curve required to determine the behavior of the material
will be based on a uniaxial nominal stress-notch plastic strain curve. The uniaxial notch
curve can be determined from experiment, finite element analysis, or from one of the uniaxial
notch strain approximation formulas, such as the theories of Neuber (1961}, or Glinka
(1983), with suitabie corrections for nowch constraint as suggested by Dowling (1977), and

corrections for net section plasticity, suggested by Seeger (1980).

Care should be taken to separate the plastic part and the recoverable part of the total notch
strain, because the plastic coupling term, dA, is highly influenced by the compliance of the

nominal stress-notch root plastic strain response.

3.3.4 Determination of coefficients of anisotropy

The coefficients of anisotropy can be determined from the hominal yield strengths of the
shaft, which can in turn be found from the stress concentration factors of the notch and the
yield strength of the material, and additional knowledge or assumptions about the plastic
constraint of the notch. The initial nominal yield strengths will be taken as the load that
causes yield at the notch root. If the Mises yield criterion (1928) is assumed to hold at the
notch root, then the axial nominal yield strength, Z,,, and the torsional nominal yield strength,

So, become
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i o (3.33)
K2 -KEK/+K

Z,

g,

) (3.34)
3K,

So=

Any definition of nominal yield strength and a consistent definition of the stress
concentration factors ensure that the yield criterion and hardening parameter are independent

of the definition of the nominal area, as the product K.S; appears in these formulas from the

product of the coefficient of anisotropy and the stress term.

The nominal yield strengths transverse to the loading direction and normal to the surface of
the notch can be adjusted to give the proper amount of plastic constraint in the respective
directions as determined by a uniaxial analysis. For example, a smooth bar in tension will
have equal amounts of plastic flow in the normal and transverse directions. In this case, the
nominal yield strengths in these directions will both be equal to the base yield strength of the
material, For bars with mild notches in uniaxial teﬁsion, this will be approximately the case.
In sharp or deep notches, plastic flow is almost entirely constrained to flow in the normal
direction of the surface of the notch, and in axial direction. For this case, the coefficient of

anisoropy G, can be set equal 10 zero, and the proper yield suengths can be determined.

The validity of the assumption that the coefficients of anisotropy remain in the same
proportion as determined by the scalar hardening, s, may now be discussed. The coefficients

of anisotropy F, G, and M in equation (3.31) can be written in terms of the nominal yield
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strengths, which can in turn be written in terms of the stress concentration factors of the
notch through the use of equations (3.33-34). Doing so, and representing the denominator of

equation (3.33) by K,

K., 3K,

(3.35)
2AE) =2+ 5 ,

becomes the expression for the yield criterion.

If o, represents the current value of the local equivalent notch stress, then it is readily

apparent that the assumption that the coefficients of anisotrdpy remain in the same proportion
_ is equivalent to the assumption that the current values of stress concentration remain in the
same proportion. This assumption should hold approximately true until the notch is grossly

-distorted and the bar approaches general net section plasticity.

In addition to this, it is seen that as hardening proceeds the coefiicients of anisotropy must
decrease. Because the local notch root equivalent stress, 6,, increases, the resuit is that the
stress concentration factors decrease with increasing applied load, which is a commonly

observed phenomenon of notch root deformation.

3.3.5 Nominal stress-notch strain relations

Reduced equations for notched shafts are presented in this section for a traction free notch
root surface element for proportional and nonproportional loading. Total strains will be

expresscd as the sum of the elastic and plastic strains as
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6 = Fi:[K; —VKJE, +A-GE ]
g, =%[-v(K;+KZ)]gZ+A[-F§z] (3.36)
g, = ~E1- [K. - VKI5, +Al(G+F)E ]

1+v

£, = R K&, +AME,

for the case of proportional loading, or strain increments as

de, = %[K:’ ~VK,1dS, + dA[-GE]
de, =%[—V(KZ'+K2)]dSZ +dM[-FE] (3.37)

de, = —;—2— [K,— VK. 1dS, +dA[(G + F)E,]

=1+v

deg =~ KodS, + dAME,

for nonproportional loading.

3.3.6 Determination of notch stresses

Once the strain state at the notch has been determined, the notch stresses can be found by
using the calculated strains and the theory of plasticity of isotropic materials. Such
procedures have been described by Bannantine (1989), for example. Because of the notch

constraint, however, the entire strain state must be used to determine the stresses.
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3.4 Specialization for a plate with a hole

In this section, the method presented for determining strains at the stress concentrator will be
specialized for a plate with a hole. The goal of the simplified analysis is to calculate the
strain state at the hole when the plate is subjected to time varying loads, including
out-of-phase edge loading, from a minimum amount of input data. The available input data
will be restricted to the elastic stress concentration factors and an elastic-plastic analysis to
determine the load-notch plastic strain curve. In addition to this data, the boundary
conditions at the hole must be explicitly stated and the nature of the local elastic stress state
must be determined. Finally, a relationship that relates the applied remote loading to this

stress state must be determined,

3.4.1 Hole boundary conditions

The inside edge of the hole and the top and bottom surface of the plate are traction free
surfaces. Therefore, the only nonzero stress that is allowed on a small element at the inside
edge of the hole is in the hoop direction, meaning that every point on the inside edge of the
hole is subjected to uniaxial tension, for any combination of remote plate edge loads. The

local stress state is illustrated in Figure 3.6.

This uniaxial stress state at the hole will be expected to produce a simple Poisson contraction
in the radial direction when the local stress is still in the elastic range, and volume conserving
plastic flow in the plastic range, with the radial and normal plastic strains equal to one-half
the value and of opposite sign of the hoop strain. Because there are no preferred directions of
plastic flow at the hole for this geometry, an isotropic yield criterion, such as the Mises yield
criterion, may be used to form the basis of a constitutive model for the plate with a through

hole. As discussed previously, the Hill yield criterion reduces to the Mises yield criterion for
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special choices of the coefficients of anisotropy, and will be used here as well. For thick
plates with a hole, plastic flow in the radial or through thickness directions may vary
appreciably along the thickness of the plate, and an analysis similar to that presented in

Section 3.3 using an anisotropic yield criterion may be used to determine the local strains.

3.4.2 Nominal stress-equivalent stress relationship

A relationship must be presented that relates the remote loading to the local stress state. The
new equivalent, or nominal stress will be a fictitious siress that is caiculated by the remote,
elastically calculated edge stresses (S, and S,) and the consistently defined stress
concentration factors of the hole (K, and K,). The form of this stress will be the same as that

presented by Hoffmann er al. (1991) for an analysis of the same problem, and takes the form
of

Soom=K,S, +K.S, (3.38)

for the position along the x-axis at the edge of the hole.

The value of K, is the elastic stress concentration of a load applied in the y-direction, and X,

is the elastic stress concentration at the same point for a load applied in the x-direction. This

stress term is then used to construct a uniaxial nominat stress-notch plastic strain curve,

3.4.3 Determination of notch stresses

Because the material at the notch root is not constrained for this notch, the tocal stress may

determined from the previously calculated notch strain in a straight forward manner by

comparison with the uniaxial smooth specimen stress-strain curve of the material.
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4 RESULTS OF HOFFMANN AND SEEGER

Hoffmann and Seeger (1989) presented a method for estimating the notch root stress and
strain state for a notched round bar subjected to proportional nominal loading. The primary
assumption in this work was that the ratio of the principal notch strains were constant and
equal to the elastic strain ratio. However, they also recognized that this cannot be true for all
notches, as can be demonstrated by the results of a uniaxial tension test of a smooth bar,

effectively a very mild notch.

Recalling the discussion of the uniaxial tension test in Section 3.1, the ratio of the principal
strains of a smooth bar in uniaxial tension in the elastic range is the negative of Poisson’s
ratio. In the plastic range, this value approaches —1/2, when plastic strains dominate. A
smooth transition occurs between these limits, the rate of transition depending on the

compliance of the material’s uniaxial stress-strain curve.

For notched bars in uniaxial tension, the same phenomenon occurs. The elastic ratio is the
elastic notch constraint and the plastic limit is the amount of plastic notch constraint. For
sharp or highly constrained notches, there may be little difference between the two limiting

values. Thus, in these cases the principal strains stay approximately constant.

The method developed in Chapter 3 can capture the behaviors of smooth bars to highly
constrained notches quite readily by the proper selection of coefficients of anisotropy. A
method of determining the notch behavior for a known variation of principal strains under
proportional loading was also presented by Hoffmann and Seeger (1985¢). So, the method
developed here for proportional loading is equivalent to that of Hoffmann and Seeger, given

the same load-notch strain approximation rule and elastic and plastic notch constraint.
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Insight into the presented method for notch strain calculation and Hoffmann and Seeger’s
method can be obtained by examining the calculated principal strain behavior. An
expression for the principal strains can be determined from the closed form equations

presented for the case proportional nominal tension and torsion, and is

_Sfa-v A ST A+w) B Forasw. a7 @D
81_2—‘2—[ . (Kz+Kz')+E;Fo]i’\/-4~[ . (Kz—K:)+h2<Fv+2Go)} +sz[ n Kz+h2M0].

In the elastic range, the terms containing A do not apply, and the ratio of the strains is

constant. In the elastic-plastic range, the ratio will begin to deviate from this value at a rate

dependent on the term A. This term depends on the relative compliance of the of the

equivalent nominal stress-notch plastic strain curve.

Experiments were conducted by Hoffmann ez al. (1985a) on three types of notched steel bars.
The bars contained either a mild surface notch, sharp surface nbtch, or a sharp deep notch, all
of which are illustrated in Figure 4.1, taken from the report Kerbbeanspruchungen 1
(Hoffmann et al. 1985a). The elastic stress concentration factors for each notch are listed in
Table 4.1. Pure bending and proportional bending and torsion were among the loading cases
tested. Figures 4.2-4 4 contain the results of the experiments and calculations for simple
bending and proportional bending and torsion for the three notch types. In these figures,
solid lines represent finite element calculations, dashed lines represent their approximation

method (Ndherungsidsung), and the symbols represent the experimental results (Versuche).

The strain ratio plots of the simple bending experiments in Figures 4.2b-4.4b illustrate the
effect of notch severity on the constraint of plastic flow. The principal strain ratio on the
surface of the shaft (g,/e,) begins at the value determined by the elastic stress concentration

factors of the notch, and approaches the limiting value of the ratio of the plastic strains. For
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the mild notch, this limiting plastic value is around —0.3, while it is almost zero for the sharp
notches. Similarly, the strain ratio plots of the experimental results (indicated by symbols)
for the combined loading cases in Figures 4.2¢-4.4¢ show that there is variation in the strain

ratio for the mild notch, but very little variation in the strain ratio for the sharp notches, up to

about 1% principal strain.

The experimental data obtained from the simple bending analyses were used with the newly
developed equations for proportional loading to compare with the experimental results of the
combined loading cases. The nominal stress-notch plastic strain curve was approximated
from the experimental simple bending results (Figures 4.2b-4.4b), the elastic stress
concentration factors were used to determine the amount of elastic constraint, and the strain

" ratio at large values of plastic strain from the simple bending experimental results were used

to determine the amount of plastic notch constraint. The elastic and plastic notch constraint

determine the coefficients of anisotropy.

The results of the calculations using the newly developed method for the combined loading
cases for each notch type are presented in Figure 4.5. The piece wise nature of the calculated
results is due to the crude approximation of the nominal stress-notch plastic strain response
from the simple bending experiments. The calculations of the strain ratio £,/¢, (indicated by
the solid line) for the mild notch (Figure 4.5a) bends slightly and the sharp notches (Figure
4.5b-¢) shows very little deviation from the elastic constraint ratic. This is because of the
amount of plastic notch constraint determined from the simple bending anatyses. The
essential character of the experimental results are captured well by newly developed
equations for these notches, up to at least 1% strain, where the net section is approaching
general yield (indicated by S, in Figures 4.2¢-4.4¢). The experimental results beyond this
strain level indicate that the strain ratio varies even for the sharp notches, but the significance

of that variation may be lost in a strain-based fatigue life prediction at such high strain levels.
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5 SAE NOTCHED SHAFT

Fash (1985) used an elastic-plastic finite element analysis to determine multiaxial notch
strains of the proportionally loaded notched steel bar used in the SAE multiaxial test program
(Downing and Galliart 1985). Total strains were reported for the notch root of the shatt
subjected to monotonically applied proportional bending and torsion. This chapter describes

the implementation of the proposed method of calculating notch strains to this notched shaft,

and compares the results with Fash'’s finite element analysis.

5.1 Determination of notch properties

Elastic stress concentration factors were determined from Fash’s elastic simple bending and
torsion analyses. The specimen geometry and Fash’s finite element mesh are in Figure 5.1
(taken from Fash’s thesis). The axial stress concentration factor (K,), transverse stress
concentration factor (K,"), and shear stress concentration factor (K ) were found using Fash’s

results and equation (3.30), and are

K, =163
K, =030 6.1
K, =139,

The initial nominal yield strengths in the axial direction (Z,} and the torsional nominal yield
strength (S,}, were found from equations (3.33) and (3.34) respectively. The initial
coefficients of anisotropy were then determined from equation (3.7), and the observation that
the ratio of the plastic strains in the transverse and normal directions (€7:¢f) from the
elastic-plastic simple bending analysis was approximately 0.42:1.‘ The nominal stress-notch

plastic strain curve was determined from a curve fit of the axial nominal stress-axial plastic
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strain resuits from the same finite element analysis. The curve fit and the assumption of the
plastic constraint are illustrated in Figure 5.2a. These were the only data used to determine

the coetficients of anisotropy.

5.2 Comparison of results

Figures 5.2a-h are the results of the calculations. The graphs are of strain componesnts versus

Mises equivalent nominal stress

12 2
§,=(S:+3S2) 3.2

3

where S, and S, are the nominal axial and nominal shear stresses, respectively.

The strain components for this shaft are defined in Figure 5.1b, and are g, €,, €,,, and ¥, for

the transverse, normal, axial, and shear directions, respectively. The solid circles represent
the finite element results of Fash, and the lines are calculations made using the equations
developed for proportional loading. The dotted line in each figure represents the level of

load above which Fash conducted clastic-plastic finitc clcment anatyses (E-P FEA).

The close match to the finite element results in Figure 5 2a is expected, since this data was fit
to determine the nominal stress-notch plastic strain curve, and the amount of plastic
constraint. The results for the multiaxial nominal loading cases are in very good agreement

both qualitatively and numerically for all of the cases examined.

The plastic constraint assumption used here is different than that presented previously
(Barkey er al. 1993), in which the ratio of the plastic strains in the transverse and normal
directions were assumed to be 1:1. Because the notch is mild, either assumption yields

reasonable results, although the current assumption matches the finite element results more
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closely for the strains in the transverse and normal directions.
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6 THE FULLY NOTCHED ROUND SHAFT

In this chapter, experimental resultg of a proportionally and nonproportionally loaded
notched shaft are compared with calculations using nonlinear finite element analysis and the
proposed simplified method for calculation of notch strains. Calculations using the finite
element method and the approximate method are also compared for loading paths that were
not examined by experiment, and for material properties less compliant and more compliant

than uscd in the cxperiments.

6.1 Experimental setup

A solid 1070 steel shaft with a circumferential notch was selected for testing. The net section
was 25.4 mm in diameter and the notch radius was 12.7 mm. The specimen geometry and
dimensions are shown in Figure 6.1. This is a relatively mild notch that has stress

concentration factors that would be typical of notched components such as those found in

many ground vehicle applications.

The smooth specimen uniaxial material properties were determined by data provided by
Jiang (1992), and are listed in Table 6.1. To determine the uniaxial material properties, Jiang
used a multiple step test on a single specimen, loaded in strain control. The hysteresis loops
obtained from these tests are plotted in Figure 6.2. The Ramberg-Osgood {1943) power law
plasticity parameters for the formulation of the cyclic stress-strain curve were determined by
subtracting the elastic strains from the total strains, and the subseguent hysteresis ioops of
plastic strain range versus stress range were analyzed by the method suggested by Morrow
(1965). The fit of the data resulted in a cyclic hardening exponent, n’, equal to 0.199, and a
cyclic strength coefficient, &', equal to 1736 MPa. The cyclic stress-strain curve is indicated

by the solid line connecting the tips of the hysteresis loops in Figure 6.2.
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Notched specimens of 1070 steel were machined to the proper geometry, then heat treated to

give uniform material properties. The heat treatment was to the specifications of the material

used in the uniaxial smooth bar test of Jiang.

Because the complete state of surface strain was to be measured for the tests, a three element
strain gage rosette wfm used. Micro-Measurements gages EA-06-031RB-120 were adhered
to the notch root using AE-10 strain gage cement. The meaning of the strain gage
designation is explained in Table 6.2. The placement of the rectangular rosette was such that
the middle gage of the rosette was aligned approximately in the axial direction, with the other

two gages 45 degrees on either side of the axial gage.

The tests were conducted in load control using Instron and MTS tension-torsion biaxial test
frames controlied by Instron 8500 test controllers connecied to a control and data acquisition
computer that digitally stored the loads, gage strains, and actuator travel. After datﬁ
collection, the rosette strain gage data was corrected for rosette misalignment, and

transformed to specimen coordinates aligned in the axial direction of the shaft.

6.2 Finite element analysis

A converged finite element mesh of the notched shaft was constructed by Volker B. Kéttgen
{(Kottgen 1992, Kottgen and Seeger 1993a). A three-dimensional siice of the shaft was

- modelied with boundafy conditions of the faces of the slice being constrained to move the
same in the radial and hoop directions. A full view and a detailed view of one of the models
used in the analysis is shown in Figure 6.3. An ABAQUS USER MATERIAL
implementation of the Mrdz work-hardening plasticity model (Kottgen et al. 1992a-b) was
used for the analyses of the nonproportional loading paths, and unless otherwise noted, all

finite element calculations using the 1070 steel material properites and this notched shaft
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were done by Volker B. Kisttgen et al. {1993a) at the Technical University of Darmstadt’,
and finite element calculcations using other material properties were conducted at the

University of Ilinois using the fimte element mesh provided by Kottgen.

6.3 Approximate method

‘The coefficients of anisotropy were deiermined using equations 3.33-3.34 from the elastic
stress concentration factors obtained from tests of the specimens conducted in the elastic
range of the material. Notched specimen uniaxial cyclic tests were conducted to determine
the elastic-plastic uniaxial behavior of the specimen. These tests were conducted on one
specimen in load control at several increasing values of load. As in the case of the smooth
bar, a cyclic stress-strain curve was determined for the notched bar. The hysteresis loops
obtained for the notched bar are shown in Figure 6.4, and the cyclic nominal stress-strain
curve is indicated by the solid line connecting the tips of the hysteresis loops. The cyclic
hardening exponent for the notched bar was found to be 0.201, and the strength coefficient

was determined to be 1832 MPa.

6.4 Compérison of results

In this section, experimentai results, and finite element and simplified calculations are
presented and compared with each other for various tension-torsion loading paths. A
convenient graphical means to display the loading paths is to plot axial nominal SIress Versus
shear nominal stress. Similarly, the results of experiments and calculations will be presented

as plots of notch root axial strain (g,) versus notch root engineering shear strain (y,,).

A note from Kottgen concerning the disretization of the uniaxial siress-siain curve used in
the finite element analysis appears in the Appendix.
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Because most of the calculations and experiments were conducted for many cycles, plotting
the strain results for all of the methods on one piot would cause a lack of distiction between
the methods, and would obscure some overall features of the notch strain behavior.
Therefore, the resuits of the experiments, simplified calculations, and finite element

calculations will be presented in separate, but identically scaled plots.

6.4.1 Experimental, FEA, and approximate method

In Figures 6.5-6.28, the loading path, experimental strain response, the results of the
simplified model, and finite element results are presenied for the various loading paths
examined by the experiments. The values of load used in the finite element and simplified
calculations were slightly different than actually applied to the specimen; the sharp corners of
the intended loading path were not always obtained in the experiments. All calculations,
however, were made using the idealized loading path. The slightly rounded corners of the
experimental loading path are reflected in the strain response as rounded corners in the plots
of axial strain versus shear strain. Although noticeable at low Ievels of load, the difference in

loading paths has little effect at the higher values of load.

For each load level, multiple cycles of the calculated strain response are plotted. However,
due to data acquisition problems during the testing of specimen A, only the first two cycles
of experimentally measured strains are plotted. For most of the loading cases, the specimen
was cycled at the load level before data was collected, but not to one-hundred cycles.
However, further testing on different specimens after the problem was corrected has shown
there to be little difference in the strain response between that presented for specimen A and
the strain response at one-hundred cycles measured on the other specimens for the same

loading paths.
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Specimen A

Initial testing began with a series of box-shaped loading paths in nominal tension-torsion
stress space. For this loading path, the elastic plastic response of the simplified model is
expected to predict regions of elastic unloading at each corner point of the loading path,
followed by elastic-plastic loading to the next corner. In the elastic unloading portions of the
path, the model predicts the axial-shear strain response to be uncoupled, and in the
elastic-plastic portions of the path the shear and axial strains will be coupled by the term dA
in the plastic strain equations. Therefore, the box shaped loading path provides a critcal test
of the proposed method for notch strain calculation. By plotting the axial sirain against the

shear strain, these regions of coupled and uncoupled strain are easily seen.

Initially, when the loads are low, the notch root material is still in the elastic range. The axial
and shear strain are uncoupled, and the stain respouse to the loading path is simply a
box-shaped strain path with the sides parallel to the shear and axial strain axes of the plot.
This is observed in Figures 6.5-6.6 in the measured and calculated strain responses. As the
loads are increased further, the notch réot material enters the plastic range and the axial and
shear strains become coupled. The coupling is seen as segments of non-axis parallel portions
of the strain response, with both the axial and shear strain increasing as the corners of the

loading path are reached. This is most noticeable in Figures 6.9-6.11.

Both the finite element model and the simplified model capture these features of the strain

response, and agree well numerically to the measured strains.
Specimen B

This specimen was used 0 delerine the nominal stress-notch strain curves presented in

Figure 6.4. In addition to the uniaxial cyclic tests, this specimen was tested for some other

39



nonproportional and proportionat loading paths. Several nonproportional paths during

which the ratio of the frequency of the applied loads were unequal were conducted, and these
loading paths, experimental resulis, and results of the simpliﬁed caiculations are presented in
Figures 6.12-6.23. Nonproportional loading due w the application of unequal frequencics of

applied load is a common loading of machine components.

For example, Figure 6.12 is from a test in which five cycles of torsional load occurred in the
same period of time as one cycle of axial load. Other tests were conducted at unequal
frequencies of applied torsional load to tensile load in the ratio of 3:1, 2:1, 1:2, 1:3, and 1:5,
and at loading levels corresponding to the two most severe box-shaped loading paths. The
data acquisition frequency was sub-optimal for some of the experimental results, and can be

noticed as the clipped appearance of peaks in the plots of the experimental data.

The calculations using the simplified method agree weil with experimental results in the
qualitative shape and numerical values of the strains for the stabalized paths, and in the case
of the loading path shown in Figure 6.23, even for some transient material behavior as
indicated by the initial loading response of the material and simplified model in Figures 23b

and 23c, repsectively.

The last two box-shaped loading paths of specimen A were repeaied, and the experimental
results of 100 cycles of applied load are presented in Figures 6.24b and 6.25b. The finite

element and simplified calculations for several cycles at these loading levels are repeated for

convenience.

A proportional tension-torsion test was conducted on this specimen, as well. The
experimental strain response is presented in Figure 6.26b. The most noticcable feature of the

strain response is that a thin loop is formed in the plot of axial strain versus shear strain. The
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loop indicates that the ratio of axial strain to shear strain does not remain exactly constant,
and this behavior is modelled well by the results of the finite element analysis for this loading

patl, Figure 0.20d.

The result of the simplified calculation, however, is a line, and not a loop in the strain plot of
Figure 6.26¢. The reason for this is the assumptions of the model regarding the relationship
of the plastic and elastic ratio of the components of axial and shear strain. For the plastic
component of the total strains, the ratio of the axial and shear strains is assumed to be
constant by the model (by the plasticity constant, dA), and the ratio of the elastic component
of the total axial strain to shear strain is also assumed to be constant, as discussed in Section

3.3.4. Thus, the result of the simpXfied model for this loading path is not unexpected.

And finally, a box-shaped loading path with the opposite direction of travel as the loading
path of Figure 6.25 was conducted on this specimen, and is plotied in Figure 6.27. The strain
rangé and qualitative behavior of the stabalized experimental results of this loading path are
identical to that of Figure 6.25, with only difference in appearance being caused by the
direction of travel around the loading path. This qualitative behavior is well-captured and

expected from the simplified yield surface model.
Specimen C

This specimen was tested at low levels of load to determine another set of elastic stress
concentration factors, the results of which are presented in Tabie 6.3, along with the
converged finite element results. In addition, the same elastic-plastic proportional loading
test that was presented for specimen B was conducted. The results for this test and the
comparison with the finite element and simplified calculation are presented in Figure 6.28.

Note that the plot of the initial cycles of the strain response of this previously un-yielded
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specimen shows that the axial and shear strains are constant, as there is no loop formed
initially in the Figure 6.28h. Only after several cycles does a thin loop form, and the plot

becomes similar to that of specimen B in Figure 6.26b.

6.4.2 Approximate method and additional FE analyses

' The notch strain response for several loading paths other than those that were used in the
experiments were calculaied using the finite element method (Kotgen 1992) and the
approximate method. These analyses focus on the effect of different starting pathé on the
strain response for zero mean nominal loading paths, and cycling about a non-zero mean
load. The cases involving a non-zero mean load induce ratcheting behavior in the strain
response, and point out a limitation of the using the Mr6z work-hardening model for the
simplified calculation of notch strains. All calculations used the 1070 steel maserial

properties.

Figures 6.29 through 6.40 show the results of the methods for various box-shaped paths with
zero mean nominal load. In all of the cases, the shape and numerical values using the two

methods agree very well.

Figures 6.41 through 6.54 show the results of the methods for various loading paths with
nonzero mean loads. The loading paths cause ratcheting, or inc:rea.sing7 of strains in the two
models even though the nominal loading path stays at the same level of mean load.
However, the degree of ratcheting is much greater in the simﬁliﬁed model than the finite
element model. This is because the strains behavior at the notch root is constrained by the

surrounding elastic material.

In the raicheting cases the strains calculated by the finite element method tend toward a

limiting value because of the constraint. This is well illustrated in Figures 6.47-6.54. As the
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simplified model does not take the entire component into account, it does not exhibit this
behavior and the strains increase by the same amount for each loading cycle. The finite
element calculations are expected to be much closer to the behavior of shaft for these types of
loading paths. Although the strains calculated by the simplified method are much higher

than the finite element calculations, the qualitative shape of the path and general trends agree..

The constant ratchetting rate of the Mréz model is an expected feature of the model for these
types of loading paths (Kéttgen and Seéger 1993b), and should not be considered a limitation .
of the concept presented in Chapter 3. As other deformation models are developed to better
describe material ratcheting behavior, they may be substituted for the Mréz model in the

particular implementation used in this thesis.

6.4.3 Changé of material properties

In this section, the strain response of the shaft will be presented for different compliances of
the uniaxial stress-strain curve input into the finite element model. For each different
material model, the shaft was subjected to a box-shaped nominal loading path (Figure 6.55)
of sufficient magnitude as to induce a significant amount of plastic flow at the notch root.

. The simplified method of determining the notch strains was also used to calcutlate the notch
strain response, using an equivalent nominal stress-notch plastic strain curve obtained from

an elastic-plastic tensile finite element analysis of the notched shaft for each different set of

material properties.

A total of seven sets of uniaxial stress strain curves were analyzed ranging from
elastic-perfectly plastic to nearly completely elastic, shown in Figure 6.56. For each curve,
the yield strength was taken to be 250 MPa. The jump in the smooth specimen stress-strain

curves at this value is due to the abrupt change from the elastic stress strain curve to the
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elastic-plastic stress-strain curve. The elastic properties were taken to be the same as those of
the 1070 steel. The elastic-plastic 1074 steel response is represented as material four in the

figure, and the material properties used to generate the curves are listed in Table 6.4.

The structural nominal stress-notch strain curve was determined for each material description
by a uniaxial finite element analysis with the converged finite element mesh. for the notched
round shaft provided by Kéttgen (1992, 1993a). This information, and the elastic stress
concentration factors were used to determine the coeficients of anisotropy. These results are
compared with calculations using the finite element method and an implementation of the
Mroz kinematic work-hardening model as a USER MATERIAL model in the finite element

program ABAQUS (Kottgen ez al. 1991a-b).

The strain response and the applied loads subiected to éach material are given in the caption
of Figure 6.57. The calculations for material 4 (the 1070 steel) have been presented in

Section 6.4.1, and are not repeated here. Results for material 8 (completely elastic) are not

included either.

It is worth noting that for the elastic-perfectly plastic material (material 1), the nominal
stress-notch sirain curve has stiffness associated with it, until the the shaft is loaded to its
plastic limit load. For this reason, a stress-space formulation of the yield surface is possible

for all materials and geometries, except for the limiting case of a smooth bar of

elastic-perfectly plastic material.

For the geometry, loading paths, and materials chosen, the qualitative shape of the finite
element and simplified calculations was very similar for all materials and close in values of
calculated strains as well, with the best numerical agreement occurring for the relatively less

compliant sets of material properties for this particuiar shaft.



7 A PLATE WITH A CIRCULAR HOLE

In this chaptef, the method of the simplified analysis is compared with finite element results

for a thin plate with a circular hole.

7.1 Plate geometry

A thin square plate with a width of six times the hole diameter was modelled for the analysis.
The hole-to-width ratio was chosen because experimental elastic stress concentration data
were available for the similar geometry used by Griffith (1948). A square plate was chosen
to simplify the determination of stress concentration factors. The definition of nominal stress

is based on the net section (plate width minus the hole diameter). The plate geometry and

nominal loading is shown in Figure 7.1.

7.2 Finite element analysis

A one-quarter symmetric section of the plate was modelled by finite element analysis. The
discretization of the plate is shown in Figure 7.2. The mesh was composed of 8-noded
reduced integration quadrilateral plane stress elements, and the finite element program
ABAQUS with a USER MATERIAL implementation of the Mr6z kinematic work-hardening
model {(K&tteen 1991a-b) was used for the analyses. The mesh was subdivided to check for
convergence of the elastic solution with and without reduced integration elements, with no

appreciable change in stresses or strains.

The following dimcnsions were used for the analysis: plate width, w = 300 mm, plate
thickness, ¢ = 2 mm, hole diameter, 4 = 50 mm. Elastic and elastic-plastic material properties

were taken as 1070 steel, used in the analysis of the notched shaft in Chapter 6.
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A single elastic anatysis of the mesh shown in Figure 7.2 was conducted to determine the
elastic stress concentration factors of the plate. A unit nominal tensile load was applied in

the y-direction. A detailed view of the notch with nodal numbering is shown in Figure 7.3.

The analysis resulted in an elastic stress concentration factor of 2.65 at node 127, and —0.94

at node 193. Griffith’s measurements resulted in an elastic stress concentration factor of 2.57
in the position corresponding to node 127 of the finite element mesh. The slight difference in
the measured and calculated stress concentration factors is most likely due to the shorter

length of the plate in the loading direction than that used by Griffith.

An elastic-plastic uniaxial finite element analysis was conducted to determine a load-notch
. strain relationship for the plate. The nominal stress-notch strain diagram is in Figure 7.4,

with the elastic, plastic, and total strain plotted against the nominal load.

7.3 Comparison of results

In Figure 7.5, the results of the monotonic analyses for different ratios of appiied nominal

loads are plotted. This ratio, R, is defined as:

R=5S, (7.1)

Finite element results from the loading R = 0 for the hoop strain (e,) indicated in Figure 7.5
determined the nominal load-notch plastic strain curve for the hole. Using information from
this curve and the elastic stress concentration factors, the notch strain response was
calculated for other ratios of applied nominal load, and compared with finite element

analyses. In the figure, the finite element results are indicated by solid lines, and the results
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of the simplified calculation are indicated by the dashed lines. The results of the two
methods are in very good agreement for loadings ranging from R = 0.25 to R = 1 for not only

the hodp strain, but for the radial strain (e.) as well.

A proportional cyclic nominal loading path shown in Figure 7.6a was also examined. The
loading ratio chosen for this path was R = 1, or balanced biaxial nominal cyclic tension. The
finite element resuits and the results of the simplified calculation are presented in Figures
7.6b-¢, for increasing levels of nominal load. The plots are of normalized time for the
loading path versus notch strain. Both the hoop strain and the radial strain are presented in

~ the same figure for node 127, with the hoop strain having the larger magnitude. Finite
element results are again represented by solid lines, and the simplified calculation by dashed
lines. The is little difference in the methods until the notch strain approached one percent

amplitude. However, even at this level, the character of the strain behavior is captured very

well,

To examine the strain response of the hole when subjected to nonproportional nominal
loading, the simplified method and finite element method were used to calculate strains for
the box-shaped nominal loading path in Figure 7.7a. The calculated response for several
increasing levels of load are presented in the strain time history plots of Figures 7.7b-d.

| Again, the finite element calculations are represented by solid lines, and the simplified
method by dashed lines. Similar to the results of the proportional loading, the character of
the methods of calculating notch strains agree well for all loading cases, and the numerical

values agree also, until strains approach about one percent in amplitude.
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8 A MORE SHARPLY NOTCHED SHAFT

In this chapter, the simplified method of calculating the notch strain response is compared
with the finite element method for the analysis of a morc sharply notched shaft subjected to
proportional and nonproportional nominal loading in tension and torsion. The geometry of

this notched shaft causes more notch constraint than examined in the mildly notched shafts

presented previously.

8.1 Shaft geometry

The geometry of this shaft is very similar to the sharp surface notch used in the analyses and
experiments of Hoffmann and Seeger (1985a). For the shaft examined here, the net section
diameter is 120 mm, the gross section diameter is 144 mm, and the notch root radius of the

hyperbolic notch is 3 mm. A schematic of the shaft is in Figure 8.1.

8.2 Finite element analysis

A converged finite element mesh was constructed for this geometry. A fifteen degree,
three-dimensional slice of the shaft was modelled, using boundary conditions that
corresponding nodes on either side of the slice must have the same deformations in the radial,
hoop, and axial directions. The finite element mesh used for the finite element calculations is
shown in Figure 8.2. The coordinate system used is indicated in Figure 8.2; the axial
direction the shaft is the z-direction, the transverse direction at the notch root is the

x-direction, and the direction normal to the notch surface is the y-direction.

Material properties used for this notched shaft were taken to be the same as 1070 steel shaft,

also used in the analysis of the mildly notched round shaft and the plate with a central hole.
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As in the previous finite element analyses, the ABAQUS USER MATERIAL
implementation of the Mréz work-hardening plasticity model (Kottgen 1991a-b) was used

tor the analyses of the nonproportional loading paths.

The resnlts of a single, elastic-plastic tensile finite element analysis of the shaft was used to
determine the elastic stress concentration factors in tension and the amount of plastic notch
constraint. An additional elastic analysis of the shaft in torsion was conducted to determine

the elastic shear stress concentration factor of the notched bar. The elastic stress

concentration factors for the notch are

K.=2.98
K/=081 | (8.1)

K.=172,

and agree with those obtained by Hoffmann and Seeger (1985a) and Neuber (1946).

The initiai nominal yield strengths in the axial direction (Z,) and the torsional nominal yield
strength (S,), were found from equations (3.33) and (3.34) respectively. The initial
coefficients of anisctropy were then determined from equation (3.7), and the observation
trom the unaxial finite element analysis that the ratio of the plastic strains in the transverse
and normal directions (€£:€5) from the elastic-plastic simple tension analysis was
approximately 0.18:1. The nominal stress-notch plastic strain curve was determined from the
axial nominal stress-axial plasti.c strain results from the uniaxial finite element analysis. The
strain components from the uniaxial finite element analysis are shown in Figure 8.3. These

were the only data used to determine the coefficients of anisotropy.

The uniaxial nominai swess-noich root plastic strain curve generated by the finite element

model (Figure 8.3) shows the effect of the sharp geometry on the notch constraint. In the
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elastic range, the transverse sirain, ¢, is almost zero, meaning that the biaxial stress field at
the notch root overcomes the Poisson contraction of the material due to the axial stress. At
large values of axial load, the transverse strain, €, varies only slightly from zero. Therefore,
the uniaxial finite element analysis to determine the equivalent nominal stress-notch root
strain curve could have been foregone if the assumption was made that the notch root was in
a state of plane strain, and if Glinka’s plane strain approximate notch formula (Glinka 1985a)
was used to determine the equivalent nominal stress-nntcrh root sfrain curve. Such an

assumption would change the results of the simplified method very slightly for this notched

shaft.

8.3 Comparison of results

The finite element model and the simplified model were used to calculate the notch oot
strain response of the shaft subjected to proportional and nonproportional loading paths.
Three proportional analyses were conducted, and the loading paths are shown in Figure 8.4.
The three loading paths were chosen to give Mises equivalent nominal stresses of the loading
components .S‘z:\ﬁ S, in the ratios of 1:2, 1:1, and 2:1 for the loading paths indicated in
Figure 8.4 by paths I, 2, and 3, respectively. These paths will allow the demcnstration of the

applicability of the model to multiaxial loadirigs that vary from mostly tensile loading to

mostly shear loading.

The results of the calculations of the finite element method and the simplified method are
presented in Figure 8.5a-c. Finite element results are indicated by the dashed-dotted lines,
and the resuits of the proportional equations of the simplified model are indicated by the

dashed lines. The figures indicate that excellent agreement was obtained between the two
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models, with the advantage of the simplified method being that the calculations using the
closed-formed equations for proportional loading (equations 3.36) were instantaneous,

whereas the finiie element calculations obtained were compuiationally lengthy and involved.

The strain response for three nonproportional box-shaped loading paths were‘also calculated
using the finite element model of the shaft and the simplified method, and are presented in
Figures 8.6-8.8. The ratios of applied load for the initial loading segments of the box path
were in the same ratio as the proportional loading paths of Figure 8.5. Agajn, agreement

between the two models is very good, in particular with regard to the strain ranges.
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9 CONCLUSIONS

1. An approximate technique has been developed to calculate notch strains based a concept
of a structural yield surface. The approach applies results of anisotropic metal plasticity
theory to define a yield surface in nominal stress space that relates nominal stress directly to
notch strain. The required data for the model includes the elastic stress concentration factors
of the notch, knowledge or assumptions about the plastic notch constraint under uniaxial

loading, and the uniaxial nominal stress-notch plastic strain response for the notch.

2. Results of calculations using this method for proportional and nonproportional nominal
cyclic loading histories have compared very well with experimental results conducied on a
notched steel shaft, and also with extensive finite element analyses conducted using various

material propertics and geometries.

3. Using yield surface plasticity theory of anisotropic metals presents the methed in a way
familiar to those knowledgeable about yield surface plasticity theory of isotropic metals,

including limitations of the method for loading paths with non-zero mean load.
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TABLES

KZ KXZ K'Z
Miid surface notch 1.40 1.22 0.25
Sharp surface noich 332 2.19 0.89
Sharp deep notch 2.93 2.03 0.91

Table 4,1. Stress concentration factors for notched shafts subjected to bending and torsion (Hoffmann et
al. 1988a).

Elastic Modulus, E 210 GPa
Poisson’s ratio. v 0.3

Cyclic strength coeéfficient, k” 1736 MPa
Cyclic hardening coefficient, n” 0.199

Table 6.1. 1870 steel material properties.
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E Open-faced, polyimide backing
Constantan alloy in self-temperature-compenstated form
06 Approximate thermal expansion coefficient in PPM/degrees

F of the structural material on which the gage is to be used

031 Active gage length in thousandths of an inch
RB Rectangular rosette
120 Resistance in Ohms

Table 6.2. Code for strain gage designation. Source: Measurements Group Education Division Bulletin

3094, 1983.
Kz sz K 'z
Specimen A 1.45 i 117 0.30
Specimen B 1.42 1.15 0.30
Specimen C 1.47 1.13 0.32
Converged FEA | 141 1.15 0.26

Table 6.3. Experimentally determined stress concentration factors and stress concentration factors from
converged finite element analysis {(Kottgen and Seeger 1993) for fully notched round shaft.
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material number n’ k' (MPA)

i elastic-perfectly plastic -

2 0.050 400

3 0.100 700

4 0.199 1736

5 0.250 2900

6 0.300 5000

7 0.400 15000

Table 6.4. Hardening exponents (n") and strength coeficients (k") for materials used in compliance
analysis of the fully notched round shaft. Material 4 represents the 1070 steel used in the experiments.
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FIGURES
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Figure 3.1. Smooth bar stress and strain state due to uniaxial load.
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Figure 3.2, Notched bar stress and strain state due to uniaxial load.
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Equivalent nominal stress, S

dS =E/(S) de”

Equivalent notch plastic strain, €

Figure 3.3. Equivalent uniaxial stress-strain response.

P
de;  d4s, =E(S)de’

Nominal stress, S,

Notch plastic strain, €,

Figure 3.4. Uniaxial stress-strain response.
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Figure 3.5. Mréz model in stress space.
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Figure 3.6. Local notch stress state for a plate with a hole.
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Figure 4.1. Notch types examined by Hoffmann and Seeger in Kerbbeanspruchungen I. From left to
right: mild surface notch, sharp surface notch, and sharp deep notch.
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Figure 4.2b. Simple bending results for mild surface notch. Source: Hoffmann ef al. (19852).
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Figure 4.2c. Combined loading results for mild surface notch. Source: Hoffmann ef al. (1985a).
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Figure 4.3a. Sharp surface notch and loading conditions. Source: Hoffmann et al. (1985a).
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Figure 4.3b. Simple bending results for sharp surface notch. Source: Hoffmann et al. (1985a).
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Figure 4.3c. Combined loading results for sharp surface notch. Source: Hoffmann et al. (1985a).
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Figure 4.4a. Sharp deep notch and loading conditions. Source: Hoffmann ef al. (1985a).
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Figure 4.4c. Combined loading results for sharp deep notch. Source: Hoffmann ef al. (1985a).
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Figure 4.5a. Calculated results for the mild surface notch subjected to combined loading.
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Figure 4.5b. Calculated results for the sharp surface notch subjected to combined loading.

63



500 T

I el e/er
\
\
- A\
hY
g s
W 100} l1 :
g { 1
- 1l 1
| -
Z 3 i
2 i
& ]
|
;
|
i
i
|
10 b LI s

Figure 4.5¢c. Calculated results for the sharp deep notch subjected to combined loading.
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Figure 5.1a. SAE notched shaft geometry and loading conditions.

y

Figure 5.1b. Fash’s finite element mesh for the SAFE notched shaft.
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Figure 5.2a. Notch root strains for pure bending calculated by the finite element method and equations
developed for proportional leading with curve fit to determine coefficients of anisotropy.
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Figure 5.2b. Notch root strain for pure torsion calculated by the finite eiement method and equations
developed for proportional loading.
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Figure 5.2c. Notch root strains for proportional torsion and bending (¥/B = 0.6) calculated by the finite
element method and equations developed for proportional loading.
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Figure 5.2d. Notch root strains for proportional torsion and bending (T/B = 0.8) calcuiated by the finite
elerent method and equations developed for proportional loading.
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Figure 5.2e. Notch root strains for propertional torsion and bending (T/B = 1.4) calculated by the finite
element method and equations developed for proportional loading. The dashed portions of the calculated
results indicate results based on an extrapolation of the uniaxial curve of Figure 5.2a.
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Figure 5.2f. Notch root strains for proportional torsion and bending (1/B = 2.2) calculated by the finite
element method and equations developed for proportional loading,
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Figure 5.2g. Notch root strains for proportional torsion and bending (T/B = 2.3) calculated by the finite
element method and equations developed for proportional loading.
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Figure 5.2h. Notch root strains for proportional torsion and bending (I/B = 3.2) calculated by the finite
element method and equations developed for proportional loading.
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Figure 6.1. Fully notched round shaft geometry and dimensions.
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Figure 6.2. Uniaxial Cyclic Stress-Strain Response for 1670 Steel.
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Figure 6.3a. Finite element mesh of notched shaft by Kéttgen.

Figure 6.3h. Detailed view of notch root.
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Figure 6.4. Uniaxial Cyclic Stress-Strain Response for Notched Shaft.
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Figure 6.5. (a) Nominal stress path and (b) measured strain respunse fur maximwm nominal stresses of

$,=100 MPa, and S_=62.5 MPa.
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Figure 6.5 {continued). {(c) Calculation using the simp]iﬁéd method and (d) calculation using the finite
clement method for maximum nominal stresses of $,=100 MPa, and §,,-62.5 MPa.
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Figure 6.6. (a) Nominai stress path and (b) measured strain response for maximum nominal stresses of
§,=139 MPa, and §,,=87.5 MPa.
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Figure 6.6 (continued). (c) Calculation using the simplified method and {d) calculation using the finite

clement method for maximum nominal stresses of $,=139 MPa, and §,=87.5 MPa.
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Figure 6.7. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

S,=160 MPa, and S_=100 MPa.
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Figure 6.7 (continued). (¢) Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of §,=160 MPa, and S_=160 MPa.
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Figure 6.8. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

§.=179 MPa, and S_=117 MPa.
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Figure 6.8 (continued). (c) Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of =179 MPa, and S_=117 MPa.
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Figure 6.9. (a) Nominal stresc path and (b) measured strain response for maximnm nominal stresses of

§,=200 MPa, and §_=131 MPa.
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Figure 6.9 (continued). (c) Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of $,=200 MPa, and $,=131 MPa.
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§,=258 MPa, and 5.,=168 MPa.
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Figure 6.10 (continued). (c} Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of §,=258 MPa, and S_ =168 MPa.
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Figure 6.11. (a) Nominal stress path and (b)) measured strain response for maximnm nominal stresses of
$,=296 MPa, and S_=193 MPa.
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Figure 6.11 (continued). (¢) Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of $,-296 MPa, and §,,~193 MPa.
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Figure 6.12. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

$,=258 MPa, and S_=168 MPa.
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Figure 6.12 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
$,=258 MPa, and 5,=168 MPa.
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Figure 6.13. (a) Nominal stress path and (b) nreasured strain response (b) for waxiinuue nuiminal stresses

of §,=258 MPa, and S_=168 MPa.
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Figure 6.13 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
§,=258 MPa, and S_=168 MPa.
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Figure 6.14. (a) Nominal stress path and (b) measured strain response for maximum nominsl stresses of

S.=258 MPa, and S_=168 MPa.
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Figure 6.14 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
S,=258 MPa, and S_,=168 MPa. :
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Figure 6.15. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of
§,=258 MPa, and S_=168 MPa.
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Figure 6.15 (continued). (c) Calculation using the simplified methed for maximum nominal stresses of
§,=258 MPa, and S_=168 MPa.
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Fignre 6.16. {a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

§,=258 MPa, and §5_=168 MPa.
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Figure 6.16 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
5,=258 MPa, and S_=168 MPa.
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Figure 6.17. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

$,=258 MPa, and §,=168 MPa.
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Figure 6.17 (continued). {c) Calculation using the simplified method for maximum nominal stresses of
$,=258 MPa, and §_=168 MPa.
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Figure 6.18. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of
§,7296 MPa, and S_=193 MPa.
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Figure 6.18 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
§,=296 MPa, and S5.,=193 MPa.
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Figure 6.19. (a) Nominal strcss path and (b) measured strain response (b) for maximur numinal stresses

of 8,=296 MPa, and $_,=193 MPa.
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Figure 6.19 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
§,=296 MPa, and'S,=193 MPa.
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Figure 6.20. (a) Nominsal stress path and (b) measured strain response for maximum nominal stresses of

§.=296 MPa, and S_=193 MPa.
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Figure 6.20 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
8,=296 MPa, and S_=193 MPa.
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Figurec 6.21. (a) Nominal stress path and (b) measured strain response for maxinwni noininal stresses of

§,=296 MPa, and S_=193 MPa.
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Figure 6.21 (continued). (c} Calculation using the simplified method for maximum nominal stresses of
5.=296 MPa, and S,=193 MPa.
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Figure 6.22. (a) Nominal stress path and (b) measured strain response for maxitnum nominal siresses of

5,=296 MPa, and S_=193 MPa.
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Figure 6.22 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
$,=296 MPa, and S_=193 MPa.
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Figure 6.23. (a) Nominal stress path and (b) measured strain response for mnaximum nominal stresses of

§,=296 MPa, and S_=193 MPa.
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Figure 6.23 (continued). (c) Calculation using the simplified method for maximum nominal stresses of
8,296 MPa, and 5,=193 MPa,
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TFigure 6.24. (a) Nominal stress path and (b) measured sirain response for maximum nominal stresses of

' §,=258 MPa, and §,,=168 MPa.

112



0.60

T

0.40

0.20

T

Shear strain, vz (7o)

0.20

0.60 ' - ' :
0.30 -0.20 0.10 0.00 0.10 0.20 0.30

Axial strain, £z (%)

:

(c)
0.60

0.40 |

0.20

T

0.00 -

Shear strain, yxz (%)

£.20 +

-0.40

-0.60 - - - - - -
-0.30 -0.20 0.10 0.00 0.10 0.20 030

Axial strain, €z (%)

(d)
Figure 6.24 (continued). (c) Calculation using the simplified method and (d) calculation using the finite

element method for maximum nominal stresses of § =258 MPa, and S_=168 MPa.
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Figure 6.25. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

$,=296 MPa, and S_=193 MPa.
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Figure 6.25 (continued). (c) Calculation using the simplified method and (d) calculation using the finite
element method for maximum nominal stresses of §,=296 MPa, and S_=193 MPa.

115



200 +

100 |+

Nominal shear stress, Sxz (MPa)
o
T

~400 : - L - - -
-600 -400 200 0 200 400 600

Nominal axial stress, 8z (MPa)

(a)
0.60 : .

040

0.20

0.00 -

Shear strain, yxz (%)

020

(.40 -

-0.60 : . - -
-0.30 -0.20° .10 0.00 0.10 0.20 0.30

Axial strain. ex (%)

(b)

Figure 6.26. (a) Nominal stress path and (b) measured strain response for maximum nominal stresses of

§,=296 MPa, and S_=193 MPa.
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Figure 6.26 (continued). (c) Calculation using the simplified method and (d) calculation vsing the finite
element method for maximum nominal stresses of §,=296 MPa, and S, =193 MPa.
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Figure 6.27 (continued). (¢) Calculation using the simplified method for maximum nominal stresses of
§,=296 MPa, and S_,=193 MPa.
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Figure 6.28. (a) Nominal stress path and (b) measured strain response for maximum noninal stresses of

8,296 MPa, and S_=193 MPa.
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Figure 6.28 (continued). {(c) Calculation using the simplified methed and {(d) calculation using the finite
element method for maximum nominal stresses of 5,.=296 MPa, and S_,=193 MPa.
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Figure 6.29. (a) Nominal stress path.
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Figure 6.29 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.30, {a) Nominal stress path.
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Figure 6.30 {continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.31. (a) Nominal stress path.
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Figure 6.31 (continued). (b) Calculation using the simplified methed and (c) calculation using the finite
element method.
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Figure 6.32. (a) Nominal stress path.

400

600



0.40 - . ; . : :
030 | \ | ]
|
0.20 F E :
§
£ 010 i
; a
=
£ 000Ff i -
5
&
22 010 .
i
020 F .
030 | \ 1
040 ; : ; : ’
20.30 0.20 010 0.00 0.10 0.20 030
Axial strain, £z (%)
b
0140 N T T T T T
) )
14§
030k i!!:\w‘ 4
I ilifg i Jis
020 - i E By |
. 120 i I ‘
£ o010k i ]
s i
£ i
£ 000t i .
2
;% ©0.10 | -
020 F X
030k .
-0.40 : : : : :
030 020 0.10 0.00 0.10 0.20 0.30
Axial strain, £z (%)
(c)

Figure 6.32 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element methnd.
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Figure 6.33. (a) Nominal stress path.
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Figure 6.33 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.34. (a) Nominal stress path.
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Figure 6.34 (continued). (b} Calculation using the simplified method and {(c) calculation using the finite
element method.
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Figure 6.35. (a) Nominal stress path.
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Figure 6.35 (continued). (b) Calculation asing the simplified method and (c) calculation using the finite
element method.
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Figure 6.36. (a) Nominal stress path.
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Figure 6.36 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element method.
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Figure 6.37. (a) Nominal stress path.
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Figure 6.37 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.

139



Nominal shear stress, Sxz (MPa)

300

200 +

1 I L

400 -200 0 200 400
Nominal axial stress, Sz (MPa)}

@
Figure 6.38. (a) Nominal stress path.
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Figure 6.38 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element method.
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Figure 6.39. (a) Nominzl stress path.
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Figure 6.39 (continued). (b) Calculation using the simplified methed and (c) calculation using the finite
element metheod.
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Figure 6.40. (a) Nominal stress path.
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Figure 6.40 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element method.
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Figure 6.41. (2) Nominal stress path,
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Figure 6.41 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element method.
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Figure 6.42. (a) Nominal stress path.
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Figure 6.42 (continued). (b} Calculatién using the simplified method and (c) calculation using the finite
element method.
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Figure 6.43. (a) Nominal stress path.
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Figure 6.43 (continued). (b) Calculation using the simplified method and (c} calculation using the finite
element method.
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Figure 6.44. (a) Nominal stress path.
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Figure 6.45. (a) Nominal stress path.
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Figure 6.46. (a) Nominal stress path.
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Figure 6.46 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.47. (a) Nominal stress path.
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Figure 6.47 (continued). (b) Calculation using the simplified method and (¢} calculation using the finite
element method.
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Figure 6.48. (a) Nortninai stress path.
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Figure 6.48 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.49. (a) Nominal stress path.
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Figure 6.49 (continued). (b) Calculation using the simplified method and (c) calcuiation using the finite
element method.
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Figure 6.50. (a) Nominal stress path.
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Figure 6.50 (continued). (b) Calculation using the simplified method and (c) calculation using the finite

element method,

165




Nominal shear stress, Sxz (MPa)

200

100

-400

-600

400 -200 0 200
Nominat axial stress, Sz (MPa)

(@)
Figure 6.51. {(a) Nominal stress path.
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Figure 6.52. (a) Nominal stress path.
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Figure 6.53. (a) Nominal stress path.
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Figure 6,33 (continued). (b) Calculation using the simplified method and (c) calculation using the finite
element method.
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Figure 6.54. (a) Nominal stress path.
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Figure 6.54 {continued). (b) Calculation using the simplified method and (c) calculation using the finite

clement method.
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Figure 6.57. (a) Calculation for material 7 using the simplified method and (b) calculation for material 7
using the finite element method with maximum nominal stresses of §, = 340 MPa, and S =222 MPa.
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Figure 6.58. (a) Calculation for material 6 using the simplified method and (b) calculation for material 6
using the finite element method with maximum nominal stresses of S, = 340 MPa, and S_ = 222 MPa.
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Figure 6.59. (a) Calculation for material 5 using the simplified method and (b) calculation for material 5
using the finite element methed with maximum nominal stresses of 5, = 296 MPa, and 5_ = 193 MPa.
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Figure 6.60. (a) Calculation for material 3 using the simplified method and (b) calcalation for material 3
using the finite element method with maximum nominal stresses of §, = 200 MPa, and S, = 131 MPa.
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Figure 6.61. (a) Calculation for material 2 using the simplified method and (b) calculation for material 2
using the finite ¢clement mcthod with maximum nominal stresses of S, = 200 MPa, and S,, = 131 MPa.
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Figure 6.62. (a) Calculation for material 1 (elastic-perfectly plastic) using the simplified method and (b)

calculation for material 1 (elastic-perfectly plastic) using the finite element method with maximum
nominal stresses of S, = 179 MPa, and S_ = 117 MPa.
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Figure 7.2. Finite element mesh of plate.

Figure 7.3. Detailed view of finite element mesh.
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Figure 7.6b. Strain response for S, = 250 MPa.
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Figure 8.1. Geometry of sharply notched shaft.
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Figure 8.2a. Finite element mesh of sharply notched shaft.

Figure 8.2b. Detailed view of notch root.
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Figure 8.5a. Calculated strain response for pure torsional loading (path 1).
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Figure 8.5b. Calculated strain response for proportional loading path 2.
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Figure 8.6. (a) Calculation using the simplified method and (b) calculation using the finite element
method for box-shaped loading path corresponding to proportional path 2.
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APPENDIX

The following note (Kétigen and Seeger 1993a) describes the discretization of the

Ramberg-Osgood material curve used in the finite element analysis of the 1070 steel.

*“The Ramberg-Osgood equation describes a cyclic stress-strain curve without a
yield stress, 1.e. which is elastoplastic from the start. This approach cannot be
mapped one-to-one to a discrete Mroz model, because there the yield surface
separating elastic from elastoplastic behavier must be of finite size. The cyclic
stress-strain curve is defined in the Mroz model in terms of work-hardening
moduli H’(k), which are constant between vield surfaces & and k+1. If values for
H’(k) used by the Mroz model are determined only by the local siope of the
stress-strain curve, the plasticity associated with the part of the curve below the
chosen yield stress in the original Ramberg-Osgood formulation will be lost when
numerically integrating the deformation model during the finite element analysis.
However; if the first H’(1) value on input to the Mroz model is chosen to be the

secant modulus of the Ramberg-Osgood o-€° curve between € = and the plastic
strain corresponding to the second yield surface, the numerical integration will
account for the plasticity below the chosen yield stress whenever the stress moves
between the first and second yield surface. Because H(1) > H'(2) numerical
anomalies should not occur.

When defining the input for the finite element analyses the approach defined
above was mistakingly not used. Instead H'(1) was defined as the local slope of
the stress-plastic strain curve between the yield stress o,(1) =242 MPa and the
second yield surface oo(2) = 245 Mpa. Thus, the equivalent plastic strain below
0,(1) =242 MPa (¢f = 5.01809™°) was not accounted for in the analyses. The
actual error caused by this is below 3% in the worst case.”’
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