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ABSTRACT

The effect of notches and intrinsic defects on the long-life regime fatigue properties
was studied. A crack-closure-at-a-notch (termed CCN) model for predicting the fatigue
life and fatigue threshold stress was developed based on the assumption that the da/dN vs.
AKegrrelation is a unique material property independent of crack length. The variation of
crack closure level with crack length for a crack emanating from a notch was found to
depend on the material properties, the notch size, the notch acuity, and the applied load
conditions.

The stress-life (S-N) properties of a cast aluminum alloy 319 were studied at room
temperature under the R = -1 condition for both as-cast and polished cylindrical bar
specimens. The test resulis showed that the fatigue smength of cast aluminum afloy 319
was not significantly affected by the surface conditions but strongly influenced by the size
of defects which initiate fatigue cracks. Crack growth rate tests (da/dN vs. AK) for R = -1
were also carried out on single-edge-notch plate (SENP) specimens. The fatigue threshold
stresses and fatigue lives for both cylindrical bar specimens and SENP specimens were
successfully predicted by the CCN model. The validity of this model was further
confirmed through comparison of predictions with the experimental results reported in the
literature.

The CCN model considered intrinsic defects to be small notches. The limits of the
CCN model applicability were studied. The maximum non-damaging notch depth for a

material was quantitatively determined. A general description of the effect of a notch on the
fatigne threshold stress was proposed.
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Crack length including the notch depth

Fatigue strength coefficient for smooth specimen

The half length of an elliptical crack on the specimen surface (mm)

Paris' constant for da/dN versus AK data in Stage I (near-threshold), Cj
has a unit of m/cycle

Paris’ constant for da/dN vs. AK data in Stage II (mid-growth rate
regime)

Paris’ constant for da/dN vs. AK¢fr data in Stage I (near-threshold regime)
Paris' constant for da/dN vs. AKefr data in Stage II (mid-growth rate
regime)

Grain size

Notch depth; for edge notch, D is the full notch length, and for centered
notch D is half of notch length (mm)

Effective notch depth in determination of threshold stress

The maximum notch depth above which K always equals Ky

General description of fatigue crack growth rate (m/cycle)

Elastic modulus

Fraction of plasticity-induced crack closure

Plastic modulus

Stress intensity factor (MPavm)

Gross and net-section fatigue notch factor

Fracture toughness

Gross and net-section elastic stress concentration factor

Transition crack length from Dowling [4]; used as initial crack length for
life prediction, (mm)
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Total propagation life

Fatigue initiation life (sum of the nucleation and early crack propagation
life)

Fatigue crack nucleation life
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Effective stress intensity ratio for a crack emanating from a notch
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Tanaka's model for effective stress intensity ratio for a crack originating
from a smooth specimen

Effective threshold suress intensity ratio for a crack emanating from a
notch

Crack length {mm)

Final crack length at failure

Initial crack length for predicting the fatigue life

Greatest possible length of a non-propagating crack (mm)

Equivalent crack length in an un-notched specimen which has the same

* . .
value of U, at x* as the crack in the notched specimen

Spatial extent of notch stress field boundary (mm)
The maximum non-damaging notch depth
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1. INTRODUCTION

1.1 Background

In most engineering applications, fatigue resistance is controlled by the presence of
notches which are cither intentional notches or intrinsic defects. From the mechanics point
of view, notches cause high stress concentrations; and hence, fatigue cracks always initiate
at these notches and begin propagating as short cracks. Once a fatigue crack initiates at a
notch and when the crack length is longer than a certain critical length, the notch depth
elevates the crack tip stress intensity factor and causes more rapid fatigue crack growth rate.

The anomalous growth of short cracks emanating from notches is a perplexing
phenomenon. Short cracks grow below the long-crack threshold stress intensity range
(AKino) and grow faster than a long crack at the same stress intensity range (AK), This
anomalous behavior leads to difficulty in applying the conventional LEFM analyses.

The long-life regime fatigue behavior of notched compunents is the subject of this
study. Predicting the growth rate of short cracks emanating from notches is important
because, in the long-life regime. the period devoted to the growth of the short cracks is the
major part of the total fatigue life. In addition, the threshold condition is controlled by the
equilibrium of non-propagating (short) cracks.

1.2 jective and S fthis R h

A major objective of this study was to develop a modcl which predicts the long-life
regime fatigue properties for notched components. An analytical model for Crack Closure
at a Notch(termed the CCN model) was developed to predict the behavior of fatigue cracks
at a notch. The effects of R ratio, notch depth, notch acuity, notch and specimen type,
crack closure mechanisms, and material properties on the long-life regime fatigue life and
fatigue threshold stress were considered.

This study was limited to constant amplitude loading. Environmental effects such
as elevated temperature, humidity and corrosion were not considered. The accuracy of the
CCN model was confirmed by comparing predictions with experimental results of a cast
aluminum alloy and with test results of other materials reported in the literature. Steet and
aluminum alloys were considered.

The long-life fatigue behavior of a cast aluminum alloy 319 was studied. The
influence of the fatigue initiating casting defects on the long-life regime was treated as a



small notch problem. Uniaxial stress-life (5-N) tests for R = -1 were performed on
cylindrical cast specimens having as-cast and polished (30pum) surface conditions. To aid
in the modelling of the fatigue behavior of this cast material, supplemental R = -1 crack
growth rate tests (da/dN-AK) on machined-notched specimens were performed. The
statistical characteristics of the fatigue strength for this cast alloy was studied. The
reliability-based fatigue strength for this cast alloy was estimated based on the statistical
distribution of fatigue-initiating-defect size and the CCN model.

1.3 Organization

The main body of the text deals with the concept of the CCN model and its
predictions. Chapter 2 presents the background for the CCN model and introduces other
models for the behavior of short cracks. Chapter 3 is an overview of the CCN model.
Chapter 4 compares the the experimental data with the predictions of the CCN model for
various specimen geometries and materials. Chapter 5 provides a discussion of the CCN
model, a summary of the effect of notches, and suggestions for further study.

Nine appendices give background information relating 1o the development of the
CCN model and the experimental procedures and results for a cast aluminum alloy 319:

Appendix A Stress Intensity Factor Solutions lists all the formula for

calculating stress intensity factors for the specimen geometries
used in this study.

Appendix B The Notch-Stress-Field Boundary (NSFB) details the

development of notch stress field boundary (x*) used for the CCN
model.

Appendix C CCN Model for Predicting the Threshold stress details the
development of the model for predicting the threshold stress. This
modei can be used for notches or intrinsic defects in steel and
aluminum alloys having various specimen geometries and load

ratios.

Appendix D

Model for Fatigue Life based on Short and Long Crack
Propagation derails the development of the model for predicting
the fatigue crack propagation life.




Appendix E

Appendix F

Appendix G

Appendix H

Appendix 1

The Relationship between nd AK.ff proposes a concept to

derive the relationship of da/dN versus AKe¢r which is unique for
each material.

[he Limit of the CCN Model Applicability proposes a concept to
quantitatively determine the range where the CCN model is
applicable,

xperim ngd Resules for Alpmingm All
319 presents the experimental procedures and results for cast
aluminum alloy 319. The statistical size distributions of casting
pores and fatigue-initiating defects were measured. Fatigue
properties of this alloy are described.

S:N Data Test Statistics applies the theory of test statistic to test
the equality of two 5-N curves under different experimental
conditions,

Qbservation of Crack Nucleation and Early Growth presents the

direct observations of the sources of crack nucleation and carly
growth by replicating the surface cracks with acetate films.



2. LITERATURE REVIEW

Lawrence et al. [1,2,3] proposed a model (the Total Life Model) to assess the
fatigue life of notches. The fatigue life of notched components was divided into three parts:
the fraction of life devoted to the development of active fatigue cracks (nucleation), the
fraction of life devoted to the early growth and linking of short cracks (early crack
propagation), and the fraction of life devoted to dominant crack enlargement until fracture
occurs {(propagation). The fatigue life spent in the nucleation and early growth stages was
termed initiation life (Ny) and the life spent in the final stage was termed propagation life
(Np). The total fatigue life (N) is given by:

Nt = N1+ Np (2.
The fatigue crack initiation life (N1) can be predicted based on the strain-life

relationship [1-6]. In the long-life regime, Lawrence et al. [5] used the Basquin-Morrow
equation with the concept of fatigue notch factor (Kgy,) to predict Ni:

San = g (1- o) N (2.2)
where: San = Remote applied stress amplitude (net section)
o'y = Fatigue strength coefficient for smooth specimen
b = Fatgue strength exponent for smooth specimen
Om = Local mean stress
Kin = Fatigue notch factor (net section) at threshold condition
=14% Kin - 1 (Peterson equation ) (2.3)
1+ —
p
o = Peterson's constant
p = Notch root radius
Kin = Theoredcal suess concentration factor (net section)



In Eq. 2.2, the use of K¢ factor (instead of Kip) for predicting initiation life
implicitly considered the effect of short crack behavior. The values of Peterson's constant
(o) for different materials were experimentally determined and can be estimated by [7]:

or = 140 (é%‘m)2 (Type I Peterson's constant) (2.4)
47
where or = unitof mm
AKiho = Long-crack threshold stress intensity range, unit in MPaym
Se = Fatigue limit of smooth specimen, unit in MPa

Another expression for estimating Peterson's constants is [5]:

o = 0.025 (@:.;lg)i’8 (Type II Peterson's constant) (2.5
u
where o = unitof mm
Sy = Tensile strength, unit in MPa

Knowing the value of o, the long-life regime fatigue strength or fatigue initiation life (N])
can be estimated using Eq. 2.2 and Eq. 2.3.

The total life model (I-P concept) also takes the propagation life (Np) into
consideration. The propagation life can be estimated by integrating the Paris law [8]

(which will be discussed later) from a specified initial crack length (x;) to the final crack
length (xg) at which the final fracture occurs:

Xt
Np = j — 2.6)
C (8K)
Xi

Where: xi = Iniual crack length
C = Paris' constant
m = Paris' exponent
xf = Final defect depth at fracture; calculated by:

Kic = Smax Y(D+xp) V n(D+xg)

Kic = Fracture toughness
AK = Stress intensity range = Y(a) (1 -R) Smax \/;a



Y(a) = Geometrical factor where 'a’ ranged from D + x; to D + x
D = Notch depth
Smax = Maximum applied stress in a cyclic stress range

A difficulty encountered with the I-P concept is the determination of the value of
initial crack length (x;). Several researchers [1,4,6,7] have made progress in this area, It
scems that these studies have been successful in estimating the fatigue life of notched
components. However, the use of the Ky, concept in estimating Ny to overcome the short
crack problem for the early crack propagation life is empirical, and the physical meaning of
the Peterson equation is unknown. Furthermore, Socie [6] has questioned the applicability
of the I-P concept in dealing with very shallow notches (e.g. D < 2.5 mm). These
problems with the I-P concept may be overcome by directly predicting the crack growth
rate of short cracks emanating from a notch (or a defect) using the concept of crack closure.

2.2 Crack Closure Mechanisms and the Nature of Fatisue Crack Propagation

Crack closure controls the nature of fatigue crack propagation. The known crack
closure mechanisms were reviewed by Suresh and Ritchie [9]. The most important crack
Closure mechanisms are: plasticity-induced, oxide-induced, and roughness-induced crack
closure. Plasticity-induced crack closure (PICC) results from the constraint of plastically
deformed material at and in the wake of the fatigue crack tip by the surrounding elastically
deformed material. The applied stress or stress intensity factor is the main factor which
affects plasticity-induced crack closure. Oxide-induced crack closure (OICC) results from
oxide deposits within the crack, and roughness-induced crack closure (RICC) results from
contact at discrete points between fatigue fracture surface asperities when Mode I crack
displacements are present. The latter two crack closure mechanisms are strongly dependent
on the material properties (i.., grain size and yield strength) and environmental conditions,
and these mechanisms play a dominant role at near-threshold conditions [9- 13]. The extent
of OICC and RICC generally becomes greater as fatigue crack growth rates approach the
threshold levels.

For a long crack, Allison [10] schematically described the importance of each
closure mechanism as a function of the maximum stress intensity factor (Kmax) shown in
Fig. 1. When Kpax is high, PICC plays a dominant role, and when Kmax 18 low (at near
threshold conditions) RICC and OICC are believed to dominate. At this time, the relative



importance of each closure mechanism and the value of K ;,;x at which the dominant crack
closure mechanisms change have not been identified.

The variation of fatigue crack propagation rate (da/dN) with AK is usually
represented by the sigmoidal curve shown in Fig. 2. Three regimes of fatigue crack
propagation behavior and their corresponding mechanisms were discussed by Ritchie and
Suresh [13]. Since the present study is concerned with long-life fatigue properties, the
crack growth mechanisms in the mid-growth rate and the near-threshold regimes are of
primary importance and are discussed below.

22.1 Behavior of in the Mid-Growth Rate Regim
When the applied AK is in the mid-growth rate regime, Mode I crack-tip
displacement is dominant and a planar fracture surface morphology is observed. In this

regime, the fatigue crack growth rate (da/dN) for long-cracks can be represented by the
Paris law [8]:

da

g% = CKm (2.7)
where C = Paris constant = f(R)
AK = Long-crack stress intensity range
m = Paris' exponent

Different values of Paris' constant C must be used for different load ratios (R).

In the early 1970's, Elber [14] proposed a concept of crack closure which provided
better correlations for long-crack growth rate by using the effective stress intensity range

(ARefp):

q o C(ARem 2.8)

where:  AKesf = Up AK
Smax - S Kmax - Kopo

Ug = Smax - Smin ~ Kmax - Kmin ; sulfix "' means stabilized vaiue
for long-crack
Smax = Maximum smess in a cyclic loading condition
Smin = Minimum stress in a cyclic loading condition
Sope = Stabilized opening stress for long crack in a cyclic loading condition

Kmax = Maximum stress intensity factor in a cyclic loading condition



Kmin = Minimum stress intensity factor in a cyclic loading condition

Stabilized opening stress intensity factor for long crack in a cyclic
loading condition

Kopo

In Eq. 2.8, the Elber's constant C is independent of the load ratic (R). The value of
Uy 1s termed long-crack effective stress intensity ratio, and is dependent upon the R value.

For -0.1 < R < 0.7, Elber first proposed an empirical relationship between Uy and R for
2024-T3 aluminum alloy:

U = 05+04R (2.9)

It is evident that the relation between U, and R is material dependent. Other
relations between Ug and R for other materials were reviewed by Schijve [8]. Some
researchers reported that Ug could also depend on maximum applied stress intensity factor
(Kmax) and R [9]. Elber's concept is an oversimplification which may only be valid overa
limited range of Kpax. Because the measurement of crack closure level has not been
standardized, different measuring methods result in different values of U,. Thus, whether
Uo is only an R-dependent variable or a both R and Kpnax dependent variable is still unclear
at this date. Nevertheless, the influence of R and Kpax on the crack growth rate in this
regime was explained by using the plasticity-induced crack closure mechanism [14-17].
The ratio of opening stress (Sopo) to maximum applied stress (Spax) (i.e. Sopo/Smax), and
the value of Uy increase with increasing maximum applied stress and R ratio.

2.2.2 Behavior of Long Cracks in the Near-Threshold Regime

In the ncar-threshold regime, the Stage I mechanism controls fatigue crack
propagation which is a combination of Mode I and Mode II displacements. Fatigue crack
growth in this regime results in a serrated or faceted fracture surface morphology coupled
with crack tip Mode II displacements. Consequently, fatigue crack growth in this regime
would be expected to have a higher closure stress than that in the mid-growth rate regime
due to the operation of RICC and OICC mechanisms. The Sopo/Smax in this regime would
be expected to be larger than those in the mid-growth rate regime, thus, U, would be less
than that in the mid-growth rate regime. To distinguish the values of Uy, for near-threshold
regime and mid-growth rate regime, the long-crack effective stress intensity ratio in the
near-threshold regime is denoted as Uypg and that in the mid-growth rate regime is denoted
as Uq. Generally, Uiy must be smaller than or equal to Uy,




The fatigue crack growth rate (da/dN) and the value of long-crack threshold stress
intensity range (AKwo) are dependent on the grain size (d), load-ratio (R), yield strength
(Sy) and environmental conditions. Generally, for the same material system at the same
AK level, higher load ratio, smaller grain size or higher yield strength would exhibit higher
crack growth rates and lower values of AKyo. Additionally, increasing load ratio generally
decreases the influences of grain size and yield strength on the AKpg [12,13,18-241.
These characteristics are inherent in the RICC and OICC mechanisms.

The effects of grain size (d) on the long-crack growth behavior in the near-threshold
regime can be explained mainly by the RICC mechanism. Coarse-grained materials have a
more serrated (rougher) fracture surface which enhances the RICC mechanism, this leads
to a higher AKno. The influence of R ratio and yield strength on AKypo is generally
interpreted by the combination of PICC, RICC and OICC mechanisms. Oxide deposits
were observed on the fracture surface which affect the closure stress for a fatigue crack; the
thicker the oxide layer, the higher the closure stress. The development of fretting-oxidation
layers are associated with the amount of RICC and PICC mechanisms. Under high R ratio
conditions, the crack remains open during a larger portion of the cycle (thus very little crack
closure), which results in a smaller amount of fretting-oxidation between the fracture
surfaces. The thinner oxide layer, in turn, would reduce the amount of QICC and
consequently decrease AKyho. Materials with higher yield strength would have lower
values of AKho due to the smaller amount of oxide fretting (OICC). Some researchers
[18] believe that the effect of the R-ratio on the AKynq is mainly due to the effect of QOICC;
because the lack of the R-dependence on the AKwo was found in vacuum. A strong R-
dependence was observed in air. However, the lack of R-ratio dependence on AK g was
also found in a very fine grain-size P/M IN9021-T4 (grain size 0.1- 1.0 pm) {19]. For this
very fine grain material, there is almost no RICC effect. Assuming RICC is the dominant
closure mechanism for this material in the near-threshold regime, the lack of RICC results
in the lack of R-dependence on AKpo-

Without considering the aggressive (or corrosive) influence of environment on the
fatigue crack growth behavior, many researchers believe that the growth rate of a fatigue
crack [4,10,12] for a given material system can be correlated uniquely with the effective
stress intensity range (AKer). In addition, the effective long-crack threshold stress
intensity range (AKeff tho) is also an unique material property. Liaw [12] found a linear
relationship between AKerr,inp and the value of Young's modulus (E):

AKefrtho = NE 2.10)



10

where N = 1.5x105 for steel
n = 2.0x105 for aluminum alloys
E = Young's modulus (MPa)
AKefiho = Effective long-crack threshold stress intensity range (MPavm)

In contrast to AKipo, the value of AKefr1ho is insensitive to grain size (d), yield
strength (Sy) and load ratio (R). Figure 3 schematically shows the relation between da/dN
and AKeff and the variations of the relationship between da/dN and AK with grain size,
applied stress, load ratio and short crack behavior. As shown in Fig. 3, short cracks
exhibit higher crack growth rates than long cracks and grow at lower AK values than the
long-crack AKng value. This anomalous crack growth behavior of short cracks, under
some circumstances, can be explained by crack closure and rationalized by the AK(y
concept as discussed below,

2.3 Behavior of Short Cracks

The distinction between "small" and "short" cracks and the classification of short
cracks was clearly defined by Ritchie and Lankford [25]. Short cracks are generally two
dimensional through-thickness flaws, and small cracks are generally three dimensional
surface cracks. Both small and short cracks can be classified into microstructurally,
mechanically and physically small or short cracks. The anomalous crack growth rate of
mechanically short cracks can be rationalized by delayed crack closure development;
whereas, the crack growth rate of a microstructurally short crack is partly controlled by the
microsoructural feawres (e.g. grain boundary) and partly controlled by crack closure.
Short cracks emanating from a noich can be categorized as mechanically short cracks unless
the notch size is so small that the notch size is comparable to the microstructural features.
For a crack emanating from a notch, the initial faster growth rate of the mechanically short
crack is attributed to the higher AKfr values relative to the long crack at the same AK. This
distinction of the rates can be rationalized by the relationship between da/dN and AKegr
[9,11,12,15,19,26-31].

Mechanically short cracks are less affected by closure than long cracks because of
their shorter crack wakes and thus a smaller incidence of crack closure. As shown in Fig.
4, the opening stress starts from Smip at zero crack length (x = 0) and gradually increases
with increasing crack length and finally approaches the stabilized opening stress, Sopo. In

other words, the value of effective stress intensity ratio starts from 1 at x = 0 and gradually
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decreases with increasing crack length and finally approaches the stabilized value U, (or
Ultho) as the crack becomes a long crack.

As discussed above, the stabilized U, (or Ugpo) may be influenced by grain size,
yield strength, R-ratio and Kmax (or Smax). In studying a specified material with specified
yield strength and grain size, R-ratio and Kmax (or Smax) are the most important parameters
affecting the value of Ug (or Uppo). In the short crack regime where crack closure level has
not reached a stable value, crack length (x) is also a parameter affecting the effective stress
intensity ratio. Thus, 1o explain the peculiar behavior of cracks emanating from notches,
the effective stress intensity ratio should consider the effect of R, x and Kyay. For
simplicity, the variation of effective stress intensity ratio for a short crack emanating from a
notch is denoted as U(x), which implicitly includes the effects of R, Kmax (0r Smax).

Several parameters may affect the function of U(x) for a crack emanating from a
notch. These parameters are:

» the applied stress and its corresponding crack closure mechanisms,

* the notch acuity and notch depth, and

+  the material properties.
Mechanics rescarchers (26-29,32-34] used finite clement methods (FEM) 1o analitically
model U(x) and assumed that crack closure resulted only from plasticity-induced crack
closure (PICC). However, in estimating the near-threshold fatigue properties, analyses
based on the finite element method and the PICC dominant mechanism should be
questioned. When fatigue cracks propagate in the near-threshold regime, other closure
mechanisms such as roughness and oxide closure mechanisms (RICC and OICC) may
become more important than PICC. Thus, models based solely on the PICC mechanism
are valid only when:

+ the applied stress is high, or,

= the applied stress is low but the crack length is within the the nowh sress field

where notch plasticity dominates the crack closure behavior.

The intent of this study is to develop a comprehensive model for crack closure at a
notch, that is, to determine quantitatively the function of U(x) for cracks emanating from a
notch. Thus the work of Tanaka et al. which models all the possible crack closure
mechanisms at the threshold condition and the work of Sun et al. which models the PICC
mechanism will be discussed below.
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2.3.1 8h racks in Smooth imen -Thr | nditions {(Tanak

Without reference to any particular mechanism of crack closure, Tanaka et al. [35]
found empirically that the change of threshold stress intensity range (AK(x)) with crack

length for cracks in a smooth specimen was:

AKm(x) = AKho i (2.11)

where:
AKn(x) = Short crack threshold stress intensity range
AKwo = Long crack threshold stress intensity factor (material property)
x = Crack length (mm)
Lo = Intrinsic crack length (mm)

Equation 2.11 indicates that the threshold stress intensity range for a material is not a

constant value but a crack length and a material property (i.e. L) dependent variable. The
threshold stress intensity range (AKp(x)) increases with increasing crack length, and the

rate of increase is dependent on the intrinsic crack length (L), see Fig. 5. When the crack
becomes very long (e.g. x >> L), AKp(x) approaches AKy,. The intrinsic crack length
(Lo) is given by:

L, = L[AKto (2.12)
x\ ASe

where:

ASg = Stressrange at the fatigue limit of a smooth specimen

The fact that a shorter crack has a smaller AKp(x) value may be attributed to the
smaller crack closure effect which causes AK(x) to be closer to AKeff tho, assuming that
there exists a long-crack material property AKeff tho Which is independent of crack length.
Tanaka derived an expression which correlates the effective threshold stress intensity ratio
for a crack in a smooth specimen (denoted as UT(x)) with the crack length (x), material
properties (L) and the stabilized long-crack effective threshold stress intensity ratio (Ugpg):

UT() = Upo \ 220 (2.13)

where: UT(x) = Tanaka's model for the effective threshold stress intensity ratio for
a crack in a smooth specimen
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Effective long-crack threshold stress intensity ratio = ———A&ﬁgo

Effective long-crack threshold stress intensity ratio, a material
property

Utho

AKeff tho

Note that when x decreases to a very small value, UT(x) in Eq. 2.13 becomes greater than
1. Under this condition (UT(x) > 1), the crack is a microstructurally short crack; and thus,
models based on crack closure behavior in this region are probably meaningless.

El Haddad et al. [36] suggested that models for short crack behavior may converge
with models for long crack behavior if the stress intensity range is modified by adding L,
1o the crack length, This idea aiso leads to an expression similar to the Tanaka model (Eq.
2.13). The expression of UT(x) combined all the possible crack closure mechanisms at
near-threshold conditions for a crack in a smooth specimen in which the RICC and OICC
mechanisms are believed to play more important roles than the PICC mechanism.

232 Sh ks in Notch imen

Finite element analyses {32-34] can predict the variation of crack closure with crack
length by assuming that the closure of a crack emanating from a notch is fully controlled by
the PICC mechanism. Sun and Sehitoglu [34] developed empirical equations from the
results of finite element calculations. The variadon of crack closure with crack length for a

crack emanating from a notch was expressed in terms of opening stress (Sop(x)). The
function of Sep(x) under plane stress condition was expressed as :

X
Ss°m$ [§—;§ S“‘“" +Ag) exp(——— (s )] (- exp-10°5)
S
+R exp(-10° %) (2.14)

Where: Sgpo = Stabilized opening stress for long crack

Sy = Yield Strength

D = Half length for centered notch and full length for edged notch

x = Crack length from notch root

Smax = Maximum stress valuc of applied suess range

For a ratio of plastic moduius to elastic modulus H/E = 0.07 -

§S-QD9- = (.49 + 0.01R - (0.10 - 0.30R) §~%ﬂ (2.15a)
max Yy
Ay = -0.255- 1.375R + (0.085 - 0.075 R)K,
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Ap
Az

0.298 + 0.563R - (0.043 + 0.198 R)K;
1.700 + 1.475R + (0.10Q - 0.225 R)K;

For a ratio of plastic modulus to elastic modulus H/E = 0.01:

SO0 = 0,054 0.13R - (0.70 - 0.30R) Fmax (2.15b)
max Y
A = -1.138 - L138R + (0.163+0.163R) K,
Az = 0.902 + 0.507R - (0.089+0.164R) K
A3 = 3.400 + 2.575R - 0.125RK;

Equations 2.14 and 2.15 are valid within the range when Spax = (0.4 ~ 0.8) Sy and Ky is
between 3 and 7. The variation of the effective stress intensity ratio of a notched
component with crack length predicted by Sun and Sehitoglu can he expressed as:

1 _ Sgl!(x)
5 = —  Smax
U=(x) TR (2.16)
where
US(x) = The Sun and Sehitoglu model for the variation of effective stress

intensity ratio with crack length for a crack emanating from a notch

‘The variation of stress intensity ratio with crack length for the Sun and Sehitoglu
model is different from that of Tanaka's; the former deals mainly with the notch problem at
higher than the near-threshold conditions, while the lauer deals mainly with the near-
threshold and smooth conditions. Neither model covers the complete range for analyzing
the threshold stress and life estimation for a notched component. For example, US(x) is
not a suitable function for determining the threshold condition; and Tanaka's model is not
valid for use in the notched components, since the effect of a notch stress field on crack
closure was not considered. A hybrid model which combines these two models will be
proposed in Chapter 3.
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4 Threshol Ran Notch mponen

The fatigue threshold stress range (ASy, or ASyhy - the suffix 'n' denotes a net-
section basis) of a notched component is the greatest stress range which can be applied to
the component without causing fatigue failure, that is, the largest applied stress range for
infinite life (under constant amplitudc loading and in the absence of corrosion). For a
smooth specimen, the value of ASy, equals the fatigue limit (ASg). It is known that the

material properties, the notch acuity, the notch depth, and the load ratio are important
parameters in determining the value of ASy. The threshold stress (Sy) is the maximum

stress under the threshold condition which is given by:

A
Sth = I_Sﬁ*‘ 2.17)

where: R = Load ratio (i.e., the minimum applied stress divided by maximum
applied stress)

Experimental work of Frost [37] and Tanaka [38] on the relationship between the
notch acuity and the applied stress range is schematically represented in Fig. 6 in which the
net-section threshold stress range (ASwhn) is plotted as a function of the net-section elastic
stress concentration factor (Kyp). Notches can be categorized as blunt or sharp, and the
boundary between blunt and sharp notches occurs when Ky = Ky, that is, at the least
value of Ky at which non-propagating fatigue cracks (NPC) are observed. In the case of
blunt notches (Kin < Kic), ASyp is approximately equal to the fatigue limit of smooth
specimen divided by the theoretical stress concentration factor (ASJK;,;). For sharp
notches (K, > Kic), the values of ASyy, (according to the Frost relation) remain constant.
Furthermore, the ranges of net-section threshold stress (ASnp) for sharp notches are
always larger than ASe/Kyn. Thus, when the applied stress range equals ASyyp in a sharp
notch, the crack grows a short distance from the notch root, arrests, and becomes a non-
propagating crack.

Experiments of Lukas [39], Topper [40], and DuQuesnay [41] showed that the
notch depth (D) or the notch root radius (p) is also a very important parameter in
determining ASipn. The relation between AS, and D (or p) is schematically shown in
Fig. 7. Experiments were carried out with geometrically similar circular notches (D = p).
When D is very small, the values of ASiyn equal ASe; this fact can not be appreciated using
thc Frost rclation (Fig. 6). Figure 7 (denoted as Lukas relation) also indicates that for small
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notches, ASin varys with notch depth in a manner apparently inconsistent with the
behavior shown in Fig. 6. The discrepancy between the Frost relation (Fig. 6) and the
Lukas relation (Fig. 7) suggests that Ky is not a complete description of the severity of a
notch and that the description of notch severity requires two variables. However, there
must be some interrelationship between Fig. 6 and Fig. 7 and this interrelationship will be

investigated subsequently. Several models predicting the threshold stress are reviewed
below:

2.4.1 Simple LEFM Approach

The first approximate relationship for ASi was derived from a simple Linear Elastic
Fracture Mechanics (LEFM) concept in which the notch size was considered to be the crack
size and the threshold condition was obtained when the applied stress intensity range equals
the long-crack threshold stress intensity range of the material [4,42,43]:

ASy = Ko

2.18)
Y‘\/ D

Equation 2.1R is applicable for sharp notches and is valid only for certain range of notch
depths. In many cases, the threshold stress of a notched component was controlled by the
presence of non-propagating crack (NPC) which was basically a phenomenon resulting
from the short crack behavior. Thus, equation 2.18 (based on long crack behavior) is not
valid for general cases. The works of Peterson, Lukas et al. and Topper et al. suggested
alternative ways to predict AS\y which roughly considered the effects of crack closure for
short cracks emanating from a notch.

2.4.2 Peterson Model

The fatigue notch factor (Kg,) used in the Peterson model implicitly included the
effect of the short crack behavior. As seen in Eq. 2.3, when the notch root radius is small
(sharp notch), Kgy is smaller than Kig; and when the notch root radius is large (blunt
notch), K approaches to K. The relationship between K, and Ky for a given nolich is
determined by Peterson's constant (ct) which implicitly represents the effect of material
properties on the short crack behavior. Knowing the value of o for a given material from
Egs. 2.4 and 2.5, the value of Ky, for a given notch geometry (Kip) can be predicted using
Eq. 2.3. The fatigue threshold stress range (ASihn) or the fatigue life in the long-life
regime (Egs. 2.1 and 2.6) may be estimated. The threshold stress is given by:
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ASe

ASihn =" (2.19)

Lawrence et al. [5,7] developed a worst-case-notch concept based on the Peterson
¢quation (Eq. 2.3). For notches with constant notch depth but various root radii, there is a

worst-case-notch condition. The maximum K, (termed Kimax) value occurred when the
notch root radius equals Peterson's constant (p = @) which is given by:

Kfmax =1+ Q (2.20)
(84

The concept of Kfmax is useful in determining the threshold stresses for components with
variable or undefined notch root radii such as weldments or "natural” notches (defects) in a
material, However, the validity of the Peterson equation and the intrinsic material
properties which affect the value of a (i.e., Eq. 2.4 and Eq. 2.5) need to be investigated.
This consideration will be described in Chapter 4.

243 Luk |

Systematic studies of the effects of notch size and notch acuity on the fatigue
threshold stress were reported by Lukas et al. [39,44,45]. They proposed an expression o
calculate the stress intensity range for a short crack emanating from a notch (AKs):

1.122K,ASY nx
AKg = —(————.

V 1+ 45/p)
where:

(2.21)

K; = Stress concentration factor (gross section)
AS = Applied stress range (gross section)
= Notch root radius

x = Crack length

The suffix 'S" in the term of AKg denotes that the crack is in the short crack regime. The
condition for a notch to be non-damaging with respect to fatigue threshold is:

AKs < f AKpo (2.22)
where f A constant between ¢ and 1
AKiho Long-crack threshold stress intensity range

i

I
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The physical meaning of f implies that there exists a short crack threshold stress
intensity range which is less than the long-crack threshold stress intensity range. Lukas et
al. assumed that the depth of microcracks on the surface of smooth specimens and the
depth of microcracks at the notch root are the same at the fatigue threshold condition. This
threshold crack length was denoted as 1. Thus, the border between propagation and non-
propagation is given by:

FAKhe = 1. 122ASC‘Q ntlg for a smooth specimen (2.2

1.122K \
f Ko = w 0 for a notched specimen (2.24)

N 1+ 4.50/p)

Equating Eq. 2.23 with Eq. 2.24, the threshold stress for notched specimens can be given
by:

AStan = ASe (for p < po)
V 1+4.5(1
ASinn = ASe ~—K—m(—°/p—)- (for p > po) (2.25)
where: lo = Maximum non-propagating crack length
p = Notch root radius
4.5

Po =

5 lo; critical notch root radius
Ki“-1

Since the value of fis an unknown value, 1, can not be derived directly. The value
of 1o was then determined from the best fit of Eq. 2.25 to experimental data. It is
questionable whether lg would remain the same if the tests were carried out using different
notch and specimen geometries. Furthermore, long-term tests are required to obtain a best
fit result of 1y to the experimental threshold stress data. The value of f was determined after
the value of 1 was obtained. The value of f was determined to be approximately 0.73 for a
2.25Cr-1Mo steel and 0.55 for a copper. Basically, the Lukas mode! considered the
effects of a short crack on the value of AK(h, and this effect is reflected in the values of f
and lg. Lukas et al. assumned that the short crack effect is the same for both notched and
smooth conditions, and they also assumed that the variations of crack closure level with
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crack length are same for all notches (i.e., the notch acuity effect on crack closure was not
considered).

244 T r M

El Haddad and Topper [40,41] suggested a stress intensity formulation for a crack
cmanating from a notch ;

AK = K'AS Vm(x + Ly) (2.26)

where: K

]

A stress concentration function (decreases as crack length increases)

~\ /————(X(Z?L:Lf) as crack passes outside the notch stress field

Intrinsic crack length as define in Eq. 2.12
Notch depth

Lo
D

The physical meaning of adding Ly to the crack length is the same as the Tanaka

model. Assuming the effective stress intensity range for a short crack emanating from a
notch is:

AKer = UTx) AK

(Vo \ =2 (a5 m0)
UhoK'ASY m(x+Lg) 2.2

and,

_ AKefr
AK = Uho {(2.28)

Equation 2.26 can be derived by combining Eq. 2.27 with Eq. 2.28. Topper et al. further
proposed that the threshold stress range can be derived from the condition that the stress
intensity range of a growing crack equals the long-crack threshold stress intensity range of

the material. The maximum non-propagating crack length (xy,) and the threshold stress
range are given by:

xth = VDLg (2.29)
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Y AS
ASthp =~ = (2.30)
1+\/ 2
s
where Y = Geometrical factor for stress intensity factor (= 1.12)
D = Notch depth
ASe = Range of fatigue limit for smooth specimen

The effect of crack closure for short cracks emanating from notches in the Topper
model was the same as in Tanaka's which represented the crack closure behavior in smooth
specimens. In other words, the effect of notch acuity on the crack closure behavior was
not considered.

It has been observed that the crack growth rate for a crack emanating from a sharp
notch is lower than that from blunt notches when both cases are compared at the same AK
at certain range of crack length [21,29,46]. This notch acuity effect on crack closure was
not considered in the Tupper model.

2 h mm

The Initiation-Propagation (I-P) concept for fatigue life prediction of notches uses
the fatigue notch factor (Kpy,) combined with the Basquin-Morrow equation to predict the
initiation life (the sum of nucleation life and early crack propagation life). The use of K¢y
(based on Peterson's equation) implicitly considers the short-crack behavior in the early
crack propagation regime,

A better alternative for predicting short-crack behavior which results in a single
model to deal with both short and long crack growth is the concept of crack closure and
AKefr. Three crack-closure mechanisms and the parameters affecting these crack closure
mechanisms were discussed. The anomalous growth rate of short cracks was explained by
the crack closure concept and rationalized by the AK,ff concept. Based on these ideas, a
crack-closure-at-a-notch (CCN) model was developed and will be discussed in the next
Chapter.

Finally, four models for predicting threshold stress proposed by other researchers
were reviewed and, in chapter 4, will be compared with the CCN model.
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3. OVERVIEW OF THE CRACK-CLOSURE-AT-A-NOTCH (CCN) MODEL

ndamenial Concepts of th N M

The fundamental concepts of the CCN model are that the relationship between
da/dN and AKefr is a unique material property and that AKegf ho is 2 material constant
independent of crack length as shown in Fig. 8 and discussed in Appendix E. The
anomalous crack growth rate of a (mechanically) short crack emanating from a notch is
mainly attributed to the higher AKef(x) value in the short crack region. The AKgi(x) for a
crack emanating from a notch can be obtained from the product of the stress intensity range
(AK(x)) and the effective stress intensity ratio (U(x)):

AKef(x) = Ux) AK(x) (3.1)

The major objective in the development of the CCN model is to model the function
of U(x) which depends upon the applied stress ratio, the notch parameters (i.e., K, D, and
Y) and the material properties (i.e., S¢, Sy, Utho, Ly, and AKypg). In developing the model
for U(x), different stress intensity factors and crack closure mechanisms must be invoked
for cracks within or beyond the notch-root stress field. Therefore, the concept of notch-
stress-field boundary (NSFB, also denoted as x*) was introduced (see Appendix B) which
permitted the development of a hybrid model for U(x). The function of U(x) developed for
the CCN model combines the work of Tanaka for short cracks and the work of Sun and
Sehitoglu for short cracks at notches. The basic concept of this hybrid madel for U(x) is
represented by Fig. 9 and the details are described in Appendices C and D. The limit of the
applicability of the CCN model is discussed in Appendix F.

2 imati nfinite Life using th NM

The threshold stress (AS) can be determined from the condition that the minimum
value of AKag(x) just equals the cxpcrimentally determined cffective threshold suress
intensity range for a long-crack (AKefr tho) as shown in Fig. 10. There is a minimum value
of AKeg(x) for a crack growing from a notch. The curve of AKegr(x) having a minimum
value equal to AKefr iho 15 AKefrn(x), and the applied stress range is the threshold stress
range of the notched component. Figure 10 shows three different cases of effective stress
intensity range (AKeg(x)) resulting from three different applied stress ranges for a crack
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emanating from a notch. In the case that the applied stress range equals ASy,, the effective
stress intensity range for the crack emanating from this notch has a minimum value of
AKeff tho, and the greatest possible length of the non-propagating crack is located at x =
Xth-

Appendix C details the model for predicting the threshold stress range (ASyp). The
value of ASy, for the relatively small notches can be given by:

AS ASe (Lo

= YO+ xm) \ Y Lyt Dogt (3.2)

where: AS, Range of fatigue limit of smooth specimen
Y(D+x) Geometrical factor; see details in Appendix A
Xth = The maximum non-propagating crack length
Lo = The intrinsic crack length; see Eq. 2.12
Desf = Effective notch depth =D - Ax
D
Ax

= Notch depth
= A modifier for the Tanaka model for crack closure due to the presence
of notch stress concentration

and the value of ASy, for the relatively large notches can be given by:

ASe Uho , Lo
Aslh = (D + X*) (3.3)

Up Y(x*)
where: x* = Notch stress field boundary (NSFB)
U:}, = The value of Ujn(x*) calculated based on the Sun and Sehitoglu model

The derivation of the effective notch depth (Degr) and U:h is described in Appendix

C.2. An iterative calculation must be carried out to obtain the exact value of AS, and ASthn
(calculated from the ASy and area of gross and net-section). When the calculated value of
ASihp 1s smaller than ASe/Kyn, no fatigue crack should form at the nosch root, and Egs. 3.2
and 3.3 are not applicable; therefore, under this condition, the largest applied stress range

(ASthn) for infinite life would be ASe/Ky,. In this case, the threshold stress is controlled by
the crack nucleation process.



23

The eifect of R ratio on the threshold swress range is mainly determined by AS¢ and
Lo, which are both R-dependent variables. The effect of notch geometry (K and D) on
ASy, is mainly reflected in the values of D¢y or U:‘h.

ift icti i Model

Figure 11 schematically shows the concept for estimating the total propagation life
(Np) of short and long cracks in a notched component using the CCN model. Once the
function AKe¢(x) is derived, the variation of erack propagation rate (da/dN) with crack
length (x) can be obtained using the experimentally determined refationship between da/dN
and AKefr (see Appendix E). The detailed procedures for modeling U(x) are discussed in
Appendix D.1.

The CCN model details the behavior of short cracks or early crack growth by
modeling U(x) for short cracks emanating from a notch. This total propagation life is
estimated by integrating the relation of da/dN vs. AKcfr(x) in which the crack length starts
from a defined initial crack length (/; concept of Dowling [4]) to the crack length at final
fracture. The total propagation life (Ny) for a notch is given by:

Xf
Np = J I (3.4)
' (U (x) AKY™
Xi
where: x = crack length from notich
Ci, mi = Constants; see Appendix E
U(x) = The variation of stress intensity ratio with crack length; see Appendix
D
xi = Initial crack length for integration = J;
I; = Transition crack length from Dowling [4]
x¢ = Final crack length at failure

The formulatons for stress intensity factor (SIF) for a crack near the notch root and
far from the notch are different. The transition point for the formulation of SIF was set at
the notch stress field boundary (x*). Appendix D.2 details the development of the model
for predicting the total fatigue propagation life (Np.
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The crack nucleation life for a crack nucleated from a notch can be estimated by
using the local strain approach based on the strain-life relationship. Because the CCN
model considers the details of the "early” crack propagation life, the value of Ky, can be
directly used to predict the crack nucleation life based on the Basquin-Morrow equation in
the long-life regime. The total fatigue life (NT) is considered to be the summation of crack
nucleation life (Np) and the total propagation life (Ng):

NT = Njp + Ny (3.5

where Na = Crack nucleation life; in long-life regime, Ny, can be derived from the
Basguin-Morrow equation (Eq.2.2) and Ky

(3.6)

For a large, blunt notch, N may dominate the total fatigue life; but for a small or
sharp notch, Nf may dominate the total fatigue life.
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4. CONFIRMATION OF THE CCN MODEL
4 Materi i insic Defe

4.1.1 Previ ies of Alumin ]

A cast aluminum alloy 319 was studied. This material is intended for use in
automobile engine blocks which are required to resist fatigue failure for over 108 cycles.
Thus, the long-life regime fatigue properties of this material are of great interest. The
fatigue resistance of a cast component is largely determined by its casting porosity [45-
47,64-68]. Casting pores cause high stress concentrations and hence reduce the fatigue
crack nucleation life. Moreover, once a fatigue crack nucleates at a casting pore, the large
size of the casting pore elevates the stress intensity factor and leads to more rapid fatigue
crack growth.

Uniaxial fatigue data for this cast alloy was first developed by Tyler {50] and later
by Siljander et al. {47] at a load ratio R of 0.1. The study of Siljander et al. showed that
the influence of casting pores on the fatigue properties could be estimated using 2 model for
fatigue crack growth based on the Paris law (i.e., using Eq. 2.6).

The General Motors Corporation carried out a field test of the engine blocks, which
showed that the stress history of an engine block had almost no net mean stress; and thus
the engine block service load history was similar to the R equals -1 condition.

While Siljander's crack growth model gave good agreement with test data for the R
equals 0.1 condition, there was concern that it would not predict experimental data for the
R equals -1 condition due to crack closure behavior under compressive loads. Long life
(NT for run-out specimen is defined by 1.25 x 108 cycles) stress-life (S-N), R equals -1
tests were performed on cylindrical bar specimens having both as-cast and polished (30
jtm) surface conditions. To aid in the modelling of the fatigue behavior of this cast
material, supplemental R = -1 crack growth rate tests (da/dN-AK) on single-edge-notch
plate specimens (SENP) were performed. All the experimental procedures and results are
described in Appendix G. The stress - life (S-N) data for both as-cast surface and polished
surface conditions, fatigue crack growth rate data (da/dN vs. AK) tested using constant-
load and load-shedding methods, the statistical distribution of casting pores sizes and the
statistical distribution of fatigue initiating defect sizes were experimentally determined. The
basic mechanical properties and fatigue properties of this material are listed in Tables 1 and

2. The test results of S-N data and the corresponding fatigue-initiating-defect sizes are
listed in Tables 3 - 5.
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One of the objectives of this study was to model the statistical characteristics of the
fatigue properties for this cast alurninum alloy 319 in the long-life regime. The CCN model
was used to predict the fatigue life and threshold stress (i.e., maximum stress for infinite
fatigue life) as a function of defect size distribution. Thus, the reliability of this material
under a given applied stress range can be estimared.

4.1.2 Fatigue Properties of Cast Alyminum Alloy 319

Fatigue cracks were observed to initiate from near-surface casting pores in the
polished specimens and from cast-surface texture discontinuities in the as-cast specimens.
The initiating defect size was quantified by the square root of its area projected onto the
plane normal to the applied stress direction, i.e., T or ¥Area. Statistical analysis showed
that T (or VArea) is a normal distribution function with a mean of 0.5 mm and a standard
deviation of 0.16 mm for both as-cast and polished specimens.

In the calculalion of the stress intensity factor for a surface crack or a crack
emanating from the near-surface casting defects in a cylindrical specimen, a parameter
termed aspect ratio (AR) must be introduced. The aspect ratio is the crack depth divided by
half of the crack length on the surface (see Appendix A.1). When the fatigue initiating
defect is considered to be a "natural’ notch and when the crack closure of a crack emanating
from this 'notch’ is considered, the fatigue properties of this cast alloy are dependent on:

* Load ratio,

» Defect size,

* Defect shape (aspect ratio and acuity of the defect),

e Specimen geometry.

From a practical point of view, the defect shape is hard to determine. In general,
the shape of a crack emanating from the near-surface casting defect is considered to be
similar 10 the shape of a thumbnail (including the casting defect itself). The aspect ratio of
this crack shape falls approximately within 0.8 £ 0.1{51,52]. The details of this parameter
(aspect ratio, AR) are discussed in Appendix A. Fatigue cracks observed in this study
initiated from the most acute locations on the outer perimeter of near-surface casting pores
(see Appendix I). Thus, the casting defects were considered to be very sharp notches, and
the notch root radii (p) for all the fatigue initiating defects were assumed to be 0.02 mm. In
fact, the notch root radii (p) of the fatigue initiating defects were non-determinable. The
assumption of the value of 0.02 mm for p was based on the fact that the smallest radius of

the casting defect is approximately equal to or less than the size of the dendrite arm spacing
(~ 0.03 mm, see Appendix G).
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Siljunder's LEFM model and the CCN model were used to predict the fatigue life
for the R equals 0.1 data and the R equals -1 data.

4.1 ictions B iljander
Siljander [47] found that the role of fatigue defects can be quantified using a linear-
elastic fracture mechanics (LEFM) model. Based on this simple LEFM model, the fatigue

life and threshold stress can be estimated for an R ratio of 0.1. The relation between
threshold stress (Sy,) and the defect depth (D) is:

Sth = AKiho
1- R)Y(D)V rD

where: AKiho = The long-crack threshold stress intensity range; see data in Table 2.
R = Load ratio
YD) = Geometrical factor for stress intensity calculation
D = Initial defect depth

(4.1)

The fatigue life can be calculated using the Paris law:

N = Np = J B (4.2)

D = Initial defect depth

C = Paris' constant in stage IT; see data in Table 2

m = Paris’ exponent in stage II; see data in Table 2

Dr = Final defect depth at fracture; calculated by:

Kig = Smax Y(Dg) Y n(Dy)

Kiq = Fracture toughness = 9.0 MPavm
AK = Suessintensity range = Y(a) (1 -R) Smax \ 72
Y{(a) = QGeumetrical factor where 'a’ Tanged from D 0 Dy

The total fatigue life (NT) was assumed equal to the propagation life because the
casting defects were considered to be "crack-like" defects (the initiation life can be

neglected). The test results from Siljander's study [47] were compared with the
predictions based on a simple LEFM model (Egs. 4.1 and 4.2) as shown in Fig. 12. The
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experiments were carried out using cylindrical specimens with 7.62 mm diameter for the R
equals 0.1 condition. Experimental results were separated into three groups by defect
depth: 0.2 €D <0.5mm, 0.5 <D £0.9 mm, and D > 0.9 mm. In the predictions, three
values of defect depth were selected: 0.4, 0.7, and 1.2 mm. The aspect ratios (AR) of the
fatigue initiating defects were assumed to be 0.8. Tt is apparent that the LEFM model
gives satisfactory predictions for the R equals 0.1 condition as shown in Fig. 12.

Using the LEFM model to predict the $-N curve for the R equals -1 condition, the
predictions and experimental data for the cylindrical specimens of this study are compared
in Fig. 13. The fact that the experimental data are always: lower than the predictions
indicates the LEFM model (Siljander's approach) can not be used for the R equals -1
condition. The reason that the LEFM model can be used at R equals 0.1 but cannot be used
at R equals -1 is mainly due to crack closure behavior: the effect of crack closure increases
with decreasing R-ratio and the influence of anomalous crack growth rate for short cracks
increases with decreasing R-ratio (see Chapter 2). Thus, the CCN model, which considers
the effects of crack closure and the behavior of short cracks, was used as an alternative to
the simple LEFM model.

4,14 Predictions Based on the CCN Model for Cylindrical Specimens

Comparisons between predictions made using the CCN model and the experimental
data for the R equals 0.1 condition are shown in Fig. 14. Comparing Fig. 14 with Fig. 12
(R = 0.1), the predictions made using the CCN model give better results than predictions
from the Siljander model. Figure 15 compares the experimental data with predictions from
the CCN model for the R equals -1 condition, The predictions agree very well with the
experimental data.

Comparisons between predicted and experimental lives for cylindrical specimens
are given in Figs. 16a - 16d. The fatigue life is plotted against defect size for various levels
of applied stresses. Fairly good resuits can be seen in all cases, although the CCN model
provides conservative estimates of the fatigue life. A trend observed in Fig. 16 shows that
the effect of defect size on fatigue life was more severe in the low stress range than in the
high stress range. The as-cast surface condition scoms to have a lower fatigue lifc than the
polished condition under the low stress conditions as shown in Fig. 16a and 16b. The
cause may be attributed to the different aspect ratios of the two surface conditions. The
cast-surface texture discontinuities in as-cast specimens facilitate the crack growth on the
surface, which consequently leads to lower aspect ratios. However, the S-N behaviors of
these two surface conditions are not significantly different from a statistical point of view
(see Appendix H).
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Because the size distribution of the fatigue initiating defects can be represenied by a
normal distribution with a mean of (.5 mm and a standard deviation 0.16 mm, the S-N
curve for a certain probability of survival can be obtained by assuming that the defect size is
the dominant parameter which affects the scatter of fatigue life at a given stress. From the
normal distribution of defect sizes, 99.99% of the defects have sizes less than 1.09 mm,
99% of the defects have sizes less than 0.87 mm, and 50% of the defects have sizes less
than 0.5 mm. Using 1.09, 0.87 and 0.5 mum as the criteria for the 99.99%, 99% and 50%
survival levels and assuming an aspect ratio of 0.8, the fatigue lives corresponding to these
levels of reliability were calculated. The predicted results were compared with the
experimental data as shown in Fig. 17.

The predicted and experimental data of the threshold stress (gross-section Sy;) are
compared in Fig. 18 in which the threshold stress is plotted against fatigue initiating defect
size. The solid symbols represent the failed-specimen data, and open symbols represent
the run-out data (NT > 1.25 x 108 cycles). The predictions are shown by lines with aspect
ratio values of 0.7, 0.8 and 0.9. Applied stresses in the region below a given line would
lead to infinite fatigue life. Using 1.09 mm as the criterion for the 99.99% survival limit
and assuming a conservative value of the aspect ratio (AR =0.7), a threshold stress of 33.3
MPa (4.83 ksi) would ensure a 99.99% survival level.

Further confirmation of the accuracy of the CCN model was made by analyzing the
test data obtained from the Central Foundry Division of the General Motor Corporation
[741. ‘The material used in these tests was from a similar casting process and the same heat
treatment as the material used in this study, but contained more Si and Mg. Tests were
carried out using as-cast surface specimens with an R of -1. The test results are listed in
Table 5. The predictions based on an aspect ratio of 0.8 are compared with the test results
in Fig. 19. Defect sizes of 0.5, 0.87 and 1.09 mm are used to define the survival levels of
50.00%, 99.00% and 99.99%, respectively. Four experimental data points at Spax < 60
MPa are seen to exhibit shorter than average fatigue lives. Three of these four broken
specimens were observed using an SEM to measure the fatigue initiating defect sizes. All
three specimens have fatigue-initiating defect sizes (T = vArea) larger than 0.7 mm; see the
data in Table 5 and the photograghs in Fig. 20. Although the fatigue crack growth
behavior and the defect size distributions might be slightly different than those used in this
study -- due to different compositions -- the CCN model still gives satisfactory predictions.
These results may imply that slight changes of chemical compositions do not affect the
fatigue properties.
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4.1.5 Life Predictions Based on the CCN Model for SENP Specimens

Comparisons of predictions with experimental fatigue properties for single-edge-
notch plate specimens (SENP) were made. Using the equation described in Appendix A to
calculate AK for the SENP specimen and the CCN model detailed in Appendix D to predict
the function of U(x) for a crack emanating from a notch, the variations of crack growth rate
(da/dN) with crack length (x) were estimated for various notch and stress conditions. The
predicted da/dN and the measured da/dN as a function of crack lengih are compared in Fig.
21a (Kip = 4.85) and Fig. 21b (Ky = 11). The solid lines are the predicted results, and the
data points are the experimental results. For both notched conditions, the predictions are
fairly good in the higher stress ranges but not very good in the low stress range (AS = 73
MPa) for which the cracks are shorter than about 1 mm.

The CCN model was used to predict the fatigue lives of SENP specimens with a
constant notch depth (D = 1.6 mm) and various root radii (p = 0.06, 0.4, and 0.8 mm).
'The predictions are compared with experimental data in Fig. 22. In addition to yielding
good predictions for the lives of the cast specimens, the CCN model is also capable of
predicting the lives of machinc-notched specimens for cast aluminum alloy 319,

4 omponenis with Machined Noich

To further confirm the validity of the CCN model, ten sets of fatigue data found in
the literature were compared with the predicted values of the threshold siress range (ASin).
The materials included two aluminum alloys, three carbon steels, and three special alloy
steels. The specimens and notch types included circumferentially notched cylindrical bars
(CNB), center notched flat plates (CNP), and double-edge notched flat plates (DENP).
The geometrical factors (Y(a)) used in the stress intensity factor solutions of the assorted
notched specimen geometries are summarized in Appendix A.

Table 6 lists the material properties required for all of the predictions: (1) yield
strength (Sy), (2) fatigue limit of smooth specimens (ASe), (3) long-crack threshold-stress-
intensity range (AKiho). (4) the effective-threshold-stress-intensity ratio for a long crack
(Utho), and (3) tensile strength (Sy,). The values of Uy were derived as described in Eq.
2.13 (i.e. Utho = AKeff.tho/AKihg). For the cases when the values of AKefs o could not
be assessed, equation 2.10 (AKeff iho = TE) was used. The values of H/E were assumed to
be 0.01 for aluminum alloys and 0.07 for steel.
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The experimental results and predictions of the CCN model are compared in Table
7. Itis apparent that the predictions based on the CCN model agree well with most of the
experimental data except in the case of the RS L65 aluminum alloy (Case 6 in Table 7).

As discussed in Section 2.4, the relationship between ASh, and Kyy, for a constant-
depth notch (D = constant) can be described by the Frost relation (Fig. 6), and the
relationship for a geometrically similar notch (K = constant) can be described by the Lukas
relation (Fig. 7). These trends were also predicted by the CCN model. Figure 23 plots the
normalized threshold stress (ASipn/ASe) as a function of Ky for the constant-depth notches
(Cases 1-3 in Table 7). Figure 24 (Cases 4,5,7,and 8 in Table 7) shows the relations
between normalized threshold stress and notch depth (radius) for the geometrically similar
notches in which all the values of Ky are about 3, However, the values of Ky, decrease
with increasing notch depth. As seen in Fig. 24, ASyn approaches AS, for very shallow
notches, but decreases rapidly to a minimum value with increasing notch depth. Thus, the
threshold stress of a notched component (ASyn) is a function of both stress concentration
(Ktn) and notch depth (D).

4.3 Comparnson of CCN Predictions with Those of Other Models

Six other models were used to predict ASihyg, and these predictions were compared
with the experimental results and the CCN model predictions. The six models are:
Peterson (Type I and Type ID). Lukas, Topper, Sun (M) and Sun (Q). Twa different
equations (Eqs. 2.4 and 2.5) were used to derive the values of Peterson's constant (o and
arp). The first one, termed PTS(1), uses Eq. 2.4 to calculate Peterson's constant (o) and
the second one, termed PTS(IT), uses Eq. 2.5 to calculate Peterson's constant (o). The
predicted results from these models are listed in Table 7. The value of f (see Section 2.4.3)
used in the Lukas model was assumed to be 0.73 for all cases. The definitions of the
Sun(M) and Sun(Q) model will be discussed later.

As seen from Table 7, the Topper, Lukas and Sun (M) models agree well with most
of the experimental data except for the case of the BS L65 aluminum alloy (case 6 in Table
7f); whereas, the Peterson models (both PTS(I) and PTS(I)} and Sun {0) model
overestimate the threshold stresses in many cases. Statistical analyses were performed to
compare the validity of the seven models and are presented below:

431 iti m idi ]
The "Error%" 1s defined as the difference between the predicted value and the
experimental value divided by the experimental value:
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- ASthnmred} - Asmn(cxg) 7
Error% = ASthn(exp) x 100% (4.2)
where:
ASihn(pred)y = Predicted value of threshold stress range (ASun)

ASthn(exp) Experimental value of threshold stress range (ASihn)

The “Error%" calculated from each model was considered to be a normal
distribution. The cumulative distribution function (CDF) of the "Error%" was plotted
using normal distribution paper. The CDF versus the "Error%" calculated from each model
was used to verify the validity of the model. A good model should have its "Error%"
distributed around 0% and have a steep slope in the CDF versus the "Error%" plot.

The average absolutc "Error%" (AAL%) is another quantity used (0 compare the
validity of models. A good model should have low value for the "AAE%". The "AAE%"
is defined as the sum of the total absolute error divided by the total number of ohservations:

N
| Error%);|
i=1
AAE% = No (4.4)
where; No = Total number of observations

4.3.2 Comparison of the CCN Model with the Peterson Model

Figure 25 compares the cumulative distribution functions of the "Error%" for the
results predicted from the CCN model and from the two of Peterson equations. Of the data
predicted by the CCN model, 95% fall within £ 20% (Error). Only about 60% of the
predictions made by the Peterson models fall within + 20% (Error). These results indicate
that either o and oy are not good models for predicting Peterson's constants or the
Pererson model itself is not a good model for predicting the threshold stress.

4.3.3 Comparison of the CCN Model with the Topper Model and the Lukas Model
Comparisons of the validity of the CCN, Lukas and Topper models using the
normal distribution plot of the CDF of the "Error%" are shown Fig. 26. The fact that the
CDF of the "Error%" calculated using the CCN model has the hi ghest slope indicates that
the CCN model gives the best predictions of the three models. It is noted that the
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predictions of the Topper model have a4 end of under-predicton, and the predictions of the
Lukas model are almost as good as the CCN model, but the scatter band of the "Error%"
resulting from the Lukas model is larger than that of the CCN model.

As dlscussed in Sccuon 2. 3 2, the Us(x) function proposed by Sun and Sehnoglu
described the variation of stress intensity ratio with crack length for a crack emanating from
a notch. The CCN model used Sun and Sehitoglu model to describe Uwy(x) for a crack
within the notch stress field boundary but a modification of the stabilized opening stress
(Sopo) was made as discussed in Appendix C.1. This modification was based on the
concept that at the threshold condition the calculated U, value based on the plasticity-
induced crack closure (PICC) mechanism should not be lower than the experimentally
determined long-crack threshold stress intensity ratio {(Ugg). Thus, there are two possible
US(x) functions: the first is the Original US(x) function, which does not consider the
threshold limitation (i.e., Uy may be smaller than Ugg), and the second is the Modified
US(x) function, which considered the minimum U, to be limited by Uiho- The CCN model
combined the Modified US(x) function with the Tanaka model.

The threshold stress range can be predicted based on the combination of AK with
the U3(x) function. Utilizing the US(x) function, the threshold stress is obtained by the
condition that the minimum AKefr h(x) just equals AKesrho (the same procedures as
described in Chapter 3). The threshold stress derived by the Sun(M) model was based on
the Modified US(x) function, and that derived by the Sun{Q) model was based on the
OQriginal US(x) function,

Figure 27 compares the "Error%" of the predictions based on the CCN, the Sun(M)
and the Sun(O) models. It is apparent that the Modified model (Sun(M)) gives a better
prediction than the Original one (Sun(0)). As seen in Table 7, the different predicted
results of the Sun(O) and Sun(M) models occurred in the aluminum alloys in which the
(experimentally determined) Uy values were higher than the calculated U, values. The
improved results from the Sun(M) model imply that the concept to force a minimum U,
value at Uino may be justified. Figure 27 also shows that the predictions from the CCN
model are better than the Sun(M) model, especially for the small notches (see cases 4, 5,7,
and 8 in Table 7).

Figure 28 compares the "AAE%" resulting from all the models and also shows that

the CCN model has the least average absolute error in predicting the threshold stress range
for notched specimens.
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The roles of casting defects and machined notches on the fatigue behavior of cast
aluminum alloy 319 were successfully predicted by the CCN model. Good agreement was
also found between estimated values of the threshold stress and the experimental data
reported in the literature. The CCN model appears to provide better predictions of the
fatigue behavior at near-threshold conditions than other models.
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5. DISCUSSION

-Li ] i i Aluminym Alloy 319

1.1 _Comparison xperimental Results wi iction h N M

Fatigue cracks were observed to initiate from near-surface casting pores in the
polished specimens and from cast-surface texture discontinuities in the as-cast specimens
(see Figs. G.8 and G.9). The initiating defect size was quantified by the square root of its
area projected onto the plane of observation, i.e., T or YArea (Fig. G.9). The quantity (T)
proved to be a useful measure for representing the severity of a defect. This study also
showed that there was a difference between the size distribution of casting pores and the
size distribution of fatigue initiating defects (see Fig. G.12). However, using the size of
(apparently isolated) casting pores as a quality control parameter ignores the fact that the
pores are often three-dimensional aggregates. Simple metallographic techniques may not
expose the plane which contains the maximum projected area of a defect, and thus may
yield a very poor indication of the true quality of a casting.

Statistical analysis showed that the fatigue-initiating defect sizes for both polished
specimens and as-cast specimens were the same (Fig. G.10). The size distribution of the
fatigue initiating defects in the cast aluminum alloy 319 is a normal distribution with a mean
of 0.5 mm and a standard deviation of 0.16 mm.

As described in Appendix [, it was observed that the fatigue cracks originated from
the most acute locations on the outer perimeter of an initiating defect, and that the crack
nucleation life (Ng) was almost negligible. These observations indirectly suggest that the
notch root radius (p) of the initiating defect must be very small. The notch root radii of all
the fatigue initiating defects were assumed to be 0.02 mm for the CCN model. The fatigue
life predictions based on this assumption agree with the experimental results (see Figs. 14-
16).

The CCN model was employed to predict the fatigue lives of the SENP specimens
which had a constant notch depth (D = 1.6 mm) and variable notch root radii (K = 11,
4.85 and 3.6). Experimental results showed that the blunt notches have lower fatigue lives
than the sharp notches; this phenomenon was successfully demonstrated by the CCN
model (see Fig. 22).

1.2 Difficulti ith E nd EPFM Model
Siljander [47] used a simple LEFM model (da/dN versus AK relationship) to predict
S-N data (NT > 103 cycles) for R = 0.1 and found that his predictions agreed with his
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experimental data satisfactorily, Starkey [66] used the theory of Elastic Plastic Fracture
Mechanics (EPFM) (da/dN versus AJ relationship) to predict $-N data (NT < 105) for R 2
0.1 and found that the calculated lives agreed with the experimental lives within a factor of
four. Both of these studies neglected the effect of crack closure.

However, for any R ratio < -1.0, the effect of crack closure becomes significant.
The LEFM model failed to predict the fatigue life of cast aluminum alloy 319 for the R = -1
condition, as discussed in Chapter 4. In developing the life prediction model for cast
aluminum alloy CP 601, Couper et al. [49] used the relationship of da/dN versus AKef to
predict the fatigue life (as a function of defect size). Couper assumed that AK g = UAK
(where U is a constant independent of crack length), and found that the best predictions
were obtained when U was assumed to be 0.5. However, the selection of U = 0.5 was
empirical and may not be generally applicable.

In contrast to Couper's model, the CCN model predicts U(x) as a function of crack
- length (x), applied stress conditions (R, Smax), material properties (Sy, Lo, E, and Uyyg),
and notch conditions (K and D). Therefore, the CCN model has the ability to predict the
fatigue lives and the threshold strcsses for both natural defects and machined noiches in the
long-life regime.

5.2_The Role of Notches in Fatisue Suggested by the CCN Model

Notches cause stress concentrations which enhance the crack nucleation processes
in the plastic zone ahead of the notch root. Sharper notches are believed to have shorter
crack nucleation lives (Np). The crack nucleation life can be predicted using K, and strain-
life approaches in the long-life regime. Once a crack has nucleated at a notch, the effective
stress intensity range (AKer(x)) controls the crack growth rates; and hence dominates the
total propagation life (Ny).

The main parameters which influence the nucleation life (Ng) and the total
propagation life (Nf) for notched components are:

1. Model parameters:

* The value of initial crack length for integrating the fatigue life (x;)
* The value of notch stress field boundary (NSFB)
2. Material properties:
* Yield strength (Sy)
« Fatigue strength coefficient of smooth specimen (o'p)
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 Farigue strength exponent of smooth specimen (b)

« Elastic modulus (E)

» Range of fatigue limit (AS.) for smooth specimens

» The value of H/E ( =0.01 for Aluminum alloys and 0.07 for steel)

= Long-crack threshold stress intensity factor (AKyp)

* da/dN vs. AKeqr (or da/dN vs. AK) data obtained by load-shedding
3. Notch parameters:

¢ Notch acuity (K{)

+ Notch depth (D)

The influence of the above parameters on predicted values of ASy, and NT under
constant stress amplitude conditions was investigated. Ten hypothetical materials were
assumed and their properties are shown in Fig. 29. These materials (AL-1 to AL-5 and
ST-1 to ST-5) were used to study the role of material properties on the fatigue notch effect
in the following sections. The AL-1 and ST-1 are the highest strength materials and the
AL-5 and ST-5 are the softest materials used in these CCN model simulations. Both the
AL and ST series have the same material properties except for the value of H/E (H/E = 0.01
for AL and H/E = 0.07 for ST). Note that all the materials have the same da/dN versus
AKefr relationship. The simulations were based on a centered notch in a plate (CNP)
specimen with semi-infinite width (W = 10,000 mm). The plane-stress condition was
assumed.

2.1 Inflyence of Model P

The total propagation life (Ny) predicted using the CCN model is calculated by
integrating the crack length from x; to x¢: see Eq. 3.4. The value of x; was assumed to be /,
: see Eq. B.3. The CCN model uses Dowling's concept [4] of I; as an initial crack length
for life prediction. As asserted by Dowling, for cracks shorter than [, the plasticity effect
near notch generally causes large errors in AK calculation due to plasticity effects [35].
Thus, the CCN model estimates the total propagation life (N¢) for x = /,.

The influence of the initial crack length on the CCN model was investigated by
varying the xj values from 0.5/, to 1.5{,. Material AL-1 (Lg = 0.0052 mm) was selected as
the basis of the simulation. According to the CCN model, changing the value of x; does
not affect the predicted value of threshold stress (AS,) because the minimum in AKegr 1(x)

occurs at crack lengths larger than the notch stress field boundary (x*) which is larger than
{; (see Fig. B.1).
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However, as shown in Fig. 30, changing the value of x; does affect the predicted
total prapagation life (Ny) especially for small notches. Figure 30 compares the predicted
Nr by changing x; values for AL-1 with four notch depths. The predicted values of Ny are
strongly affected by the value of x; for D = 0.1 and 0.5 mm, but they are not significantly
affected for D 2 1.0 mm.

The effect of the values of notch stress field boundary (NSFB) on the CCN model
was also investigated. The sensitivity of the NSFB on the CCN model was studied by

varying NSFB values from /; (about 0.05 \FDE to 0.24 \/_D; for notches of Kyn =7. The
predicted fatigue life is little affected by varying the value of NSFB; the larger the NSFB,
the longer the fatigue life. Figure 31 shows the influence of selected values of NSFB on
the predicted threshold stress. The smaller notch is more sensitive to the selected values of

NSFB. However, in the range between 0.13 { Dp and 0.21 y Dp (the possible NSFB
suggested by Smith et al.; see Appendix B), the dependence of the selected values of
NSFB on threshold stress is almost negligible.

2.2 _Effect of Materi ies and Notch Parameters on the Fatigue Lifs

The difference in fatigue life between sharp and blunt notches is determined by two
competing processes: K, for crack nucleation life and AKg(x) for subsequent crack
propagation life. Figures 32a (based on material AL-3) and Fig. 32b (based on material
AL-5) show the changes of $-N relationship with notch depths and with two K values (K
=3 and 7). For sharp notches (K, = 7), the total fatigue lives (N) are always dominated
by the total propagation lives (Ng) no matter how deep the notches are. For large-blunt
notches (K¢ = 3) of higher strength material (AL-3), N dominates the total fatigue life in
the long-life regime; but this result is not seen in the softer material (AL-5) for which the
total fatigue life is still dominated by the total propagation life (Ng). These results indicate
that the change of the S-N relationship for a notched component is dependent on notch
depth, notch acuity and the material properties. Generally, high strength materials are more
likely to be dominated by the crack nucleation process (for blunt and large notches);
whereas, low suength materials are more apt to be dominated by the crack propagation
process.

From an engineering point of view, the total propagation life (Np) can be separated
into two parts: the early crack propagation life (Np1) and the propagation life (Np2). While
the transition from early crack propagation to propagation is not sharply defined, there is a
general concept of early crack propagation which is assumed to be that portion of life spent
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in developing an engineering size crack (0.25 mm). Thus, the total fatigue life (NT) can be
given by:

NT = Ny +Ng = Ny +Npp + Np2 (5.1)

where: Nt = Total fatigue life
Nn = Crack nucleaton life
Npi = The early crack propagation life for crack growing to an engineering
crack size (0.25 mm)
Np2 = The propagation life for crack growing from 0.25 mm to failure

Figures 33a and 33b illustrate the effect of material properties (AL-1, AL-3 and AL-
5) and notch depths (D = 0.5 mm and 5.0 mm) on the importance of each fatigue-life
portion for the geometrically similar blunt notches (K; = 3) and sharp notches (K; = 7).
For high strength material (AL-1), most of the fatigue life was controlled by the crack
nucleation life (Np). For soft material (AL-5), fatigue life is more likely to be dominated by
the propagation life (Np2), especially for the sharp notches or the large-blunt notches.
Figure 33 proposes a concept for in-service inspection and repair on the notched structure
reliability. For cxample, if an engineering size crack (0.25 mm) was found in a soucture
made from AL-1, this component should be repaired immediately, but, if this structure is
made from AL-3 or AL-5, the need for repairing this structure depends on the depth and
acuity of the notch from which the crack emanated. Generally, for an engineering structure
made from a soft material, the total fatigue life is controlled by the propagation life (Np2),
thus, the structure would sustain a long fatigue life even an engineering-size crack
develops.

2 ffi £ Mater i Notch n the Threshol

In the long-life regime, the most important fatigue property is the threshold stress
which depends upon the value of K¢y:

AS
ASihn =g * (2.19)

Figure 34 shows the variation of K, with notch depth as a function of L, and H/E
for a blunt notch (Kiy = 3 in Fig. 34a) and for a sharp notch (Kin = 7 in Fig. 34b). For
low Lo materials, there is no significant difference between the two different H/E values
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(aluminum and steel); however, for high Lo materials, the difference is significant. For
both aluminum and steel, the values of K, increase with increasing notch depth until Kg, =
Kin. Neglecting the effect of H/E values, the maximum notch depth (Dp44) above which
Kn always equals Ky and the fatigue notch size effect vanishes can be estimated by:

Dmax = Lo Kin (5.2)

Equation 3.2 indicates that a high strength material (low Lo material) has a higher
notch sensitivity because it has a smaller Dipax. As shown in Fig. 34b, for notches with
K =7 and D = 1 mm, the highest strength material (AL-1; Lg = 0.0052 mm) has K¢ =
Kin = 7, the medium strength material (AL-3; Ly = 0.177 mm) has K¢, = 2.7, and the
lowest strength material (AL-5; Lo = 0.934 mm) just has Kgy = 1.7. The above example
indicates that the value of intrinsic crack length (Lo) is the most important material property
in describing the effect of material properties (compared at the same H/E value and the same
AKefr tho) on the fatigue of notches at the threshold condition.

metrically Simil nstant D tch

1 The A nt Di B Work of Fr nd L

The effects of notch depth (D) and notch acuity (Kyy) on threshold stress range
(ASthn) are schematically illustrated by the Frost relation (Fig. 35a and 35b) which
completely describes the effect of notches in fatigue. Figure 35a shows the variation of
threshold stress with notch acuity for constant depth notches with three different depths.
For a small constant depth notch (e.g., D1), ASinp equals the fatigue limit of a smooth
specimcen (ASe) up to a certain Ky, value, and then decreases with increasing Kp; finally,
AShp approaches a stable value. The threshold stresses varying with Ky, for this constant
depth notch (D = Dy) are all controlled by the existence of non-propagating cracks (NPC).
When notch size is large and greater than Dppay (e.2., D3), the values of ASyy always equal
ASe/Kin and no non-propagating cracks should be observed. The Frost relation (Kgy is
almost a constant for Kip 2 Ky; see Fig. 6) only occurs in the middle range of notch size
(e.g. the D7 constant depth notch in Fig. 35a) in which the threshold conditions are
controlled either by the non-propagating cracks (NPC), for sharp notches, or by the
nucleation of cracks for blunt notches.

For geomerrically similar notches (Dfp = constant ; sec Fig. 35b), ASihn equals
ASe when D is smaller than a critical notch size (the maximum non-damaging notch size).
When D is larger than the maximum non-damaging notch size, ASy, sharply decreases
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with increasing notch size to a minimum value and then increases with increasing notch
depth.

The apparent discrepancy between the Frost and Lukas relations as discussed in
section 2.4 is reconciled in Fig. 35b. The dashed lines in the left-hand side of Fig. 35b
(Frost relation) represent the relation between ASi, and D for two geomerrically similar
notches (K¢ = 3 and 7). The corresponding Lukas relation was also shown in the right-
hand side of Fig. 35b. As seen in the case of notch with K; = 3, when D £ Dy, ASthn
equals ASe; when D 2Dy, ASihy decreases with increasing D; and when D increases to D3,
ASthn reaches a minimum value. All the threshold stresses were determined by the non-
propagating crack behavior for D < D3. When D 2 D3, ASyn;, increases with increasing D,
because in this range, AS¢hy is controlled by the value of ASe/Kin (i.e., "no cracks" range).
The value of D3 shown in Fig. 35b is the Dpyax of this geometrically similar notch (K = 3).
Equation 5.2 shows that Dpax is proportional to the square of Ky, (higher Ky notches have
higher Diax values). This trend is also represented in Fig. 35b; the sharp geometrically
similar notches (K¢ = 7) have a larger value of Dyax (Pmax = D4) than the blunt ones (Dppax
= D3). Figure 35D also shows that a sharp notch has a smaller value of maximum non-
damaging notch depth than a blunt notch (i.e., Dg < Dy).

nstant D

The effect of notch acuity and notch depth on the threshold stress for the constant
depth notches can be represented using the relationship between K, and Ky, shown in Fig.
36. For a constant depth notch, K, generally achieves a maximum value as one increases
the notch acuity. For a deep notch, the value of Kg, equals Kip up to a maximum value
(Kfmax) and then slightly decreases with increasing Ki; whereas, for a shallow notch, Kip
slightly increases with increasing Ky and approaches a stable Kimax. However, as pointed
out in Eq. 5.2, the existence of a worst case notch must be limited for D < Dpax; when D >
Dmax, Kf always equals Ky,

Lawrence et al. first proposed the concept of the existence of worst-case notch
(Kfmax ; see Eqg. 2.20) which implies that the damaging effect of a notch on the fatigue
strength does not directly correlate with the sharpness of the notch and that the sharpest
notches may not be the most damaging. This Kgmax concept was also verified by the CCN
model as shown in Fig. 36. As seen in Fig. 36a and 36b, for a given material, the values
Kfmax increase with increasing notch depth. By comparing the effect of material properties
on the variation of K with Kip based on the same notch depth (Figs. 36a and 36b), one
sees that the relatively high stength material (AL-3) always has a higher Kpax than the
relatively low strength material (AL-5).
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The values of Kimax between the previous work of Lawrence and the CCN model
would be different. Lawrence Krmax model was derived based on the Peterson model,
thus, the accuracy of this model must be dependent on the assumption that the Peterson
model is accurate. As seen in Fig. 25, the Peterson model has a trend of over-predicting
threshold stress (1.e., under-predicting the Kf, value). The Lawrence Kg, model takes the
maximum Kg, value from the Peterson model, thus, the Lawrence Kimax model might give
good predictions of Kpmax values [7], but the Ky value where Kipax is located would be
questioned, because the trend of Kpy versus Ky, proposed by the Peterson model did not
agree well with the experimental results (see Table 7 and Fig. 25).

metrically Simil

The work of Lukas suggested that geometrically similar notches had a minimum
value of AShg for some value of notch depth, that is, for some maximum value of Kg,.
From inspection of Fig. 35b, it is clear that the worst case for geometrically similar notches
occurs when the notch size equals Dpax . Above the Dingx  value, the notch size becomes
large enough that the existence of a non-propagating crack is impossible at the threshold
condition. The values of Kfyax for geometrically similar notches are different from the
Kfmax values for constant depth notches,

5.4 _The Maximum Non-Damaging Notch Depth (Xpc)

It is well known that the fatigue life or the threshold stress of a low strength
material is not affected by smali defects or slight surface roughness. The question is what
is the maximum defect size a material can tolerate and have the same fatigue resistance as a
smooth specimen. This topic has been studicd for scveral years by Lukas et al. {39,45],
and they proposed that a notch is non-damaging when:

4.51
= _I?[,@_C-)I (5.3)

where: lo = Maximum non-propagating crack size for smooth specimen (Also see
Egs. 2.23 - 2.25)

However, Eq. 5.3 is only valid for the condition that Ky <4 [45]. Thus, a general
quantitative determination of the maximum non-damaging notch depth has not been
established yet; but qualitatively, it is well known that a higher strength material has a
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sinaller maximum non-damaging notch depth than a lower swength marterial. As discussed
in Appendix F, the maximum non-damaging notch depth (denoted as Xgc) can be
considered to be the limit of the CCN model applicability at the fatigue limit; when the
notch depth is smaller than the Xpc, K = 1 and when notch depth is larger than the Xpc,
K > 1. Thus, a specimen with a notch depth smalier than the Xg¢ value may be treated
as a smooth specimen.

The influence of the material property Lo on Xpc for aluminum alloys is shown in
Fig. 37a. The values of Xpc increase with increasing L. The variations of Xp¢ with K,
at the same Ly indicate that the value of K, is also an important parameter affecting Xpc.
When the data points in Fig. 36a arc represented by the relation between Xpe and Lo/VK |,
all the data points fall into a nearly straight line (Fig. 37b), and, Xpc is given by:

For aluminum alloys with3 <K;<7andR = -1,

1 Lo
Xpe = 2.5 +0.52 4
where: Yo = Geometrical factor for crack length approaching zero
Yo = About 0.76 for a semi-circular surface crack in a cylindrical bar

assuming that the aspect ratio equals 0.8, and Xpg is the length in the
radial direction.

Yo = 1.0 for acenter notch in a plate (CNP)

Yo = 1.12 for a single edge notch in a plate (SENP) and for a
circumfcrential notch in a cylindrical bar (CNB).

Separate studies for steel were performed as shown in Fig. 38. It was found that
for steel with3 <K{<7and R =-1, Xpcis:

Xac = YLO(z.s (Lm) + 0.79 -Ifa_) (5.4b)

For the cast aluminum alloy 319 (Lo = 934 pum) as shown in Fig. 18, the maximum
non-damaging defect depth falls within the range of 200 to 300 um (see run-out data for
NT = 1.25 x 108 at Spyax = 62 MPa). Using Eq. 5.4a and assuming that K, = 7, the
predicted value of Xpc is about 240 um which is close to the test results.
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Another experimental result for steel 15313 (L, = 237 um) was obtained by Lukas
et al. [39,45] who found that the maximum non-damaging notch depth is about 60 um in
CNB specimens with Ky = 3 (see data in Table 7g). Using Eq. 5.4b, the predicted Xpc
value for the CNB specimen is 58 um (K; = 3.0) which agrees with experimental
observations quite well. Unfortunately, no further data can be found to support the validity
of Egs. 5.4.

High strength materials have lower L, values, and hence, smaller values of
maximum non-damaging notch depth. A small defect which may not affect the fatigue
resistance of low strength materials may severely damage the fatigue resistance of a high
strength material. In the material design, if one ignores the damage of the small notch
(scratch, surface defect) on the fatigue resistance of a high strength material, it may cause
costly disaster. For example, as seen in Fig. 34a, a 0.01mm (10 pm) defect could reduce
the fatigue strength of AL-1 by 33% (Kg = 1.5), and a 20 um defect could reduce the
fatigue resistance by 50% (K = 2). Thus, Xpc is an important parameter which can be

used as an index for the quality control of a material. Further work in this area is strongly
recommended.

22 _Arcas for Applying CCN Model and Future Study

The major contribution of the CCN madel is the prediction of the influence of small
defects (or notches) on the long-life regime fatigue properties of a material. The CCN
model may be used as a basis for fatigue damage-tolerant analysis of components which
contain either intentional notches or intrinsic defects.

Because the proposed CCN model considers the effect of applied and mean
stresses, it has the ability to deal with variable amplitude loadings. The deterministic CCN
model could also be used as the basis for stochastic modelling of the fatigue properties
using the Monte Carlo methods.

In Chapter 4, the CCN model proved accurate for the notches with K; 2 3, but its
accuracy has not been proven for notches with K; < 3. Whether the CCN model is
applicabie for K; < 3 conditions remains to be seen.

Another problem with the CCN model is that it utilizes the function US(x) adapted
from the Sun and Sehitoglu model which is based on the plane-stress condition for a crack
emanating from a notch. The reason for selecting the plane-stress condition is that the
specimens dealt with in this study are mostly thin, and the short cracks are mainly near the
free surfaces of the notch roots which further imply the plane stress condition. In
engincering components, there arc few instances of purely plane strain or purely plane
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stress conditions. Thus, the selection of the plane suess condidon for predicting the
threshold stress and fatigue life in this study may result in an ineluctable error.

Many changes are still required to improve the CCN model. The effect of residnal
stresses on the crack closure behavior has not yet been considered. The roles of Mode 11
and Mode IIT loading conditions on the crack closure are recommended for future study.
The influence of over-loading (or under-loading) conditions on the crack growth rate of
short cracks should be investigated in order to estimate the fatigue life in variable amplitude
loading conditions. Environmental effects such as high temperature and corrosion are also
important in real-world applications.
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6. CONCLUSIONS

A crack closure at a notch {CCN) mode! was developed which was based on the
behavior of short cracks at notches and which predicts the fatigue threshold stress
and fatigue life for general notched specimens under various R ratios.

The fatigue properties of cast aluminum alloy 319 were studied. The role of casting

defects and machined notches on the fatigue behaviors was successfully predicted
by the CCN model

This study proposed a general theory of the role of notches in fatigue particularly at
or near threshold conditions. This study reconciles the apparent discrepancy
between the work of Frost and Lukas by showing that neither K¢, nor notch depth
alone is a complete description of notch severity in fatigue.

This study verified the existence of a worst-case notch for which the fatigue notch
factor (K) is a maximum (Kfmax). The value of Kgpax and hence the minimum
value of the threshold stresses (ASp) for constant depth notches and geometrically
similar notches are radically different.

. The maximum non-damaging notch depth (Xg¢) and the maximum notch depth
{Dmax) above which Kp, always equals Ky, were investigated. Both values are
dependent on the intrinsic crack length (Lo) and the notch acuity (Kyy).

. The results of this study indicate that the intrinsic crack length (Lo = 1/x
[AKho/ASe]?) is the most important material parameter in describing the effect of
material properties on fatigue of notches at the threshold condition.
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TABLES

TABLE 1

MECHANICAL PROPERTIES OF THE CAST ALUMINUM ALLOY 319

Elastic Modulus E 75000 MPa
Hardness HRB 45

Yield Strength Sy 190 MPa
Ultimate Tensile Strength Sy 206 MPa
Fracture Strength 204 MPa
Reduction in Area %RA 1.815

Total Elongation Toep 0.708

True Fracture Strain Ford 0.0165

True Fracture Strength of 208 MPa
Strain Hardening Exponent n 0.1253

Strain Hardening Coefficient K 419 MPa
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TABLE 2

FATIGUE PROPERTIES OF THE CAST ALUMINUM ALLOY 319

Uniaxial Constant Stress Amplitude Data
Estimated Fatigue Limit (R =-1)
. Estimated Fatigue Limit (R = 0.1)

Se 60
Se 93

Uniaxial Constant Strain Amplitnde Data for R = -] only*

Cyclic Strain Coefficient
Cyclic Strain Hardening exponent

Fatigue Strength Coefficient
Fatigue Strength Coefficient**

Fatigue Ducdlity Coefficient
Fatigue Suength Exponent
Fatigue Strength Exponent**
Fatigue Ductility Exponent

Long-Crack Farigue Crack Growth Data

Effective Threshold Stress Intensity Range
Threshold Stress Intensity Range

(R=-1)
(R=0.1)

Crack Growth Constant for da/dN ~ AKfr
(Stage )
{Stage I

Crack Growth Exponent for da/dN ~ AKefr
(Stage I)
(Stage II)

X' 367
n' 0.084
o'r 315
o't 170
e'r 0.005
b -0.098
b -0.051
c -0.43
AKefrtho 1.4
AKino
6.5
2.78
C;i=12)
ch 1.747 x 10-14
C's 1.320 x 10-10
m; (i=1,2)
] 16.7
my 4.7

MPa

MPa

MPa
MPa

MPaVm

MPaym
MPavm

mycycle
mjcycle

relation is given by:

Ea = %{ NP + &'t (2N)°

where €, is the strain amplitude and N is the fatigue cycles.

Heake

equation; see Appendix F.

The strain-life data can be separated into elastic and plastic portion, and the strain-life

Obtained by assuming that the fatigue-initiating-defect size equals zero. Data were
analyzed in the long-life-regime $-2N diagram based on the Basquin-Morrow
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TABLE 3

EXPERIMENTAL RESULTS AND PREDICTIONS BASED ON THE CCN MODEL
FOR THE CAST ALUMINUM ALLOY 319

30 pm POLISHED SURFACE CONDITION (R = -1)

Specimen Smax v Area Nt (Exp.) Pred. NT (AR =0.8)
(MPa) (mm) (Cycles) (Cycles)

B71 48.28 0.56 >125,000,000 83,160,000
B1S 55.17 0.57 >125,000,000 8,040,000
B15 62.07 0.57 4,780,000 1,470,000
B16 62.07 0.80 1,260,000 641,000
B17 62.07 * 864,500 *ok

Bi8 62.07 0.97 920,000 542,000
B91 62.07 0.23 64,000,000 54,790,000
B92 62.07 0.52 9,380,000 2,042,000
B93 62.07 0.34 >125,000,000 10,940,000
B71 68.97 0.57 752,700 632,000
BAl 68.97 0.62 1,400,400 591,000
BA2 68.97 0.30 2,470,000 3,240,000
BA3 68.97 043 1,110,000 1,063,000
BA4 68.97 0.36 1,570,000 1,760,000
BAS 68.97 0.37 6,260,000 1,617,000
BAG6 68.97 0.46 1,510,000 905,600
BA7 08.97 - 899,500 ke
BAS 68.97 0.44 1,675,000 1,000,100
BA9 68.97 0.60 1,675,000 604,500
BB1 75.86 0.33 1,230,000 792,600
BB2 75.86 0.48 640,000 542,300
BB3 75.86 0.37 927,000 663,600
BB4 75.86 0.51 445,800 523,000
BBS 75.86 0.57 434 500 491,100
BC1 §2.76 0.50 431,300 429,800
BC2 82.76 0.40 345,700 477,600
BC3 82.76 0.632 152,900 385,200
* Not measured

#odk

Life prediction is not available
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TABLE 4
EXPERIMENTAL RESULTS AND PREDICTIONS BASED ON THE CCN MODEL

FOR THE CAST ALUMINUM ALLOY 319

AS-CAST SURFACE CONDITION (R = -1)

Specimen Smax v Area Exp. Nt Pred. NT (AR =0.8)
(MPa) {mm) (Cycles) {Cyclcs)
AC2 82.76 0.54 172,800 414,400
AC3 75.86 0.78 375,100 410,600
AC4 75.86 0.39 692,000 623,000
ACS 68.97 * 787,700 ok
AC6 68.97 0.29 5,825,700 3,657,000
ACT 68.97 0.75 444,700 517,000
ACSE 62.07 0.60 1,240,000 1,252,000
AC9 62.07 0.43 4,105,000 4,250,000
ACI10 62.07 * 2,393,000 i
AC11 62.07 0.36 7,710,000 8,670,000
ACI12 55.17 0.62 5,556,000 5,823,000
AC13 55.17 0.60 6,801,000 6,296,000
ACl14 55.17 0.32 >125,000,000 10,820,000

*  Not measured
*%  Life prediction is not available
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TABLE §
EXPERIMENTAL RESULTS AND PREDICTIONS BASED ON THE CCN

MODEL FOR THE CAST ALUMINUM ALLOY 319
(DATA SUPPLIED BY THE GENERAL MOTORS CORPORATION [74])

CYLINDRICAL SPECIMENS WITH AS-CAST SURFACE CONDITION (R = -1)

Specimen Smax vArea Exp. N1 Pred. NT (AR =0.8)
(GM-) (MPa) {mm) (Cycles) (Cycles)
GM-27 92.57 * 282,721 ok

49 93.17 * 256,037 ek
25 88.50 * 234,355 **
4 90.21 *® 222,298 Ak
43 82.59 * 507,164 ik
21 80.99 * 859,379 il
44 82.59 * 773,143 il
2 79.95 ¥ 622,582 #k
18 78.93 * 365,617 il
41 71.26 * 1,379,416 ok
11 68.97 * 2,014,352 i
17 67.66 * 1,559,544 Kok
22 70.73 * 2,432,977 ke
5 67.66 * 2,451,080 ok
14 67.99 * 1,563,366 ax
1 68.43 * 2,318,836 *
3 68.43 * 1,122,449 ok
24 68.43 * 820,052 *¥
8 68.43 * 2,158,127 hk
35 66.51 * 2,091,827 *ke
15 63.30 * 3,143,026 ok
46 63.72 * 2,238,296 *k
39 64.14 * 4,790,089 ok
19 63.72 * 4,444 017 *%
26 63.72 * 1,646,480 *k
42 63.72 * 2,548,092 wE
30 58.99 * 2,714,300 &
6 51.32 1.28 1,897,830 654,100
32 57.86 0.73 1,661,064 1,371,000
31 56.63 0.89 4,827,898 868,000

*  Not measured
** Life prediction is not available



TABLE 6

MATERIAL PROPERTIES USED IN THRESHOLD STRESS PREDICTIONS

Material R Sy ASe AKLhO Umo Su
(MPa) (MPa) (MPaVm) (MPa)
Steel SM41B [27,38] -1.0 194 326 12.36  0.25 423
0.0 154 274 8.36 0.366 423
0.4 194 244 6.38 0.48 423
Mild Steel [37,70] -1.0 340 420 12.8 0.24* 448

0.15% O
Al-2024-T351 [41,63] -1.0 357 248 5.0 0.34 466
Steel SAE 1045 141,631 -1.0 472 608 13.9 .28 745
Steel 15313 [39] -1.0 380 440 12.0 0.32 530
Steel G40.11 [64] -1.0 376 570 15.9 0.20* 504
NiCr Steel [70,71] -1.0 834 1000 12.8 (0.24% 973
(EN 26)

18/8 Stainless [70,71] -1.0 222 720 12.0 0.26* 685
AL-B.S. L 65[7,71] -1.0 433 300 4.2 0.34* 494
Cast Al-319 Alloy -1.0 190 120 6.5 0.215% 206
[see Appendix G} 0.1 190 84 278 0.504 206

* Assumed value based on the AKcfriho =1 E (Eq. 2.10)
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TABLE 7

COMPARISON OF EXPERIMENTAL RESULTS WITH PREDICTIONS FROM MODELS

(a) Case 1: Steel JIS SM41B [27,38]
CNP Specimens: W = 45 mm, D = 3.0 mm, R = -1 except marked data
Unit in '"MPa' for ASin

p Kin  Exp Predicted ASn from Models

(mm) ASihn  CCN PTS@) PTSA) Topper Lukas Sum(M) Sun(O)

0.16 8.48 110 112 145 108 103 98 112 112
0.39 572 120 105 128 101 103 103 105 105
0.83 423 110 103 124 105 103 110 103 103
3.00 2.60 148 125 144 136 125 142 125 125
* 0.16 8.48 73 75 99 91 73 69 75 75
*¥* (.16 8.48 73 60 76 81 60 55 - -

*R=0
#* R =0.4
- Not available

(b} Case 2: Mild Stee! (0.15% C) [37,70]
CNB Specimens: W =43 mm, D = 5.08 mm, R =-1 for all data
Unit in '"MPa' for ASihn

Kwm Exp Predicted ASin from Models

Pain
513
S’

AStha CCN  PTS(T) PTS() Topper Lukas Sun(M) Sun(O)

0.05 14.0 118 114 196 170 91 105 131 131
0.10 100 104 114 171 149 91 108 131 131
0.13 9.0 116 114 161 141 91 107 131 131
0.25 6.6 118 113 149 132 91 115 130 130
0.64 4.4 118 112 146 135 91 131 130 130
1.27 3.3 132 127 160 152 127 153 127 127
5.08 1.9 208 220 231 229 220 233 220 220
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(Tabie 7 Cont'd)
(c) Case 3: Mild Steel (0.15% C) [37,70]
DENP Specimens: W = 64 mm, D = 5.08 mm, R = -1 for all dara
Unit in 'MPa' for ASy,

p Km Exp Predicted ASinn from Models
(mm) ASthn  CCN PTS(I) PTS(I} Topper Lukas Sun(M) Sun(0)
0.10 125 100 92 147 126 91 87 107 107
0.25 8.2 108 92 125 110 91 93 108 108
0.50 6.1 100 91 120 109 91 100 108 108
1.27 4.0 124 105 134 127 91 126 105 105
7.62 2.1 186 200 207 205 91 207 200 200

(d) Case 4: Al-2024-T351 [41]
CNP Specimens: W =45 mm, D =p, R = -1 for all data
Unit in 'MPa’ for ASiyq

p Kin Exp Predicted ASip, from Models

(mm) AS¢hn  CCN PTS(T} PTS(I) Topper Lukas Sun(M)  Sun(0)

0.12 3.00 160 180 147 166 142 144 196 241
0.25 296 124 138 122 138 116 118 145 198
0.50 294 124 106 106 117 94 103 108 165
1.50 2.82 90 89 96 101 89 95 39 124

(e) Case 5: Steel SAE 1045 [41]
CNP Specimens: W =45 mm, D =p, R = -1 for all data

Unit in 'MPa' for ASixn

p Km Exp Predicted ASihn from Models

(mm) ASinn CCON PTS(T) PTS(I) Topper Lukas Sun(M) Sun(O)

0.12 3.00 360 357 384 326 368 387 392 392
0.25 296 310 290 320 276 305 309 309 309
0.50 294 276 235 273 245 249 264 247 247
1.50 2.82 24% 217 241 229 217 237 217 217
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(Table 7 Cont'd}
(f) Case 6: Al-Alloy BS L65[7,71]
CNB Specimens: W =43 mm, D =5.08 mm, R =-1 for all data

Unit in 'MPa' for ASihn

o] Kin Exp Predicted ASyyy, from Models

(mm) ASiin  CCN PTS() PTS{ID) Topper Lukas Sun(M) Sun(O)

0.013 27.00 80 50 80 151 34 35 50 128
0.051 14.00 77 50 58 109 34 39 50 128
0.102 10.00 46 50 56 96 34 44 50 128
0.203  7.30 46 50 59 88 34 52 50 128
0.508 4.85 62 50 72 90 62 69 50 128
1.270  3.30 83 91 160 163 91 95 91 122

(g) Case 7: Steel 15313 (2.25 Cr-1 Mo) [39]
CNB Specimens: W =5 mm, D=p, R =-1 for all data

Unit in '"MPa' for AS;y,

p Kim Exp Predicted ASihn from Models

{mm) ASihp CCN PTS(1) PTS(I) Topper Lukas Sun{M) Sun(O)

0.03 299 440 440 388 371 363 440 440 440
0.05 295 420 440 364 342 338 440 440 440
0.07 292 340 344 345 320 320 411 412 412
020 2.68 280 275 285 261 257 296 329 329
0.40 2.34 296 254 265 247 214 274 310 310
0.76 1.87 320 275 281 270 235 297 354 354

(h) Case 8: Steel G40.11 [40]
CNP Specimens: W =70 mm, D =p, R = -1 for all data

Unit in 'MPa' for ASjg

p Kin Exp Predicted ASihy, from Models

{mm) ASgin  CCN PTS(I) PTS(W) Topper Lukas Sun(M) Sun(O)

0.20 298 338 303 351 323 336 351 269 269
0.48 296 242 241 281 262 267 27 201 201
4.80 2.59 238 220 232 229 220 231 220 220
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(Table 7 Cont'd)
(i) Case 9: Stainless Steel AISI 304 [70]
CNB Specimens: W =43 mm, D =5.08 min, R = -1 for all data

Unit in 'MPa' for ASipn

p Km  Exp Predicted ASihn from Models
(mm) ASyhn  CCN PTS(T) PTS(I) Topper Lukas Sun(M) Sun(O)

0.05 140 124 113 173 190 9 108 128 128

(j) Case 10: NiCr Steel (EN 26) [70,71]
CNP Specimens: R = -1 for all data, Unit in "MPa' for AShy

'

(mm) (mm) (mm) ASthn

D p K Exp. Predicted AS y from Models

CCN PTS(I) PTS(I) Topper Lukas Sun(M) Sun(Q)

43.0 5.08 0.05 140 116 122 179 185 103 123
31.8 5.08 0.13 8.0 142 139 197 201 103
226 0508 013 46 247 238 323 329 271

117 117
167 132 132
290 257 257
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Figure 2 Schematic illustration of the three regimes of fatigue crack propagation

behavior and their corresponding mechanisms and characteristics (after Ref.

13).
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1.0 T ey y
[ Invalid region for
2 i Tanakas Modcl . \_ AK th (x)
;Z e ]
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0-1 i .-“ 1“--1--:3’ et PR | ot 2 32121l loidod 2 1323l bl L 22132
001 .01 1 1 10 100
x/Lo
ry ) 3 1 LAna 4 T :l;
A~ UT(x) ]
to U[ho :
Ee——
wl aaaal saul
1 1 10 100

The functions of AKy,(x) and UT(x) from Tanaka's model [35]. In the very

short crack region, Tanaka's model must be invalid since UT(x) becomes
larger than 1. (A schematic diagram).
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da/dN

O B Short Crack (higher AS)
0o O Short Crack (lower AS)
9] == ] ong Crack data

AK
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@ Short Crack (higher AS)
O Short Crack (lower AS)
=== | .0ng Crack data

AKefr

Figure 8 The relationship between da/dN and AKgris a unique material property with

which the anomalous crack growth behavior of short cracks emanating from
a notch can be rationalized. (A schematic diagram).
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non-propagating crack7' * AS

—— e—— v m— e — —— - —

I
I
l
I
i i greatest possible length
A | | S of a non-propagating crack
[
|
I

|
!
! crack growth
|
!

no crack growth

Effective Stress Intensity Range, AKeff (x)

Crack Length, x

Figure 10 The variation of AKefr(x) with crack length (x) as a function of applied

stress range (AS). Threshold stress range was determined when the
minimum value of AKeff(x) equals AKeff tho.
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Figure 11 The general concept for estimating fatigue life (Ny) for a notched component
using the CCN model.
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(@)

(b)

Figure 20 Fractographs of initiation site for as-cast specimens tested by the General

Motors Corporation [74] (see Table 5). (a) specimen GM-32 (60x), (b)
specimen GM-31 (30x).
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Figure 33a
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The effect of material properties and notch depth on the importance of each
fatigue-life portion for geometrically similar notches with K; = 3.

(Ny = crack nucleation life, Nppj = early propagation life for crack growing
to an engineering crack size (0.25 mm), and Np2 = propagation life for
crack growing from 0.25 mm to failure).
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Figure 33b  The effect of material properties and notch depth on the importance of each
fatigue-life portion for geometrically similar notches with K, = 7.
(Nn = crack nucleation life, Npj = early propagation life for crack growing
to an engineering crack size (0.25 mm), and Np2 = propagation life for
crack growing from (.25 mm to failure).
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Figure 34 The relation between Kfn and notch depth as a function of material

propertics (Lo and value of F/E).  (a) for blunt nuwh (K = 3), (b) for
sharp notch (K = 7). The value of Dmax for a certain material and
notch acuity is pointed by the arrow.

(Simulation results based on the CCN model).
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Constant Depth Notches (D = constant)

(XBC ~ D1 << D2 << D3 ~ Dmax)

ASthn/ASe

ASthn/ASe

ASthn/ASe

Figure 35 a The effect of notch depth on the threshold stresses for constant
depth notches represented by the Frost relation.
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(Simulation results based on the CCN model). K=K
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Figure 36a The effect of notch depth and acuity on the fatigue notch factor

(Kfn) for constant depth notches. Note that there is a maximum
Kin value (Kfmax) for a given notch depth.
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10 (Simulation results based on the CCN model).
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Figure 36b The effect of notch depth and acuity on the fatigue notch factor

(Kfn) for constant depth notches. Note that there is a maximum
Kin value (Kfmax) for a given notch depth.
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Figure 37 The influence of material property (Lo) and notch acuity (K{) on the

maximum non-damaging notch size (Xp¢} for aluminum alloys. (a) the
variation of Xp¢ with Ly showing the effect of K, (b) the linear

relationship between Xpc and Lo/VK .
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Figure 38 The influence of material property (I.5) and notch acnity (K,) on the
maximum non-damaging notch depth (Xgc) for steel. (a) the variation of
Xpc with Ly showing the effect of Ky, (b) the linear relationship between
Xpc and L/K,.
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APPENDIX A
STRESS INTENSITY FACTOR SOLUTIONS

Al racks i lindoecal B

The stress intensity factor in a cylindrical bar specimen containing an elliptical
surface crack is given by Raju and Newman [54] in the form:

KA = SFa "5 (A1)
where: Ka = The stress intensity factor at the maximum depth point A; see Fig.
Al
S = Theremote tensile stress
Fao = The boundary correction factor at the maximum depth point A;
see Fig. A.l
a = Crack depth along the direction from surface to circular center;
see Fig. A.1
Q = 'The shape factor for an ellipse = 1.0 + 1.464 (a/c)l‘65
¢ = The half length of the crack on the surface; see Fig. A.1
afc = Aspectratio of the elliptical crack

Raju and Newman define F4 in a tabular form. The following expression, used to
facilitate calculations, was based on a polynomial curve fit to the Fp data.

Fao = 1.078 +2.973 (a/W) + 4.564 (a/W)2 - 4.3214 (a/W) (a/c) (A2)
(fora/c < 1.0)
where: W = Specimen diameter

To date, there is no expression for Fo when a/c > 1.0. When the fatigue crack
emanated from a near-surface casting defect, the fatigue initiating defect size (T) was
defined as VArea. Assuming that the fatigue initiating defect can be idealized as an elliptical
shape on the surface of a cylindrical bar, the fatigue initiating defect can be defined by the
depth, D and the surface length, 2c. The initial aspect ratio (AR) can be represented by
D/c. The relationship between the depth and the measured area of the fatigue initiating
defect can be approximately given by:

JAren = yDe = w—ﬁﬁ (A3)

where: D = Depth of the fatigue initiating defect
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AR = The aspect ratio of the fatigue initiating defect
Area = Defectarea
Thus,
D = VAR vArea (A4

In cast materials, fatigue cracks nucleate at near-surface defects; casting pores,
surface textures, or both. Consider a cast cylindrical bar. When a fatigue crack grows to a
length x, the value of "a" used in Eqs. A.1 and A.2 would be equal to D + x. The aspect
ratio is a funclion of the crack length in the radial direction, and the crack length on the
surface. The aspect ratio changes when the fatigue crack propagates. Tokaji et al. [51]
found that the aspect ratio for a surface crack ranges from 0.7 to 0.9 when the surface crack
length is greater than 0.6 mm. Cox et al. [52] applied Monte Carlo simulations to predict
the variation of aspect ratios of small cracks with the crack size (denoted by vac). These
predictions gave aspect ratios asymptotically approaching 0.8 for crack sizes greater than
0.3 mm. The aspect ratio is considered to range from 0.7 to 0.9.

A2 racks in g Plate ynder Tension

Consider an elliptical surface crack growing through the thickness of a plate. The
plate is assumed to he of infinite width and finite thickness. The stress intensity factor for
this elliptical surface crack can be given as follows [55]:

wa

Ka = MaS Q (A.5)
where: KA = The swress intensity factor at the maximum depth point A; see Fig.
A2
S = The remote uniform-tension stress
Fao = The boundary correction factor at the maximum depth point A;
see Fig. A.2
a = Crack depth along the direction from surface to circular center;
see Fig. A2
¢ = The half length of the crack on the surface; see Fig. A.2
alc = Aspectratio (AR) of the clliptical crack
Q = The shape factor for an ellipse = 1.0 + 1.464 (a./c)l'65
a
Ma = Mjp+My@p?+Ms e

H = Thickness of plate; see Fig. A.2
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M = L13-0.09a/)
0.89
Mz = -0.54 + 3+ (aley (a/<)

My = 0.5-‘&"6'31_;_—'0(31%)4-14(1.0-%)24

Equation A.5 can be used to calculate the stress intensity factor for surface defects
which propagate through the wall of an engine block.

A.3 Edge Notched Plate under Tension

The stress intensity factor for edged notch (or double notches) in a plate is given by

[56]:
K = Y(a) S Vma (A.6)
where: a = Crack length from the edge of the plate

where Y(a) is the geometrical factor for stress intensity factor. For single edged notch and

double edged notches, the calculations of Y(a) are different:
Y(a) for Single Edge Notch in a Plate (SENP)

Ya) = 1.12-0.231(5) + 10.55 ()2 - 21.72 G&)3 + 30.39 " (A7)

where: W = Width of the plate

Y(a) for Double Edge Notches in a Plate (DENP)

1.12-0.561(g) - 0.205 (§)2 + 0.471 )3 - 0.19 &y

a
\/1'“3“

where: B = Half width of the plate

Y(a) =

(A.8)

A .4 Center Notch in a Plate (CNP) under Tension

The stress intensity factor solution has the same form as Eq. A.6, but the
geometrical factor Y(a) is different und given by [56]:
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1-0.025 )2 + 0.06 ()

Y(@) = (A.9)
Ra
'\/ cos(y)
where: B = Half width of the plate
W = Width of the plate
a = Crack length from the center of the plate

A5 Circumferential Notch in a Cylindrical Bar (CNB) under Tension
The stress intensity factor solution has the same form as Eg. A.6, but the
geometrical factor Y(a) is different and given by [56):

112 - 1.302 (§) + 0.988 (5)2 - 0.308 (3)3

Y(a) = (A.10)

(1 - s

whiere: B Half width of the plaie

Crack length from the center of the plate

w0
o
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Figure A.1  The nomenclature and geometry of elliptical surface flaw in a cylindrical specimen.

The planar geometry of a fatigue initiating defect is modelled by assuming aspect
ratio, a/c (or AR) ranged between 0.7 and 0.9.
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APPENDIX B
THE NOTCH-STRESS-FIELD BOUNDARY (NSFB)

Two major roles of the notch-stress-field boundary (NSFB) are involved in the
CCN model. First, when the crack length (x) is shorter than the NSFB, the crack closure
mechanism is assumed to be fully plasticity-induced crack closure (PICC). Second, the
formulation of stress intensity for a crack length shorter than the NSFB is different from
that for a crack length longer than the NSEB,

The value of NSFB remains poorly defined. Dowling [4] suggested an /; concept
in which /; is the crack length at which the short-crack stress intensity factor equals that of
the long crack. The short-crack stress intensity range at a notch (AKs) according to

Dowling is :
AKs = LI22KASY nx (B.1)
where: . Ky = Stress concentration factor (gross section)
AS = Applied stress range (gross section)
x = Crack length

When the crack length is greater than /;, Dowling assumed that the influence of the notch on
the stress intensity range is small; and thus, the stress intensity range is given by:

AK = Y(a) AS \ma (B.2)
where: a = D+x;and x >x*
D = Notchdepth
Y(a) = Geometrical factor for stress intensity factor; see Appendix A

AS = Applied stress range (gross section)

From Eq. B.1 and B.2, the value of /; is:

D

.12 K; 2
(Yo, 9 -1

[1#

(B.3)
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Based on Dowling’s concept, the notch-stress-field boundary (NSFB) would be the
vilue of /;, which generally falls within the range of p/20 to p/4, where p is the radius of
notch root; however, Smith and Miller [57] suggested 0.13\ Dp as the value of NSFB.
Cameron and Smith [43] found that a better approximation of NSFB for notches with p/D
<9 is about 0.21‘\/D_p. The values of NSFB found by Smith et al. are greater than those
proposed by Dowling as shown in Fig. B.1. It seems that Dowling's AK g formulation
(Eq. B.2) over-predicts the stress intensity factor for the crack at a notch. Another AKg
formulation proposed by Lukas et al. (Eq. 2.21) provides better results than Dowling's,
since Eq. 2.21 agrees well with the finite element results computed by Newman [58].

The value of NSFB for the CCN model is determined by equating Eq. 2.21 with
Eq. B.2:

L122K, 7 sy \rar

V1 +4.5x%/p)

(B.4)

where: K, = Stress concentration factor
p = Notch root radius
x* = Notch-stress-field boundary (NSFB)
a* = D+x*

D = Notch depth

"The value of x* calculated based on Eq. B.4 is (.15 ~ 0.2)y Dp for a center notch

in a plate (CNP) specimen and is (0.2 ~ 0.25)\ Dp for a single edge notch in a plate
(SENPF) specimen. For both cases, the predicted x*'s are close to those found by Cameron

and Smith [43] and Tanaka et al.[27]. Thus, in this study, x* was used to represent the
value of NSFB.
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APPENDIX C
CCN MODEL FOR PREDICTING THE THRESHOLD STRFSS

Effective Threshol

There are two possible outcomes for a notched component when the applied stress

range (AS) is equal to the threshold stress range (ASis). Both lead to an infinite fatigue life
for the component. The two possible outcomes are:

1. No cracks initiate at the notch root.
2. Cracks initiate at the notch, but become non-propagating cracks (NPC) of length
Xth-
The development of the CCN model starts with the case of the non-propagating crack.

Figure C.1 schematically shows the variation of da/dN with AK for short cracks
emanating from a notch. Short cracks can propagate when their AK values are less than the
long-crack threshold stress intensity range (AKng). At the threshold condition, short crack
starts growing at a rate which decreases with increasing crack length (or increasing AK
values) and finally, becomes almost zero, resulting in a non-propagating crack.

Because the crack closure mechanisms at the threshold condition (AS = ASg,) are
different from the mechanisms for the AS > ASy, conditions, Upp(x) is used to specify the
threshold condition (for AS < ASy, ), and U(x) represents the general case for the following
discussions. As schematically shown in Fig. C.2, the Tanaka model (UT(x)) can be used
to describe Upn(x) for x = x* condition; see definition of x* in Appendix B. Under this
condirion, the crack tip "sees" a stress intensity range which is nearly identical to that of a
smooth component at the threshold condition. On the other hand, when the crack is within
the notch stress field boundary (x £ x*), it is rcasonable to use the Sun and Schitoglu
model (US{x)) to describe Un(x), since the notch's stress concentration makes the PICC
mechanism dominate crack closure as suggested by Tao et al. [26], Shin et al. [29] and
Sehitoglu et al. [32-34].

The valid ranges in applying US(x) are 0.4 < Smax/Sy £0.8 and 3 <K <7, where
Smax 13 the maximum applied stress in a cyclic stress range. Extrapolation in the derivation
of US(x) is assumed to be valid when Smax and K are out of those ranges, but a
modification is made as discussed below.

The values of Sopo/Smax, which are functions of Smax/Sy, calculated by the Sun
and Sehitoglu model (Eq. 2.15b) arc shown by the line a-b-¢ in Fig. C.3a for F/E = 0.01
under plane stress and the R equals -1 condition. This a-b-c line was calculated based on
the PICC mechanism. At and below the threshold condition, the values of Sopo/Smax are
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constant, which is shown by the b-d line in Fig. C. 3. The extrapolation of Sopo/Smax
must be limited by the threshold conditions, where the maximum Sopo/Smax Was limited by
the value of Uy (see Fig. C.3b). Thus, using Eq. 2.15b to determine the stabilized
opening stress (Sopo) for a long crack, the relation between Sopo/Smax and Smax/Sy must
follow the curve a-b-d. The constant Sgpo/Smax at and below the threshold condition (in
the low stress regime, i.e., the line b-d in Fig. C.3) is determined by :

‘ggm = 1.0- (1.0 - R)Upo .1
max

Figure C.3b shows that the relation between U and Smax/Sy can be derived from
the relation between Sopo/Smax and Smax/Sy. After this relationship (Fig. C.3b) is
determined, the function of U(x) in the vicinity of notch oot (i. e. x < x*) can be

modelled using Eqgs. 2.14 - 2.16. When AS = ASy,, the value of effective threshold stress

intensity ratio ( I:h ) at x = x* can be derived from US(x) using the following steps:

{1 Specifying material properties such as Sys Uhw» and H/E (0.07 for steel and 0.01
for aluminum alloys) and the notched conditions such as K; and D;

2) Assuming an applied stress (Smax) to be the threshold stress (Siy) at a given R
ratio, then calculating Sopo using Eq. 2.15 and the concept shown in Fig. C.3;

3 Deriving Sop(x*)/Smax from Eq. 2.14 ;

(4)  Deriving the value of Uy, (i.e. US(x*)) from Eq. 2.16.

C.2 The Derivation of 3 Hypothetical "Effective Notch Depth (Desp)"

Figure C.4 is a schematic diagram which shows the method used to combine these
UT(x) and U3(x) models to form a hybrid crack-closure model, Uy(x). For x < x*, the
function of Ujn(x) can be modelled by employing the (modified) Sun and Sehitoglu model
(US(x)); for x = x*, the function of Uy(x) can be modelled by employing the Tanaka
model (UT(x)). The initial value of UT(x) for x = x* was taken as the value of US(x) at x
= x* (termed U:h), Thus, the transition from US(x) to UT(x) was forced at the notch stress

field boundary (x*) in the manner described: see Fig. C.4.

U:h wasg determined by using US(x) model, which rcquires a value for the applied

stress range. However, the applied threshold stress range (AS;,) is unknown; thus, the

value of U:h was obtained from a “guessed" threshold stress as described above. ‘Lo



110

simplify the calculation of AS;, a hypothetical "Equivalent Crack in an Un-Notched
Specimen” (ECUNS) is defined which has the same value of U:h at x* as the crack in the

notched specimen. The length of the ECUNS (denoted as x") is found by substituting U:h
into Eq. 2.13:

— - ©2)
(5 - 1

Uin
Utho

When the actual crack length is longer than the notch stress field boundary (x > x*),
UT(x) can be used to describe the variation of crack closure with crack len gth. The initial

* *
condition for UT(x) at x = x* is the value of Uy, Therefore, at x = x*, Uip can also be

expressed by :
Un = UTE) = Upg\| 2FE (€3)
Let

Ax = x' - x¥ (C.4)

The value of Ax is the difference between the actual length of the notch stress field
boundary in the notched specimen (x*) and the length of the ECUNS (x") when the applied
stress range is ASyp. Another important physical meaning of Ax is that Ax represents the
difference between the crack lengths, at the same crack closure level, of a crack originating
from a smooth specimen and a crack emanating from a notch. Actually, this difference
results from the effect of the notch stress field. The Ax value was determined using the
Sun and Sehitoglu model and was used to modify the Tanaka model. If the value of UTx)
at x = x* is larger than that of US(x) at x = x*, Ax is positive; on the other hand, if the
value of UT(x) at x = x* is smaller than that of US(x) at x = x*, Ax is negative.

The effective notch depth (Defy) is defined by:

Deft = D - Ax (C.5)
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€3 Calculation of ASy, for the Relatively Small Notches
The effective stress intensity range as a function of crack length for a crack
emanating from a notch is given by:

AKeps(x) = UX)AK (for the general case) (C.6a)
and
AKesr (%) = Ugh(x)AK (for AS = ASy, only) (C.6b)

When the applied stress range equals the threshold stress range (ASyy,), the variation
of the effective threshold stress intensity range with the crack length is expressed by
AKetrin(x). AKefrn(x) is a special expression of the threshold condition which is termed
as a special condition of the general expression for the effective stress intensity range
(AKeff(x)). The function U{x) (at AS > ASy) decreases with increasing crack length and
asymptotically approaches a constant value Ug; whereas the function of Up(x) (at AS =
ASyn) asymptotically approaches Ujhg. The fact that U(x) decreases with crack length and
AK increases with crack length results in the variations of AKqr(x) with crack length in the
manner shown in Fig. C.5.

As seen in Fig. C.5, there is a minimum value of AKefrn(x) for a crack growing
from a notch. When a curve of AKefy,in(x) has its minimum value equal to AK¢f o, the
corresponding applied stress range is the threshold stress range of the notched component.
Figure C.5 shows three different effective stress intensity curves (AKqp(x)) for a crack
cmanaling from a notch. When the applied stress range is larger than AS,, AKef(X) is
always higher than AKqff jho, and thus the crack will keep propagating until fina! fracture.
When the applied stress range is smaller than AS;, the AKepr(x) fall below AKggr ino before
reaching its minimum value; thus, the specimen will never fail, and the non-propagating
crack length equals x;. If the applied stress range equals ASy,, the effective stress intensity
range for a crack emanating from a notch is termed AKefr (), which has a minimum
value of AReff tho. The greatest possible length of a non-propagating crack is located at x =
Xth-

Tanaka et al. [27] found that the non-propagating crack length increased with
increasing applied stress range (AS) in the range AS < ASy,. The greatest possible NPC
lengths were reached at AS = ASy, and their values were always greater than the notch
stress field boundary (NFSB). The same results were also found by Yates and Brown
[42], who collected several test resuits from other sources.
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The fact that the maximum NPC length was observed when the applied stress range
(AS) equals ASt and its length was always greater than x* implies that the minimum value
of AKefr in(x) is located beyond the NSFB. Thus, to predict the threshold stress for a
notched component, it is only necessary to study the variation of AKegr h(x) for x = x*,

When the crack length (x) is longer than the notch swress field boundary x*, the
variation of U(x) is obtained from Eq. C.3:

X + Ax

Ulh(x) = ULhO VM (C.7)

The variation of the effective threshold stress intensity range (with AS = ASy,) for a crack
beyond the notch stress field boundary (x > x*) is:

AKefih(x) = Um(x) AK = Up(x) Y{x) AS \jn(x+D) (C.8)

An expression for AKafr n(x) can be further derived by combining Eq. C.7 and Eq. C.8:

AKeftn() = V(<) AS Umo‘\/ T (x+D) (Lotx+ax) 9
X+Ax

The minimum value of AR h(x) occurs at x = x,n, where xy, can be found by setting the
derivative of AKeff h(x) equal to zero:

d

3z [AKetrm(x)] =0 (@t x = xp) (C.10)
Thus, the maximum non-propagating crack length (xg) is:
Xth = YDLg - AxLg - Ax = +DggfLg - Ax (C11

The value of AKefrih(xn) equals AKegrne. Thus, ASiy can be found by substituting x
(Eq. C.11) into Eq. C.9 and using the definition AKeff tho = UthoAKtho:

AS L (Xm + AX)
ASph = o8 0 C.12
T Yo \/(xth + D)(Lo + xep + Ax) e
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Generally, Eq. C.12 is used to calculate the valuc of ASyy for a relatively small notch. As
seen in Eq. 2.19, the fatigue notch factor (Ky) is defined as the fatigue limit of a smooth
specimen divided by the fatigue threshold stress (ASn: gross-section basis); thus, Eq. C.12
can be represented by:

Y (L
Ki = Y(x) ‘\/ (Xh + Lo)(im‘lg;‘;i‘mx) (C.13)

According to Eq. C.11,
Xth + Ax = VDefrLo (C.14)

substituting Eq. C.14 into Eq. C.13,

Kf = Y(xm) V (DCfT+ N DC”LO) (L0+ JIijf:LC)) (C.IS)
Dcff]-o
and
Kf = Y(Xth) ,\/ ZDCHLG + (Deff‘*'Lo) N DeffLo (C. 16)
Dcﬂ']—o
Equation C.17 can be further represented by:
Deft
Kf = Y(xu) (1 + "'E'(')") (C.18)

For a center notch in an infinite plate (CNP) specimen, K¢, (net-section basis) can be
assumed equal to Kr (gross-section basis), thus,

Kin = 1+ 28 (C.19)
o
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For a center notch in an infinite plate (CNP) specimen, K, (net-section basis) can be
assumed equal to Kr (gross-section basis), thus,

Kin = 1+ %’i (C.19)
0

Equation C.19 is similar to the Topper model (see Eq. 2.30) and Lawrence's Kgmax
model (Eq. 2.20). As discussed in section 2.4.4, the Topper model was derived based on
the Tanaka model, which did not consider the effect of the notch stress concentration on the
crack closure level. In the CCN model, the effect of the notch stress concentration on crack
closure was considered based on the Sun and Sehitoglu model. The difference in Ugy(x)
between the CCN model (based on the cooperation of UT(x) and US(x) models) and the
Topper model (based on UT(x) model only) leads to different K¢, values. In the Topper
modcl, the ratio of actual notch depth (D) w0 Lo (D/Lg) was used 1o predict Kgy; while in the
CCN model, the ratio of effective notch depth (Defs) to Lo (Defi/Lo) was used to predict
Ken.

Note that the values of Ax and xy, were both obtained from the previously assumed

- * . o
value of ASy, which was used to calculate the value of Uy, Thus, an iteration must be

carried out to obtain the exact values of ASy, and AShy, (calculated from the AS;, and area
of gross and net-section).

C.4_Calculation of ASy, for the Relatively Large Notches

When the value of xy calculated based on Eq. C.11 is smaller than x* (i.e., xi <
x*}, the minimum value of AKg(r.in(x) for a crack emanating from a notch falls within the
notch stress field boundary. This condition may occur in the large notches, and for these
large notches, the minimum values of AKegr in(X) are forced at x = x*:

AKefttn (x = x*¥) = Uy YO ASp V1 (D + x*%) = AKeft.tho (C.20)
and thus,

AS. U
Ay =0 A [ te (c.21)
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For a center notch in an infinite plate (CNP) specimen, K, (net-section basis) can be
assumed equal to K¢ (gross-section basis), thus,

U
_ (D+x¥%)
Kin= 7 N ; (C.23)

Assuming that x* = 0.18 Y Dp and p = 4D/(Ky - 1)2, then

s 0.36 D
K _ \/D+ (Kig 1) (C.24)
= Utho Lo '
Thus,
U
_ (Kin -0.64) [D _ [D
Ko = (T VS N T = UK\ (€.25)

For a very large notch, the value of (UK)qfr approaches unity, thus, K¢y can be
estimated by VD/Lo. This leads to the same expression proposed by Smith et al. (see Eq.
2.18).

The value of U:h is an applied stress dependent variable. Thus, an iteration must be
carried out to obtain the exact values of ASyy, and U:h., When the calculated value of AShy

is smaller ASe/Km, no fatigue crack should form at the notch root and Eqs. C.18 and .22
are invalid; therefore, under this condition, the largest applied stress range for infinite life
(ASthn) would be limited by AS¢/Kem. In this case, the threshold stress is controlled by the
crack nucleation process.
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Figure C.3  The values of Smax/Sy and Ug calculated from Sun and Sehitoglu model are
limited by the thrcshold condition. {a) the relation between Spax/Sy and
Sm‘w"S follows line a-b-d, (b) the relation between U, (or Uypg) and

Smax/Sy must follow line a-b-d.
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Case I: US(x) < UT(x)
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Figure C.4 Schematic diagram showing two possible cases for deriving the Uiy, (x)
functions. Both cases are derived from the combinations of the Tanaka
model and the Sun and Sehitoglu model.
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Figure C.5 The variation of AKer(x) with crack length (x) as a function of applied

stress range (AS). Threshold stress range was determined when the
minimum value of AKerr(x) equals AKefr tho-
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APPENDIX D

MODEL FOR FATIGUE LIFE BASED ON SHORT AND LONG CRACK
PROPAGATION

D.1_Crack Closure at Greater-Than-Threshold Conditions

When the crack is beyond the notch stress field boundary at AS > ASy, the crack
"sees” only the remote stress. The significance of each crack closure mechanism is
dependent on the level of the applied stress intensity range. When the applied remote stress
is low, such that the crack driving force is in near threshold conditions, the RICC and/or
OICC mechanisms play more important roles than the PICC mechanism. Thus, UT(x)
reasonably describes the variation of crack closure with crack length in the low stress
regime. However, according to the concept proposed by Suresh et al.[9] and Allison [10],
when the applied stress (or Kmax) is much larger than threshold stress, the PICC
mechanism may play a more important role than the other mechanisms. The transition of
the crack closure mechanism from RICC/OICC dominant to PICC dominant must be
quantitatively described and is believed to be a function of Sgax or Kmax-

To determine the value of AK (termed AKy) above which crack closure behavior
can be assumed to be entirely PICC dominant, a hypothesis based on the relation between
da/dN and AK of long crack is proposed. The da/dN versus AK relationship of the long
crack can be formulated as a bi-linear curve and categorized as two regions (see the inserted
plotin Fig. D.1): the near threshold region (stage 1) and the mid-growth ratc rcgion (stage
). There is a point of intersection (AKy) which represents the boundary between these
two regimes. The point of intersection (AKy) is assumed to be the transition point at which
the crack closure mechanism changes from a fully PICC controlled mechanism in the mid-
growth rate regime to an only partially PICC controlled mechanisms in the near-threshold
regime, and finally to a fully RICC and/or OICC controlled mechanism when AK falls
below AKho.

When a crack grows beyond the notch stress field boundary (x = x*), the crack
closure mechanisms under the AS = ASy, condition will be different from the AS > ASyy
condition. For the case of a notched component loaded in a high applied stress range
(where AS >> ASy), the variation of U(x) can be considered to be fully dominated by the
PICC mechanism, in which the value of U, is determined by the Sun and Sehitogiu model
(Section 2.3.2) and is dependent upon the value of Syax. At the threshold condition (AS =
ASh), the crack closure mechanism can be considered to be dominated by the OICC and/or
RICC mechanisms, and the Tanaka model is used to describe the function of U(x) (this
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U(x) was denoted as Uin(x) in Appendix C). When the applied stress is a little higher than

the threshold stress, the applied stress intensity range of the crack may fall in the near-

threshold regime of the da/dN versus AK curve. Under this condition, the function U(x)

may be determined partly by the Sun and Sehitoglu model (the PICC dominated

mechanism) and partly by the Tanaka model (the OICC/RICC dominated mechanism).
When a short crack emanates from a notch, the U(x) is modelled by:

U(x) = US(x) forx < x* D.1)
and
U(x) = Fp US(x) + (1 - Fp) UR(x) for x > x* D.2)
where: x* = The notch stress field boundary (see Appendix B)
Fp = The fraction of the crack closure mechanism that is PICC
US(x) = The function of U(x) calculated entirely based on the PICC
mechanism
UOR(x) = The function of U(x) calculated entirely based on the RICC/OICC
mechanism

The procedures used to derive the function of UOR(x) are the same as those derived for the
function U(x) as discussed in Appendix C, except that the applied stress range (AS)is a
known value and is greater than the threshold stress range (ASy).

The fraction of the crack closure mechanism that is PICC {Fp) is assumed to be
100% when the AK value is greater than AKy and 0% when the AK value is smaller than
AKiho. When the applied AK is between AKy and AKy, the fraction of the crack closure
mechanism that is PICC (Fp) is assumed to be an exponential function which is dependent
on the two slopes of the long-crack da/dN versus AK bi-linear curve. The proposed
exponential function shown in Fig. D.1 is given by:

AK - AKipo \m
Fp = 1-expl-mi(—— 103772 3
p Pl (™) (®3)

where: m; = Slope of the bi-linear curve of da/dN vs. AK in the near-threshold
regime (Stage I)



my = Slope of the hi-linear curve of da/dN vs. AK in the mid-growth rate
regime (Stage II)

It is noted that the value of F} is also a function of crack length because AK is a function of
crack length. Figure D.2 shows two possible cases of U(x) when AS > AS. When
UT(x*) > US(x*), the UY/R(x) is larger than the US(x) for x = x* (see case I in Fig. D.2).
When UT(x*) < US(x*), the UO/R(x) is smaller than the US(x) for x = x* (see Case Il in
Fig. D.2). For both cases, the funcdon U(x) lies in the region bounded by the functions
US(x) and UOR(x).

Once the U(x) function is derived, the value of AKgg(x) for a short crack emanating
from a notch can be derived from the relation AKes(x) = U(x) AK. Using the unique
material property of the da/dN versus AKes relationship, the variation of crack growth rate

with crack length can be modelled. Consequently, the total propagation life for a notched
component can be estimated.

D.2 Fatigue Life Prediction for Constant Amplitude Loading Condition
Two formulations of the stress intensity range for a crack wilhin and beyond the

notch stress field boundary are used:

when x < x*,

_ L122KASVrx

AKg = ————————. O.4
V1 +4.5(/p)
where:
K¢ = Stress concentration factor (gross section)
AS = Applied stress range (gross section)
p = Notch root radius
x = Crack length from notch root
and when x > x¥,
AK = Y(2) AS Vma D.5)
where: a = D+xjand x> x*

D = Notch depth
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Y(@) = Geometrical factor for stress intensity factor; see Appendix A

The formulations of AK (or AKg) depend upon the nowch size, the notch shape and
the specimen geometry. The function AKefi(x) equals U(x)AK; the function of U(x) is
derived using Egs. D.1 - D.3. The value of Uy used for US(x) and UO/R(x) i determined
using Eq. 2.15 and the concept of the Uy constraint as described in Appendix C (i.e.,
Fig. C.3).

The CCN model considers in detail the behavior of short cracks and early crack
growth by modeling U(x) for short cracks emanating from a notch. The total propagation
life is estimated by integrating the relation between da/dN and AKegr, The limits of
integration start at a defined initial crack length (; concept of Dowling {35], see Eq. B.3)
and end at final fracture. The transition from the AKg formulation (Eq. D.4) to the AK
(Eq. D.5) occurs when the crack length equals the notch stress field boundary {(x*). The
behavior of the crack growth rate is represented by a hi-linear madel in which the relations
between da/dN and AKgyr are represented by two sets of C' and m values. The steps in
deriving these two sets of C' and m values are discussed in Appendix E. The total
propagation life (Ny) for a notch is given by:

xg
Nf = f o ©.6)
Ci(U(x) AK) ™
Xi
Where: x = Crack length from notch
C'i, m; = Constants, see Appendix E
U(x) = The variation of stress intensity ratio with crack length; see Eq. D.1 -
D.3.
xi = Initial crack length for integration = /;
Iy = Transition crack length from Dowling; see Eq. B.3
xf = Final crack length at failure

AK = Stress intensity range; see Egs. D.4 and D.5.

The final crack length at failure (x;) is derived by:

Kic = Smax YD+xp) Y n(D+xy) D.7)

where:  Spax = Maximum stress (gross section)
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YO+xp)
Kic

Geometrical facior see details in Appendix A

]

Fracture toughness (may use the K value)

Because the CCN model discussed above considers early growth life in the short
crack regime, the crack nucleation life (Ng) may be derived based on the Basquin-Morrow
equation (Eq. 2.2), in which K, (or Ky} is replaced by K (or K):

Nn = 21 ( Sn Kt )”b ('DS)
o'rlt- U_r'n
ot
where: Sa = Remote applied stress amplitude (gross section)
K; = Theoretical stress concentration factor (gross section)
o't = Fatigue strength coefficient for smooth specimen
b = Fatiguc strength exponent for smooth specimen
Om = Local mean stress

For notches sizes comparable to the microstructure of the material (e.g. grain size),
the anomalous growth behavior of short crack can not be simply explained by crack
closure; thus, the CCN model is not applicable. The limit of the CCN model applicability
is discussed in Appendix F.
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Case I: UT(x#*) > US(x*) Case I : UT(x*) < US(x*)
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Figure D.2  The possible two cases of U(x) which lic in the region limited by the
functions of US(x) and UOR (),
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APPENDIX E
THE RELATIONSHIP BETWEEN da/dN AND AK ¢

The relationship between da/dN and AKefr is assumed to be a unique material
property for crack growth behavior, but the relationship between da/dN and AK is
dependent upon the maximum applied stress (Smax). crack length (x), and the load ratio
(R). Different Spmax or different R conditions result in different stabilized effective stress
intensity ratios (Ug). Using the same concept of Fig. C.3, figure E.1 shows the relations
between Ug (or Uthe) and Smax/Sy for materials with F/E = 0.01 and H/E = 0.07 and for
three R ratios (R = -1, 0, 0.4). The value of U, for each R ratio depends upon material
properties such as grain size (d) and yield strength (Sy). The values of U, for the materials
with H/E = 0.07 (steel) are always larger than those with H/E = 0.01 (aluminum alloys) at
the same R ratio and Smax/Sy.

Figure E.2 assumes that the values of U (at R = -1) for both materials are 0.2.
The value of Uy is constant (= Uyhg) in the low stress range for the H/E = 0.01 material,
but the values of Uy, are different in all the stress ranges for the H/E = 0.07 material. If
Ui for an H/E = 0.07 material equals 0.3, there will be a constant Uy in the low Smax/Sy
range. The fact that the value of Smax affects the da/dN versus AK relationship has been
observed in 1070 and 1026 steel for the R equals -1 condition [72], in which a higher
maximum stress results in a higher crack growth rate at the same AK. Nisitani et al. [59]
examined the crack growth behavior of 1045 steel and found that the relation of da/dN
versus AK did not vary with the applied stress in the low stress region, but did vary in the
high stress region. However, most of the tests that were performed using the Compact-
Tension (CT) specimens did not see this Smax dependence on the da/dN versus AK
relationship. This discrepancy may be explained by the fact that the tests were generally
performed at a constant U, range (low Smax/Sy). For the R 2 0 conditions, Uy, is
generally greater than 0.5; thus, Uy is almost a constant (= Uypo) in most of the stress
regions.  Additionally, most of the crack growth rate tests were carried out under the
positive R ratio conditions. The above discussion may explain why the effect of §,,3x on
the da/dN versus AK relation was not found in the majority of the reports.

One method of deriving the da/dN versus AK,r relationship from the da/dN versus
AK relationship is to use sharply notched specimens and test in the very low Spax range.
However, the occurrence of a non-propagating crack may cause difficulties in the

measurement of crack growth rate. A load-shedding method which may solve this problem
is discussed below.
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Sharply notched specimens (Kip 2 7) were selected and tested in an R equals -1
condition. The initial maximum applied stress (Smax) is selected as low as possible and

tested until a through-thickness fatigue crack is observed which is longer than the notch-

stress-field boundary x* (estimated by 0.21 ‘\[D_p) The applied stress ranges (at the same
R ratio) are then gradually decreased according to the instruction of ASTM E647 until the
crack length becomes long enough to be considered a long crack. After the crack growth
rate reaches the near-threshold regime (about 10-10 mycycle), the stress is kept constant
until the specimen breaks. Based on this load-shedding procedure, the relation of da/dN
versus AK in both the near-threshold and the mid-growth rate regimes can be obtained.
Additionally, the effective stress intensity range (AKerr) can be derived by the relation,
AKeff = UinoAK. For the H/E = 0.07 materials, U and Ujpo may need to be treated
separately (depending upon the value of Ujpg).
The value of Ujng can be estimated by Eq. 2.10:

Upo = el _ TN E E.1)
AKtho AKtho
where n = L5x105 forsteel
N = 20x105 for aluminum alloys
E = Young's modulus (MPa)
AKefftho = Effective long-crack threshold stress intensity range (MPa+m)

A bi-linear model is applied to correlate the measured data of long crack growth rate
(da/dN) with AK, which is given by:

da

N = Gi (AK)™Mi (i=12) (E.2)
Where C1 = Crack growth coefficient in the near-threshold regime
m) = Crack growth exponent in the near-threshold regime
Cz = Crack growth coetficient in the mid-growth rate regime

my = Crack growth exponent in the mid-growth rate regime

Note that the long-crack growth data represented by Eq. E.2 is obtained from a very
low applied stress. The effective stress intensity ratio in the entire range of AK can be
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assumed to be a constant value which is the long-crack effective threshold stress intensity
ratio (o). The crack growth rate (da/dN) as a function of AK 4 is given by:

da

N = Ci(AKem)™ (i=12) (E.3)
Where: C'1 = Ci/(Uho)™! (in the near-threshold regime, Stage I)

Ca = C2/Upo)™ (for H/E = 0.01 material in Stage IT)

Ch = C/(Ug™ (for H/E = 0.07 material in Stage 1)

For a crack emanating from a notch, equation E.3 can be used to rationalize the anomalous
crack growth rate of a (mechanically) short crack, because the da/dN versus AKefy

relationship is a "real” material property and is independent of the load ratio and the applied
stress level,



131

0.8 k| f(R, material properties) | L R=04 -
:>§ 0.6 | - R=0 |
g . R=-1 1 (@
° 04} i
> 04t
0.2 -
[ For Material H/E = 0.01 ]
0.0 L 1 i 1 ' t L ! :
u.0 0.2 0.4 0.6 0.8 1.0
Smaxls y
1'0 N - ) ] I i
oL ' R=04 _
. { Possible Uihn Range :
2 f(R, material TH
§ 061 (R, material properties) R -0 i
S ()
% 04l R=-1 .
: o
0.2 — _
- For Material H/E = 0.07 1
0'0 N 1 1 1 3 ] i ' 2
0.0 0.2 0.4 0.6 0.8 1.0

Smax/Sy

Figure E.1 The variation of Ug with Smax/Sy for various R ratios. Shaded area shows
the possible value of Uyng which is load ratio and material properties

dependent variable. (a) for H/E = 0.01 material (aluminum alloy), and (b)
H/E = 0.07 material (steel). (A schematic diagram).



Ugand Uy,

Uy and Uy,

Figure E.2

132

1.0 : : . :
L For Material H/E = (.01
0.8 I Assuming Ulho = 0.2

0.6 | -
04}

0.2

00 : 1 A L i I P 1

Smax/S y

1.0

: T . . , . . :
L For Material H/E = 0.07
0.8 |- Assuming U= 0.2

0.6

0.4 L poree R = -1

0.2 = N Sun and Sehitoglu model

0_0 A ] L H 1 I 3 1 i
0.0 0.2 0.4 0.6 0.8 1.0

Smax/S y

The difference of Ug vs. Smax/Sy between two different H/E materials for R

= -1. Assuming U, = 0.2 for both materials, (a) there will be a region
where Ug = Uy, for H/E = 0.01 material (aluminum alloy), and (b) no
region where Uy = Uyo.

(a)

(b)



133

APPENDIX F
THE LIMIT OF THE CCN MODEL APPLICABILITY

From a metallurgical point of view, there is no truly "notch-free" material. The
grain boundaries, the inclusions, the second phases and the inevitable surface roughness
are all intrinsic defects in a material. However, it seems that those small defects do not
behave like notches. For very small defects (e.g. D < grain size), the role of
microstructural interactions on crack growth rate becomes significant, and thus, the CCN
model may not be applicable. This fact raises to several questions:

1. Whatis the defect size for which the CCN model is not applicable ?
2. Isthis size material dependent ?
3. Is this size dependent on the acuity of the defect ?

Quantitative determination of the boundary between the region where the CCN
model is applicable and the region where the CCN model is not applicable is important
because the main contribution of the CCN model is its capability in dealing with the small
notch problem.

A short crack emanating from a notch can be categorized as a mechanically short
crack. In most cases, crack closure for a mechanically short crack can be modelled, and the
CCN model is applicable. However, when the defect size is comparable to the
microstructural size, the use of the CCN model is invalid. A short crack originating from a
"very small" defect would be categorized as a microstructurally small crack because the
crack growth rate is still strongly affected by the microstructural barriers. The following
discussion proposes a concept (or methodology) to quantitatively determine the Limit of the
CCN Muodel Applicability (LCMA) based on the characteristics of microstructurally and
mechanically short cracks.

Tokaji [51] proposed a diagram which qualitatively separates the regions between
microstructurally and mechanically small cracks. Figure F.1, adapted from the Tokaji
concept, shows four regions of small cracks categorized by crack length (also compared
with the grain size (d)). The CCN model is applicable only when the crack length (or the
total length of notch depth and the short crack length) is larger than the boundary between
the microstructurally dominated region and the mechanically small (short) crack region.
Figure F.1 also shows that the LCMA increases with increasing grain size. As will be
discussed below, Fig, F.1 is not a complete representation of the process used to determine
the LCMA. The applied stress is also an important parameter affecting the LCMA.



134

E.1 The Maximum Allowgble Stress Range for AK Formulation
The cyclic plastic zone of a crack tip (rp) is related to the applied stress intensity
range and is given by Taylor [53]:

1y = 0.04 (—‘i‘sflf)2 (F.1)
Taylor stated that the condition for valid use of AK is given by:

rp/a £0.1 (F.2)

where: a = Crack length

The AK for notch with initial depth (D) can be estimated by:
AK = YAS\=D (F.3)

where: Y = QGeomerrical factor; Y ~ 0.76 for thumbnail cracks (notches) in a
cylindrical bar and Y ~1.12 for through thickness cracks (notches).

Combining Eqs. F.1-F.3 and assuming D = a, the maximum allowable applied stress range
(AS) is:

0.892
AS < =Sy (F.4)

F.2 Applicable Regions for the CCN Model )

MckEvily et al. [19] suggested that when the AK value of a crack falls to the left of
the AKefr curve on the da/dN vs.AK graph, the crack growth rate is dominated by stress
and microstructure (this region is denoted as Microstructure Dominated Region, MDR). In
this case, the crack-closure based LEFM model (e.g., like the CCN medel) is not
applicable for lifc prediction. Conversely, when the AK value of a crack falls to the right
of the AKgfr curve on the da/dN vs. AK graph, the crack-closure based LEFM model is
applicable. This concept is schematically shown in Fig. F.2 in which the LCMA is the
da/dN versus AK,fr curve in the da/dN versus AK diagram.



135

Figure F.2 can be mapped with a diagram showing the relationship between stress
and notch depth (S - D). This concept is shown schematically in Fig. F.3, The three
regions shown in Fig. F.3 are the smooth specimen region, the no failure region and the
CCN model applicable region. When defect depth (or crack length) is smaller than the
LCMA and the applied stress is higher than the fatigue limit of a smooth specimen (S,), the
crack growth rate is dominated by stress and microstructure, and the fatigue properties can
be considered to be the same as those of the smooth specimen (i.e. Ky = 1). For this case,
the long-lifc-rogime fatigue properties are reflected by the Basquin-Morrow equation.
When the applied stress is lower than Se and the notch size is so small that the crack
emanating from a notch would have a crack growth rate of approximately zero, the notched
specimen will have an infinite life (no failure region).

The LCMA for an applied stress less than AS, (AS < AS,) represents the variation
of the threshold stress range with notch depth. The determination of this threshold stress
relationship has been proposed in Appendix C. As will be discussed below, the LCMA for
AS 2 AS¢ is determined using the hypothesis that, at the same applied stress, the minimum
crack growth rate of a crack emanating from a notch equals the average crack growth rate of
a small crack originating from a smooth specimen (Rg).

The "average” crack growth rate of a microstructuratly small crack in the MDR can
be assumed to be dependent only upon stress range. The total fatigue life in this "smooth”
specimen is assumed to consist mainly of the life spent from zero crack length to the
intrinsic crack length Lo (Eq. 2.12). Thus, the average crack growth rate of the
microstructurally short crack (Rg) can be derived by:

Lo
| L
Nt = | = = -0
T f R; dx R, (F.5)
0
where: Rs = Average crack growth rate of the microstructurally small crack

=z
=
Il

Total fatigue life of a smooth specimen

Combining Eq. F.5 with the Basquin-Mormrow equation ( Eq. 2.2 with Kg = 1), Rgas a
function of applied stress range is given by:

2L
= =0
Rs = AS )1 (F.6)

2c'y
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where: AS = Applied stress range
c'r = Fatigue strength coefficient
b = Fatigue strength exponent

Using Eq. F.6 to determine R for a naturally flawed material such as casting alloy
is difficult becausc "real” smooth specimens are not obtainable and thus o'y and b must be
derived by an alternative method. Figures F.4 and F.5 show the procedures to solve this
problem for the cast aluminum alloy 319 used in this study. The fatigue life versus casting
defect depth (D) for various applied stresses is shown in Fig, F.4. The fatigue life of
defect-free conditions for a certain applied stress (Smax) can be obtained by extrapolating
the regression lines to zero casting defect depth. Once these fatigue lives for defects of zero
depth are obtained at a certain applied stress, the values of ¢'r and b can be derived by the
(Basquin-Morrow) relation between stress amplitude and reversals (2NT) as shown in Fig.
F.5. The values of ¢'rand b for the pore-free cast aluminum alloy 319 tested in this study
are 169.6 MPa and -0.051, respectively.

E.J Algor 1 imit of Mode! licability (16
The algorithm to determine the limit of the CCN model applicability (LCMA) is:

1. Known conditions:
---> A given notch depth D and acuity K;,
---> A given applied stress range AS and load ratio R, and
---> Material properties (6'g, b, ASe, AK o, Sy, E, da/dN vs. AKp data)

2. Procedures:

---> Start checking when x 2 [;,

---> Calculate U(x) and AKes(x) using the CCN model,

---> Determine da/dN(m) (the minimum crack growth ratc for a crack
emanating from a notch) based on the da/dN vs. AKg¢r curve,

---> Determine R, based on Eq. F.6 (the average crack growth rate for a
crack originating from a smooth specimen),

---> If da/dN(m) € Ry, then the combination of the notch depth and the
stress conditions is in the MDR region, otherwise it is in the CCN
applicable region,
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---> The LCMA (at the given applied strcss) is the notch depth at which
da/dN(m) = Rs.

Figures F.6 and F.7 illustrate the above concept. Figure F.6 compares two
different notch depths under the same applied stress. The minimum crack growth rate of a
crack emanating from a shallow notch (the left case in Fig. F.6) is lower than the average
crack growth rate of a crack originating from a smooth specimen (Rg); thus, this notch must
be considered a "non-effective” notch. On the other hand, when a crack emanates from an
"effective” notch (Kgy > 1), the growth rates for the crack emanating from this "effective”
notch must always be faster than the Ry (the right casc in Fig. F.6). Figure I..7 shows a
constant notch depth loaded by three different applied stresses. Both the R and the da/dN
of the crack emanating from the notch increase with increasing applied stress. For a very
low stress (i.e., AS1 in Fig. F.7), this notch will have infinite life. When the applied stress
increases to AS2, the CCN model may be applied to predict the fatigue life. However,
when the applied stress increases to AS3, the minimum value of da/dN falls below Rg; thus,
under this condition, the CCN model is not applicable. The fatigue life may be estimated
by the strain-life approach (with K = 1).

When a crack emanates from a notch with a minimum crack growth rate equal to the
R, the notch depth is the LCMA. From an engineering point of view, the LCMA is the
maximum tolerable defect depth of a material. When a defect depth is-less than this
maximum tolerable defect depth, this defect will not affect the fatigue strength. This non-
effective defect specimen is considered to be smooth specimen. The long-life regime
fatigue life for this non-effective notch may be estimated using the Basquin-Morrow
equation with Ky = 1. However, when the defect depth is larger than this maximum
tolerable defect depth, the fatigue properties are not those of a smooth specimen. The CCN
model must be employed under this condition. The value of the LCMA at the fatigue limit
is denoted as Xpc (see Fig. F.3) which is the maximum non-damaging notch depth. Fora
notch with a depth smaller than Xp, the threshold stress of the notched component equals
the fatigue limit of a smooth specimen.
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Figure F.2  Regions of applicability of the CCN model and LEFM model (modified
after Ref. 19). When AK values of a small crack emanating from a notch
fall in the stress and microstructure dominated region, the CCN model is not
applicabie.
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Considered as a smooth CCN Model Applicable
specimen
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f
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Fig. F.6  Schematic diagram showing the concept to derive the limit of the CCN model
applicability. The crack growth rates of cracks emanating from two notches
(different depths) with the same applied stress were compared.
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APPENDIX G

EXPERIMENTAL PROCEDURES AND RESULTS FOR A CAST ALUMINUM
ALLOY 319

1_Materi ic Mechanical

The cast aluminum alloy 319 used in this study was cast and heat-treated by the
General Motors Corporation. The chemical composition of this alloy and heat reatment
process are given in References 60 and 73. The mechanical properties of this material are
given in Table 1.

The microstructure shown in Fig. G.1 is an aluminum-based dendritic structure.
Each arm of the dendrite is enveloped in eutectic. The micro-hardness of the aluminum-
based dendrites is about HV 50 (standard deviation = HV 9 from 15 measurements) and
that of the eutectic is about HV 280 (standard deviation = HV 60 from 15 tests). Dendrite
cell size (DCS) and dendrite arm spacing (DAS) were measured by using a line intercept
method in which lines were drawn on a magnified micrograph and the number of cells (or
secondary dendrite arms) on each line were counted. In this way, the dendrite cell size can
be determined. The dendrite cell size had a mean valuc of 0.07 mmm and a standard
deviation of 0.009 mm from 20 (10 micrographs) measurements. The dendrite arm
spacing had a mean value of 30 um.

There were a lot of casting pores in this cast alloy. The casting defects in the cast
alloy are three-dimensional in nature but can only be observed as two dimensional features
by optical or scanning electron microscopy (SEM). From the fracture mechanics point of
view, it is necessary to represent the defect size by a simple one-dimensional scalar
quantity. However, the irregular shape of these defects makes it impossible to characterize
the defects by measuring a single, characteristic dimension. Thus, the defect size (T)
defined below was used throughout this study as a measure of casting-defect severirty:

T = VA2 - (G.1)

Where: Area = The area occupied by projecting pore {or defect) onto a plane
normal to the observation direction: see Fig. G.9b.
T Defect (or pore) size

Samples for measuring the casting pore size distribution were prepared from the
fatigue-tested cylindrical specimens by sectioning each of them in several locatons. Each
section was then mounted and polished, and photographed at a 50x magnification. Several
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randomly selected locations on each plane of polish were photographed. Images of a total

of 584 pores were collected and analyzed to determine the statistical distribution of pore
size.

The casting pore size exhibits an exponential distribution:

f(T) = A exp(-AT) (G.2)

Where: f(T)

A
T

Probability density function of pore size (T)

Parameter of exponential density function; to be determined
Square root of defect area, a measure of casting pore size

Equation G.2 can be rearranged using the concept of cumulative distribution function,
F(T), and F(T) is given by:

F(T) =1 - exp(-AT) (G.3)
. T . X n{T)
Where: F(T) = Cumulative distribution function of pore size = Nt
n{T) = Number of pores which have pore size < T
N = Total sampling number (in this case, N = 584)
Equation G.3 can be further rearranged as:
In(1-F(T) = -AT (G.4)

Figure G.2 shows the data based on Eq. G.4 in which it can be seen that In (1 - F(T)) is
linearly related to the pore size (T) and that the slope (A) is 19.6. Figure G.3 shows the

comparison between the histogram of experimental data and calculated f{(T) using Eq. G.2
with A =19.6. Thus, the casting pores size can be represented by an exponential function
which has parameter A of 19.6, that is:

f(T) = 19.6 exp(-19.6T) (G.5)

(.2 Fatigue Tests

G.2.1 Test Specimens
Two surface conditions of cylindrical specimens were used: polished-surface and
as-cast surface conditions. The polished-surface specimens were cast to 12.8 mm diameter
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cylindrical bars and machined to have 8.38 mm diameter x 25.4 mm gage sections. The
surfaces of the machined specimens on the gage section were then polished using the 30
pm abrasive polish-ribbons. The as-cast surface specimens had 8.38 mm diameter x 38.1
mm gage sections.

In addition to the cylindrical specimens, single edge notched plate (SENP)
specimens were also used. The SENP specimens were machined out of cylindrical bars of
19.2 mm diameter. The typical shape and dimensions of an SENP specimen are shown in
Fig. G.4 in which the prismatic gage section has a width of 15.8 mm and a thickness of 5
mm. The single edge notch has a 1.6 mm depth; the notch root radii were 0.06, 0.4, and
0.8 mm which produced net-section elastic stress concentration factors (Ky,) of 11.0, 4.85,
and 3.6, respectively [61]. Each specimen was electro-chemically polished to remove
residual stress which may have been induced by the machining.

2.2 -Lif -N Cyry
The uniaxial fatigue tests were performed at a load ratio R = -1 and frequency of 10
to 25 Hz. Cylindrical specimens with both as-cast surface and polished surface conditions
were tested. Failure was defined as complete separation of the specimen, and run-out was
detined as 1.25x108 cycles. The run-out test specimens were retested using progressively
higher applied stress ranges until the specimens failed.

wth T v AK

Two kinds of measurements for crack growth rate were carried out using the SENP
specimens: constant-load (constant stress amplitude) tests in which the applied load was
kept constant throughout the entire life and load-shedding tests in which the applied load
was gradually decreased during the test.

The constant-load fatigue tests were used to determine the relation of fatigue cycles
with crack length and the stress-life relation (S-N curve). These tests were performed at a
load ratio R = -1 and frequency of 5 to 10 Hz. Failure was defined as complete separation
of the specimen, and run-out was defined as the absence of crack growth for 107 cycles.
The applied (constant) stress ranges (AS) for measuring the crack growth rate were
between 69 MPa and110 MPa (based on gross section).

A microscope and camera were installed 10 periodically measure the crack length.
Measurements began whenever a crack length became greater than 0.2 mm. A seven-point
incremental polynomial method specified by ASTM standard E647 was used to analyze the
relations between da/dN and AK,

In addition to the constant-load tests, load-shedding tests described in ASTM E647
was also used to measure the long crack growth rate in the same SENP specimens at R = -
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1. A rravelling microscope was used for crack-length measurement. The rate of load
shedding was larger than the value specified in the standard. According to the standard, the
criteria of normalized K-gradient (Cy) is given by:

C, =(%) (‘% > -0.08 mm-! (G.6)

Because of the dimensional limitatons of the SENP specimen, the width in the gage
section was too narrow to follow the criterion (Cy, > -0.08 mm-1); thus, the values of Cy in
this test were limited to Cp > -0.2 mm-1l. The observed relationship between da/dN and AK
was considered to be that of a long crack when the crack emanating from a notch was
longer than 2.5 mm.

G.3 _Experimental Resuls

1 -Life (S-N) Relations f indri imen

The fatigue test results for all tests are shown in Fig. G.5. The test results for each
surface condition are given by different symbols. The scatter in the fatigue life data
increases with decreasing applied maximum stress (Smax) (or stress amplitude since R =-1
for all tests). Using the test statistics discussed in Appendix H to check the independence
of these two S-IN data sets, it seems that there are no significant differences between the
two surface conditions. Thus, for the cast aluminum alloy 319 tested in this study, the
fatigue strength was not significantly affccted by the surface conditions.

2 -Li -NY Relati im

The Stress-Life (8-N) curves for the single edge notch in a plate (SENP) specimens
tested under constant stress amplitude are shown in Fig. G.6. The stress amplitude is
based on the gross section. A run-out (defined as 107 cycles) was found for the specimen
with a Ky value of 11 at Spax = 34.5 MPa. The specimens with Ky = 11 have a longer
fatigue life than those with Ky, = 3.6 or 4.85 when compared at the same stress amplitude:
when the applied stress amplitude equals 34.5 MPa, the fatigue life was found at 8.6x105
for Ky = 3.6 specimens; whercas, the run-out condition was found for Kip = 11
specimens. The results imply that fatigue life may be affected by the notch root radius;
also, the trend indicates that the sharpest notch is not the worst-case notch.
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The fact that the fatigue cracks initiated from the sub-surface casting pores near the
outer surface was observed in the study described in Appendix I. The observations in
Appendix I lead to the conclusion that the fatigue cracks initiate from the near-surface
casting pores and that the eutectic microstructure had little effect on the fatigue initiation and
carly propagation.

The fatigue initiation sites were also observed for the broken cylindrical specimens.
The appearance of the fatigue fracture surfaces of a cylindrical specimen exhibited smooth
and flat asperities (Fig. G.7). The fracture surfaces of each cylindrical specimen were
examined using a scanning electron microscope (SEM) to observe the fatigue initiation
sites. There are two categories of defects which caused fatigue crack initiation: near surface
casting pores which were most frequently observed in the polished surface specimens; and
cast-surface texture which were only present in the as-cast specimens. Figure G.8 shows
that the fatigue crack initiated from a near-surface casting pore for a polished specimen and
that the crack initiated and propagated on the plane normal to the direction of applied siress.
Figure G.9a shows a fractograph of an as-cast specimen in which the surface texture
caused fatigue crack initiation. Figure G.9b shows the trace of the area of fatigue initiation
defects from Fig. G.9a.

The fatigue initiating defect size (T = vArea) has been defined by Eq. G.1. The
data used for the statistical analysis of fatigue initiating defect size were obtained from 23
polished specimens and 11 as-cast specimens. For the polished surface condition, most of
the fatigue initiation sites were near-surface casting pores. For the as-cast surface
condition, most of the fatigue initiation sites were the surface texture discontinuities. The
defect size (T) and the corresponding S - N test results arc listed in Table 3 (for polished
specimens) and Table 4 (for as-cast specimens).

The cumulative distribution functions of fatigue initiating defects size for hath
polished and as-cast surface conditions are shown in Fig. G.10. The open circles represent
the data for the polished surface condition and the solid symbols represent the as-cast
surface condition. The dashed lines are the regression lines for both conditions. It is
obvious that the fatigue initiating defect sizes for both conditions follow normal
distributions, and there 1s no significant difference between these two conditions. When
these data are treated as one group, the mean value of the fatigue initiating defect size is
(.50 mm and the standard deviation is 0.16 mm.

The normal probability distribution function is given by:
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1 1,T-12
KT) = xpl-5 7] (G.7)
2n c
where: T = Fatigue initiating defect size
B = Mocan valuc (= 0.5 mm in this analysis)
¢ = Standard deviation (= (0.16 mm in this analysis)

The comparison between the histogram of fatigue initiating defect size and Eq. G.7 is
shown in Fig. G.11. The average size of the fatigue initiating defects is bigger than the
average size of the casting pores as shown in Fig. G.12. It would seem that the statistics
of extreme can be used to correlate these two distribution functions. Unfortunately, the
fatigue initiating defects are not simply a single casting pore or single as-cast surface
texture. On the contrary, in many cases, the fatigue initiating defects were composed of
more than one casting pore or were composed of a combination of casting pores and
surface textures (in the as cast specimens). Thus, an analysis based on the extreme-value
statistics is not possible at the present time. The average fatigue initiating defect size is
characteristic of the tail of the casting pore size distribution.

.34 The Influence of Farigue Initiaring Defect Size on the Fatisue Life

The influence of the size of fatigue initiating defects on the fatigue life at a given
applied stress is shown in Figs. G.13(a-d) for four applied stress ranges. It is clear that the
size of fatigue initiating defects affects the fatigue life; the larger the size, the lower the
fatigue life. The main reason that the S-N data are same for both the polished and as-cast
surface conditions is attributed to the same size distribution of fatigue initiating defects for
both surface conditions. Figure G.13 also shows a trend that the lower the applied stress,
the stronger the effect of defect size. The dependence of the fatigue life of this cast alioy on
the initating defect size and the sensitivity of this defect size effect on stress level lead the
application of the ASTM E739 to the test data to be meaningless, because the basic
assumption in ASTM E739 is that the deviation of fatigue life is independent of the applied

stress. A better approach for determining the confidence bands using the CCN model is
discussed in Chapter 4.

4 M m Fag lon R

Single edge notch in a plate (SENP) specimens were used for determining the crack
growth rates of short cracks and of long cracks for the R = -1 condition. The short crack
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growth rates were determined by the constant-load tests. The long-crack growth rates were
determined by the load-shedding tests using the sharply notched specimens with Ky = 11.

The variations of the fatigue crack length with fatigue cycles for the constant load
test are shown in Fig. G.14. The seven-point incremental polynomial method suggested
by ASTM E647 was used to convert the experimental data from Fig. G.14 into the relation
of da/dN versus AK. The function used for calculating stress intensity range (AK) is
discussed in Appendix A.

For the load-shedding test, da/dN was determined by the change of crack length
divided by the fatigue cycles at each load step. AK is the mean value of the starting AK
and the ending AK at each load step. The starting applied stress range for initiating a crack
is Smax/Sy =0.25. Figure G.15 shows the relation between da/dN and AK for long cracks
(x = 2.5 mm) obtained by the load-shedding tests. The threshold stress intensity range
(AK o) for R = -1 is approximately 6.5 MPavm.

A bi-linear model was used to correlate the long crack growth rate (da/dN) with the
stress intensity range (AK):

da

N = Gi@ar™ (=12 (G.8)
where: Ci = 1.18E-25 (in the ncar-threshold regime, Stage I)
my = 16.7 (in the near-threshold regime, Stage I)
C, = 9.58E-14 (in the mid-growth rate regime, Stage IT)
m = 4.7 (in the mid-growth rate regime, Stage II)

Figure (.16 combines the experimental results for both load-shedding and constant
load tests. The solid lines in this figure illustrate the relationships obtained for the long
cracks (x > 2.5 mm) from the load-shedding tests (i.e. Eq. G.8 and Fig. G.15). The data
points in Fig G.16 include the results for short cracks (x > 0.2 mm in most cases) which
exhibit faster growth rates than the long cracks when compared on the basis of AK.

Since the long-crack da/dN versus AK relation was obtained by the load-shedding
method and consequently by a AK-increasing procedures. the applied stress range in this
condition was so low that the value of Uy in the mid-growth rate regime can be assumed to
be the same as U in the threshold regime (see Appendix E). The results obtained by the
load-shedding method were all long-crack data (x = 2.5 mm), and the crack closure level
can be assumed to be a stable value - the long crack effective threshold stress intensity ratio
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(Utho). The value of effective stress intensity range (AKegp) for the long crack in both near-
threshold and mid-growth rate regimes is obtained from:

AKars = U AK (for long crack obtained from the load-shedding method) (G.9)

The value of AKefrtho can be estimated to be 1.4 MPavm (see Appendix E); thus, Upg at
R =-1 for the cast aluminum alloy 319 of this study can be assumed to be 0.215. The bi-
linear curve of da/dN versus AKeqr for long cracks as described in Appendix E is:

da

aN = Ci (AKem)™ (=12) (G.10)
where: Cy = 1.747E-14 (in the near-threshold AKefr regime, Stage I)
my = 16.7 (in the near-threshold AKefr regime, Stage 1)
C2 = 1.32E-10 (in the mid-growth rate AK,f regime, Stage IT)
m = 47 (in the mid-growth AKesr regime, Stage II)

The faster growth rates of the data points shown in Fig. G.16 are the results of the
"short crack problem” which causes short cracks to have higher effective stress intensity
ratios (U(x)) than the stabilized long crack effective threshold stress intensity ratio (Ugg).
The calculation of U(x) for short cracks under constant applied stress range is discussed in
Appendix D. Taking an example for the notch with Ky = 4.85 under constant applied
stress conditions, the variations of U(x) with the crack lengths x were predicted based on
the concept discussed in Appendix D (see Egs. D.1 - D.3). As shown in Fig. G.17, two
stress ranges were calculated: AS = 73 MPa and 96.6 MPa at R = -1, respectively. The
lower stress range has lower values of U(x) when the crack is within the notch-stress-field
boundary (x < x*), but has higher values of U(x) when the crack is beyond the notch-
stress-field boundary (x 2 x*).

The relations of da/dN versus AKegr of the cast aluminum alloy 319 for both short
cracks and long cracks are shown in Fig. G.18. The solid line is the bi-linear model of
da/dN versus AKfr derived from the long crack data (load-shedding tests) and Eq. G.10;
whereas, the data points were derived based on the relation that AKe(x) = U(x)AK. The
fact that the short crack data merge with the long crack data in the relation of da/dN versus
AKfr shown in Fig. G.18 indicates that the use of this da/dN versus AKerr telation can
rationalize the crack growth rates for both short cracks and long cracks.
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0.2 mm

Photomicrograph of cast aluminum alloy 319 (72X). Keller's etch.

Figure G.1
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Figure G.4  Specimen geometry of single edge notched plate (SENP) specimen.
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Figure G.7  Fatigue fracture surface of a cast aluminum alloy 319,
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Specimen: B92
Smax = 62 MPa

T =0.52 mm
N=938x 106cyclcs

Specimen: B13
Smax = 62 MPa
T=0.57 mm

(b) )
N =478 x 10 cycles

Figure G.8  Fractographs of initiation site for a polished specimens (a) specimen B92
(97x), and (b) specimen B15 (97x).
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Specimen: AC12

Smax = 55.2 MPa
(a) T=062mm
4 N =5.56 x 10 cycles
(b)

Figure G.9  (a) Fractograph of initiation site for as-cast specimen AC12 (50x). The
black spots are ink stains. (b) The trace for estimating the area of fatigue
initiation site in (a).




“(1aded Aipiqeqoid uonNGLASIP [BULOU 3Y) UO pano]d) suonipuod

20BJINS JUAIIJJIP OM] YA suounoads 10§ s10052p Suneniul andney jo 2218 ayy, 0O1'D arndig

(uu) 2718 1925oQ

I 80 9'0 v'0 ¢o 0

T J 1 T T T ' ' _ . 1

I

S0BJING ISEI-SY - @ - - o
A I
—— : \\\
a0eJIng paysijod — & mW 9
O ol

162
o
N

wﬂ@ 0S

; Nvu 08
p\&\\ — ww 91’0 = A’ %
p W G = U
O - - az1g 1995o(q Suneniuj andiyey 66
.7 ure1derg uonnqLISI [eWION
< 61€ Kolry 1SV 18D 6'66

95) uOIPOUN UONINLIISIJ dAlje{nuwn)

L 1 ! $ i L 1 i i i 66°65 —




iiiii

N \\\\\\\

% :
%ﬁ S
.lt.q B q 0 'ld



*3ZiS 109J2p
Sumemur andnej pue azis 210d Junses JO UOINQINSID [BINSNIES Y1 JO yosuedwo] 71D undig

(wiw) 3zIS PAJRQ

164

- 100J3(] Suneniuj ongney]  ee——

uoijounyg AJsus(q A[1QEqO.]

- atod Sunse)) puiBuQ  mm=em=

uonnquIsiy 371§ 1032
61€ AOliY 1S-1V 158D




165

(wuw) vasep fazI$ 190

Do OT PUE [- = Jopun paisal 6l ¢
Ko[je waurwnge 1580 Jo suswroads jeoupuA Joj are siuted viep IV BN 6'SL =
xewg (p) Pue “edN (°69 = Xews (2) ‘ed W 1°79 = Xews (q) ‘BN 7'¢S = xews (v)
‘ssons payjdde uoa1d e 1e oj1 andney oyl uo azis Sunemul andnej Jo douANPUI YL 'O AUNTL]

() vaaBA 3218 193)2Q

01 6'0 80 L0 90 §0 #0 £0 01 60 80 Lo 90 <0 +'0 £0

T T T ¥ T T ¥ T T T T T T T | S | A T Y T 7 ¥ v
3 @ o o0 it ® 3
(o] (] i 1 o) P
i °o 11 Oo of o ]
L 4 o - -
1 it o &
1 oepng 1TISY @ i omymg KBSy @ ;
oeung paysiog O ] wumg paygod O J
(154 11) BdIN 6°5L = XuBuig (P)§ | (10D edN 069 =XeuS . . () ;3

5 1 i 1 2 i 1 1 [] 2 i A L A " i i L . i i i P i i

(tuur) eaiep 2218 139)2(% (urui) gagBp ‘a2 193
01 6’0 80 L0 90 €0 o0 £0 01 60 80 Lo 90 ¢0 v t0

13 ¥ 1 v 1] 3 ] d L h L} M M [ 4 v 1 hd ¥ v L] 4 1§ v 11 v L) v
m sgymgiwysy @ | sepngsessy  © |
1 sepngpaysiod O |1 agpng pystod O |
, o e . ]
] ® it 3
. o e i Lk % 3
w R ; .

(@] F 0%9) BN TS = xows (e)
N Fl & i 2

E (15 6) edIN 1°79 = Xews§
A 1 i 1 i L

N ‘o511 andney

{s3pP4D)

o w
[=) o)
vy a—y

(=
w—

(s3pp4D) N ‘ay17 amdney

-]
=
—

o
o]
-



‘pasn a1om suowidads ANFS ‘I- = Y 10} UOIpUOD
Furpro 1uLISU0d 19pun sI[OA0 andney yum PTusy ¥oeId INFUEY JO UONBLIEA 9YJ, 'O NnT1g

$3ja£D) anduey]

L0l 6Ol (01 ,01 i L01

L0 Jat Bu° B ¥ FrvrT o ¥ T ) AL Bt | v vrr T ¥ ¥ TV vy v T Nucﬂ

(Ww gy = MWW G| = () | .
yoroN 93pH a[8uig

(1- = ¥) Suusaj, peoy WEBISUC)
[ 61€ £0[IV 1SV 158D

Wlom.

166

cg'y=ury N 996=8§y —E— |
Sgp=ury BANEL=SV —F— 40!
= edNg0If=8y —T— |
[E=uy BdN996=SV —H— |
[r=uRjiedNgL=8SV —O0—

() ‘X y33uag Yora)

LaE 2n m o 2
ke boandernnh

i €8 2 | PP I S T " W SR Y fass 4t 0.6 N fieoe 6o do s i .—OM




167

‘(dunda
el paoId-piw) [f a5mg pue (dwidar v mo|) 2315 olut elep 1531 ay) saeredos
YoM 2iep 1591 2yl Joj dul uoissaadal 1esui|-1q 9yl e SAUI| PI{OS pUE SINSAI
feluatuadxa ay1 ae siuod vieq Csuawidads NFS Suisn g paunopad sem SS9,

"I- = Y 1opun si1s3) Surppays-peo| Aq PauIRIqo EIEP NV SA Np/ep jorso-3uoj syl ¢1'D undig

WARIIA) MV

11-01

L

(sispeuy uorssaidoy Aq)
I [apowt Teauli-1g

ZHOL-§=J'1-=1
(3uippays peor) yoer) uo
uowipadg payaloN 28pH d[8uls
61 AOIIV IS-[V 158D

i TP

oﬂ.n:

. | FEWTErEra—

,-01

(3124o/ur) Np/eEp




168

0T

"JOIARY3q

}0eI0-LIOYS JO 918X YIMOIS JOrID SNO[EIOUE YY) SAJEOIPUL UL PIIOS uBY) 1Yy are
siutod e1ep AG umoys ded (pmoI8 YOBID ol 181 108) AU “Dwidal Y MO 3y uf |-
= 3 J0j weadeip YV 'SA NP/ep uo paseq (siutod eiep) s)nsol 153 prO| Jue)suod pue
(Saut} prios) sinsas 1531 SuIppays-peo] uaam1aq es Yimoid ysers jo uosuedwo)

(Wped) MV

81 91 14 14!

—————
S8y =uwy BdIW 9'96 = SV
S8y =uyf RN €L = §V
1{=uf B €011 = SV
[1=u}y ®dN 996 = SV
TL=u BdW €L = §V

O + 0O «4 B

(Surppayg peop) yoes) Buo|

(1-=9) 61¢ AOIIY 1S-1V 158D

91'D anJiy
9
:.9
-0l
1 a
] B
- p
1 2
1601 8
Lg)
. et
¢
. )
3,01




169

0¢

"sa3uel ssans oMl 10§ 18ua) yorso ynm (x)) paowpasd sy 21D 2ndng

(wuz) x “Y)dua yoer)

81 91 LA [ 01 80 90 ¥ 0

00

1 v L] N 1 v 1 * 1 M i v I ¥ 1 v 1

(xX) ATEpUnOg piaLt Ssang YoloN >

P n Y

-ll-ttllla'-lll-lnlu
LT ™
— LLY")
g,
o

!
3ol Juo] “ j}orl) Loys ~,

ﬁmz @.cm" mq ImmBbUCERTINE
BN €L = SV

(Ww g =(sgy=ury)
(1- = ¥) yooN 93py 9jdurs
61€ Aojly 1S-1v 158D

470

4v0

490

80

(x)n ‘oney ANsuljuy
§SRI1S 2411933




“(331y) 28uer Lusuagur ssons 2An233J2 Juisn £q pazijeuonel 3q ued el Yimoerd
YORID-LIOYS Y3 PIILIIPUL SIUL| PI{OS Ynim padroauod sjutod ejep oys ey ‘f- =
¥ Joj wiraSeip Py 'sA Np/ep uo paseq (siurod eiep) s1jnsaz 1598 pRO[ 1URISUOD pue
(Sauij pijos) Si[nsaz 1593 SUIPPIYS-PEO] USIMIAq 21E1 Yim0IS Forud Jo uosuedwo) §1 0O wundiy

AE\E&EV JNY
G ¥ ¢ Z !
' ! ) 1 v 1 T 11- oﬂ
Cyy=uy BJIN 996 =SV [} .
cgp=u'edWeL=sv Y
3,.01
[I=unfedWcoir=sv O hi
[1=uw) BJN996=Sv +
0 e
= [I=uq'edWEL=Sy O m
3. .01
(Suippayg peo) you1) Buo ¢-0
(1- =) 61€ AO1V IS-1V 358D .
4.0
a 1 | 1 N 1 . ; h..cw

(3124>/w) Np/ep



171

APPENDIX H

S-N DATA TEST STATISTICS

Hi In ion

The experimental portions of this study involved stress-controlled (R = -1) fatigue
tests on cylindrical specimens of the cast aluminum alloy 319 under two surface conditions:

(1) PL - Specimens with a polished surface condition, and
(2) AC - Specimens with an as-cast surface condition.

The test statistic is used to compare whether two S-N curves are identical. The method that
determines the confidence bands of an S-N curve was followed by ASTM standard E739.
The test statistic was used to check whether there were significant differences between the
two test conditions. Before making the comparison for the experimental S-N data, the
fundamentals [62] of the test statistic are summarized below.

H.2 The Fundamen f T istic for Two or More S-N Curv
The experimental data from two surface conditions are considered. The procedures
developed are used to test the equality of two regression lines which are obtained by

treating these two groups of data separately. The model which provides regression line for
each S-N data is:

Yij = Aj-i—Bj Xij+$ij (I1.1)
where: Yij = Logarithm of fatigue life (N), i.e. log N
Xij = Stress amplitude (Sip
Aj = Interceptof the Y coordinate
Bj = Slope of the regression line
gjj = Residual error
1 = 1,2,....kj
j = The specific group of data sets which is considered; for testing
whether two S-N curves are identical, the j is either 1 or 2.
kj = Numberof S-N data

For both conditions of S-N data, the coefficients Ay, By, Az, and B2 can be
obtained. Also, the error sum of square (SSE;) is:
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k .
SSEj = }f (Yij - ¥5)2 (H.2)
i=1
where: Qij = Predicted values based on the regression line

The SSE; have (kj - 2) degrees of freedom (DOF). The error sum of squares for
the regression for the first test conditions of S-N data is denoted as SSE; and that for
second condition is denoted as SSE;. The sum of SSE; and SSEj is represented as
SSE(F), i.e., SSE(F) = SSE; + SSEj. The number of degrees of freedom associated with
SSE(F) are (k1 - 2) + (k2 -2) =k] + ko - 4

When the two sets of S-N data are considered as one, the fitted regression line is:

Y = Ag+Bo Xj +¢g , _ (H.3)
where: Y; = Logarithm of fatigue life, i.e. log (Np);
Xi = Stress amplitude (Si);
Ao = Interceptof Y coordinaie
Bg = Slope of the regression line
g Residual error

i 1.2.....(k1 + k2); see definition of kj and k7 in Eq. H.1.

The error sum of square calculated from Egs. H.2 and H.3 is denoted SSE(R), and the
number of degrees of freedom associated with SSE(R) are (kg + k2 - 2).

The test statistic for the analysis of variance approach is denoted F*:

SSE(R) - SSE(F) SSE(R) - §SE(F)
(ki +ko-2)-(ky +ky-4) 2
F= SSE(®) G (H4)
ki +k2-4) (k1 + k2 - 4)

Usually, the significance levels (o) of 0.01 or 0.05 are selected. If F* > F(1 - o
2, ky + ko - 4), then it can be concluded that the linear regression functions for the two
conditions of S-N data are (1 - @)% confidence indicating a difference. Qtherwise, there is
no significant difference between these two regression lines.

This procedure can be extended to test the equality of three or more error sums of

squares for each of the separate regression lines, and the degree of freedom (DOF) would
need to modified accordingly.
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H. isti rimen -
In deriving the regression line of S-N data, the run-out data should be excluded.

The parameters computed from the regression analysis for each of the conditions and the
lumped conditions are listed in Table H-1. A new parameter 02, the estimation of variance

of the normal distribution for (log N); , is given by:

SSE
82 = 225 (H.5)

The confidence band for the entire median S-N curve can be computed using the following
equation:

- XY 0.5
A+BX VRS [ L4 — 22X ] (H.6)
z (Xi-X)?
i=1
where: Fp = F(-o;2,k2)
X = Stress amplitude
X = AverageofX

H.3.1 Whether PL and AC are Identical

Figure H.1 shows the 99% confidence band of median S-N curve for the polished
surface condition (PL).  Figures H.2 show the 99% confidence band of median S-N
curve for the as-cast surface condition (AC). The test statistic for testing the equality of PL
and AC conditions of the cast aluminum alloy 319 are computed as follows:

SSE (F) = 3.08543 + 1.08792 = 4.17335
SSE (R) = 4.37518
0.020183
-2 _
Y = —3 19335 = 0.7738
(24 + 12 - 4)

Select o0 = 0.05, then F(0.95; 2, 32) = 3.31
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Since F* = 0.7738 < F(0.99; 2, 32) = 3.31, the linear regression functions for the two S-N
conditions (PL. and AC) are identical. The 99% confidence band of median S-N curve for
the combined data of PL and AC is plotted in Fig. H.3. From the test statistic, one can

conclude that there is no significant difference in fatigue strength between the polished and
as-cast surface conditions of the cast aluminum alloy 319.
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TABLE H-1
PARAMETERS COMPUTED FROM REGRESSION ANALYSES OF S-N
CURVES FOR THE CAST ALUMINUM ALLOY 319

Test Condition k A B SSE o
PL 24 10.377  -0.05997 3.08543 (0.374495
AC 12 g.022 -0.05568 1.087902 0.329836

PL+AC 36 9.997 -0.05531 4.37518 0.358723
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APPENDIX I

OBSERVATION OF CRACK NUCLEATION AND EARLY GROWTH

L1 imeng and Testing Pr it

Prismatic specimens for three-point-bending tests were prepared to study the
location of fatigue crack initiation sites. The specimens had a height of 16.5 mm, a width
of 9.5 mm and a length of 73 mm. The geometry and fixture for testing the specimens is
shown in Fig. 1.1, The span between the support rollers on the bottom surface was 63
mm. Prior to testing, the bottom surface of the prismatic specimen was prepared for
studying fatigue crack initiation by polishing it using a 0.5 pum alumina abrasive,

Bending fatigue tests were performed under a R ratio of 0.1 and frequency of 10
Hz. at room temperature condition. The maximum extreme fiber stress at mid-span was
124 MPa. Acetyl cellulose films were used to take replicas of the bottom surface
pericdically during fatigue testing. The replicas were gold coated to facilitate observation
using reflected-light microscopy.

Fatigue testing was stopped when a growing (surface) crack larger than 1 mm in
length was detected. The crack path into the specimen surface was examined by
successively polishing and photographing the crack. The depth of polish (Ah) from the
original surface was measured to an accuracy of *+ 0.005 mm using a travelling
microscope.

L2 k Nucleati Early Grow

Several small surface cracks were found at various locations on the original surface
during fatigue testing, but most of them arrested without growing further. For each of the
specimens studied, a dominant crack which propagated with increasing fatigue cycles was
found.

Figures 1.2 show the crack development observed in one specimen which had no
visible casting pore on the original polished surface. When the number of cycles was
2.5x107, a surface crack about 0.4 mm in length was found as shown in Fig. L2a. The
arrows (a,b,c and d) in Fig. I.2a indicate crack positions discussed below. The locations
(arrows) "a" and "b" show that the crack passed through the eutectic; the location "¢"
shows that the crack propagates along the boundary hetween eutectic and aluminum-based
matrix, and the location "d" shows a secondary crack which lies within the aluminum-
based matrix.
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Fatigue testing of this specimen was stopped at 1.5x109 cycles when the dominant
fatigue crack was longer than 1 mm as shown in Fig. IL.2b. Note that the picture shown as
Fig. 1.2b was taken directly from the surface of post-test specimen; and thus, the image is
the reverse of that in Fig. 1.2a which was taken form a replica. However, the marks (a,b,c
and d) on the two pictures still indicate the same locations.

The cracked specimen was further investigated by polishing inward from the outer
surface. The crack and microstructure on the plane of polish at Ah = 0.01 mm is shown in
Fig. I.2¢ in which several small casting pores are apparent indicating that the casting pores
(or pore) existed beneath the original surface. The fact that the cracks link with these pores
suggests these pores were the actual crack initiation sites. Additional observations at
deeper planes of polish (larger Ah) gave additional support to this idea.

The features observed at planes of polish Ah = 0.015 , 0.02 and 0.04 mm are
shown in Figs. 1.2d, 1.2e, and 1.2f, respectively. The areas of the casting pores increase
with increasing Ah. At a polish depth of Ah = 0.04 mm (Fig. 1.2f), the small arrows mark
the location where the crack links with the casting pore. At this depth (Ah = 0.04), the
locatons "c” and "d” on the crack are replaced by the casting pores.

Further polishing to a depth Ah = 0.08 mm, bigger casting pores are seen as shown
in Fig. 1.2g. At this depth, all the crack locations "a", "b", "¢" and "d" were replaced by
the pores. Comparing Figs. 1.2a, [.2b and 1.2h, it seems that the dominant fatigue crack
initiated from the sub-surface casting pore (or a group of pores). The casting pore has an
irregular three-dimensional shape; thus, it is hard to determine whether the observed casting
pores (or pore) located under the original surface are a single pore or a cluster of
independent smaller pores.

A similar experiment was carried out on a second specimen, This specimen had
lots of sponge-type casting pores (a group or cluster with several small pores) on the
original surface. Figure I.3a shows a dominant crack which propagated between two
groups of casting pores at 2.5x100 cycles. The locations marked by "b" and "c" are the
first observed small cracks on the original surface as seen on the replica taken at 8x103
cycles (see Fig. .3b). In Fig. 1.3b, two small surface cracks with length about 0.1 mm
were observed at an early stage of fatigue life and are marked as "b" and "¢". These small
surface cracks grew slowly until 1.6x106 cycles (see Fig. 1.3¢). From the 2.0x106 cycles,
a dominant crack started to propagate from the location “c* and propagated with a faster
crack growth rate. The fatigue testing was stopped at 2.5x106 cycles, and the microscopic
features are shown in Fig. 1.3d.

Fatigue testing of this specimen was stopped at 2.5x100 cycles, and then the

original surface was removed by successive polishing. The microscopic featurcs shown in
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Fig. L.3e were observed at Ah = 0.015 mm. The crack is connected to a small sub-surface
pore (see the location "c"). In Fig. 1.3f, the location "c" is within a small pore; the crack
has almost disappeared at Ah = 0.04. At Ah =0.08 mm in Fig. 1.3g, the locations "a", "b"
and "c" are all within the pores (or pore).

I i ion

In both specimens studied, the dominant crack was linked with sub-surface pores:
see Figs. 1.2c and Fig. .3e. Actually, these pores are probably not separated pores but
the most acute locations on the outer perimeter of an unseen, single pore which is apparent
at greater depths of polish: see Figs. I. 2g and I. 3g.

It appears that fatigue cracks initiate at near-surface (sub-surface) casting pores
and quickly propagate to the outer surface through the thin ligament separating the pore
from the outer surface. The state of stress in these ligaments must be much higher than the
average stress; and thus, the crack was initiated from the inner to the outer surface.

The crack nucieation life (which must be shorter than the fatigue cycle at which the
small cracks were first seen) is almost negligible when compared with the total fatigue life
(which must be longer than the fatigue cycles at which surface-crack length was about 1
mm), The same results were also reported by Starkey [66].

L4 ion

1. Fatigue cracks initiated from casting pores (or pores) just below the specimen
surface.

2. The eutectic microstructure seems to have little effect on the fatigue crack initiation

and early propagation.

3. The casting pores just below the specimen surface are more detrimental than pores
located at the surface.

4. The cracks propagate through the ligament between the sub-surface pore and the
outer surface. The crack nucleation life is short when compared with the total
fatigue life.
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Figure 1.2
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Observation of crack development from a specimen without apparent
casting pores on the original polished surface. The arrow marks "a”, "b",
"c" and "d" show the same locations for all photographs in this ﬁgure

(a) Ah = 0, fatigue cycles = 2.5 x 10 (replica),

(h) Ah = 0, fatigue cycles = 1.5 x 106 stop fatigue testing at this
fatigue cycles,

(c) Ah =0.01 mm,

(d) Ah = 0.015 mm,

(e) Ah =0.02 mm,

(f) Ah = (.04 mm, arrayed small arrows point the crack,
(g) Ah = 0.08 mm , arrayed small arrows point the crack,

(h) Ah = 0.08 mm (half magnification of Fig. B.2g.).
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Figure 1.3
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Observation of ¢rack development from a specimen with lots of apparent
casting pores on the coriginal polished surface. The arrow marks "a", "b",
and "¢" show the same locations for all photographs in this figure.

(a) Ah = 0, fatigue cycles = 2.5 x 105, stop fatigue testing at this
fatigue cycles,

(b) Ah = 0, fatigue cycles = 8.0 x 10 (replica), initiated cracks start
fmm llbll and "C",

() Ah =0, fatigue cycle = 1.6 x 100 (replica)

(d) Ah = 0, fatigue cycles = 2.5 x 106, stop fatigue testing at this
fatigue cycles (replica)

(e) Ah =0.015 mm, arrayed small arrows point the crack,

(f) Ah = 0.04 mm, arrayed small arrows point the crack, "¢" are
located at positions where a pore below original surface,

(g) Ah = 0.08 mm, it is apparent that "a", "b" and "c¢" are located at
positions where a pore below original surface.
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