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ABSTRACT
A cyclic plasticity model developed from the wmicroscopic
deformation mechanism of metals is suggested. In the development of
such a mechanistic model, the dislocation substructure of metals under
different loadings is studied. Based on the observed substructure, the
deformation mechanism of metals 1is described. The mechanisms that
control the macroscopic mechanical behavior of materials are the change
of dislocation substructures, the movement of dclive dislocations and
the change in atomic spacing. By making quantitative assumptions for
these mechanisms, a plasticity model is established. When compared to
the experimental result, the model is found to be capable of predicting
the mechanical behavior of metals under highly complicated loading

conditions.



ACKNOWLEDGMENT

This study was conducted in Materials Research Laboratory and
Maferia? Engineering Research Laboratory of the University of I[1linois
at Urbana-Champaign and was supported by U.S. Department of Energy under
contract DE-ACO2-76ER 01198,

Professor 0. F. Socie, thesis advisor, is gratefully acknowledged
for his advice and encouragement. Special thanks are extended to
Professor 1. M, Robertson, Dr. P. Kurath, J. Bannantine, E. Liang and D.
Jones  for their assistance with experiments and stimulating
discussions,

A special thanks is to Fan-Lin for her love and encouragement.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ettt e e e e et e e vii
N I e 16 0 viii
ST OF SYMBOLS . st ettt it tte e et esnsteeteneieisnr e, X111
Lo INTRODUCTION. oot et 1
R L L 5
2.1 Material Properties..eceeee e e 5

2.2 Testing and ReSUTES. st re i i ann i ie e e e e, 5

2.3 Microstructural Examination.....eeeeeieeeesvnns oo, 7

3. DISLOCATION SUBSTRUCTURES. cuuut vt eiiennnnreereneaenneennnnnnn, 8
3l BACKgT UMt e e e e e, 8

3.2 Experimental Results and DiSCUSSTON.weuesenrennennsnennn... 10
3.2.1 1100 ATUMTNUM. ottt e e e 10

3.2.2 OFHC COPPeree sttt itetessenennannennaneenennnnnnnnnn, 11

3.2.3 Stainless Steels..ciieeeiiininrenneeeeenennnnnnnnn, 12

3.2.4 7075 ATUminum ATT0Y. e uerneeeiinerereeanennrannnnn.. 13

3.3 Nonproportional Hardening.........oeeeeee e 11

4. THEORETICAL BASIS. .ttt it et 17
4.1 The Classical Plasticity Theory..ueeeeueneesnenennononn... 18
4.1.1 The Yield Surface....couiveenveeiinnnnnecnnnnnnnnn.. 18

4.1.2 The Flow RUTE. ettt ittt eeeeeee e, 19

4.1.3 The Hardening RUTE...uiiireiiiirnnrennnenannnnn, 20

4.1.4 The Consistency Condition..eeeeseeenennneennnnnnnn. 27

4.2 A Critical Review of the Classical Plasticity Theory....... 22
4.2.1 The Concept of Yielding.uiueeeeveureeennennnnnnnn... 24

4.2.2 The State Variables. . ... . .. .veuiivreeunnnnnnnnnnnn. 26

4.2.3 The F1ow RUTE. et ine e it it iineneereer e, 28

4.3 A Mechanistically Based Model...v.uue e reeinnnnnnnnnn.. 29
4.3.1 The Dislocation Substructure....eveveeeeveeennnnn... 30

4.3.2 The ETaSticC RANGE. s urttnniiii e, 39

4.3.3 The Plastic FIow..ueeuoiniiiieiee e s esannnnnnn, 44

4.4 Comparison and CommMEntS .. ueee e einseeeeeeeeeenne e he

5. MODELING AND RESULTS. . .ttt ittt e veeeeenenenan 55
5.1 The Stabilized Behavior...eeeeeeiiiininoeeeena . 55
5.1.1 Mathematical Formulation....eesseeeieeeneeennnnnn.., 56

5.1.2 Results and DisCuSSTON. v i reeinr e, 62

5.2 The Transient Behavior....eueesevers o eennnoeeonnmnannnn.. 64
5.2.1 Mathematical Formulation...........o.ooeoeenonno... 65

5.2.2 Results and DisCUSSTON. . curnrereenrsnnnnrennnnnnnnn. 70

B CONCLUSION. e et et e 74



B S sttt ittt i i ettt ittt aaenetaaerrteennanasnnas 77
1 82
REFERENCE . s st iveieeeenertnsiatseanacensonnenaesunennseensssannnns 189
e 1 I 194
VITA



Table
Table
Table

Table

Table

Table

Table

Table

Vi

LIST OF TABLES

Page
Test Results of L1100 ATUMiNUMe . e e ee et e it e vissneranraennes 77
Test ResUlts of OFHC CopPDer. ..ttt et tent e s eereenennnsanenns 78
Test Results of 310 Stainless Steeliuweie e ieieremneenennnn 78
Tesl Results of the 304 Stainless Steel Specimens
Chosen for Microscopical Examination.....eeeeeeeeerennennns 79
Test Results of the 7075 Aluminum Alloy Specimens
Chosen for Microscopical Examination.....eee e e ennnnnn. 79
Summary of the Dislocation Substructures in 1100
Aluminum, OFHC Copper, 304 and 310 Staintess Steels........ 80
Material Constants of 1100 ATUMINUM. v vt etierieerenerenenss 81
Material Constants of Stainless Steel.vuieereieineinenrenn. 81




Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.

10.

11.

12.

13.

14.

LIST OF FIGURES

Page
Dislocation Substructures of 1100
ATuminum Before Testingeeiiiieor e e ieiisnrenreanneesaennns 82
Dislocation Substructures of OFHC
Copper Before Testing. .. ... einiiiireerenseenncnnnnsennnns ge
Dislocation Substructures of 310 Stainless
Steel Before Testing.. oo i ereeeneeooeneene s a3
The Stabilized Shear Stress as a Function of
Shear Strain for 1100 ATuminume cee e oo oo enneeennnnnnn. 84
The Stabilized Shear Stress as a Function of
Shear Strain for OFHC CopPer.. s e ereenennnremonnnnnnn 85
The Stabilized Shear Stress as a Function of
Shear Strain for 310 Stainless Steel..urereneerinnnnnnnn. 86
The Stabilized Shear Stress as a Function of
Shear Strain for 304 Stainless Steel.veieieeecevnnnnnnnn. 87
The Stabilized Shear Stress as a Function of
Shear Strain for 7075 ATuminum ATTOY. e is e e rnnnnennas 88
{@a) - (d) The Stress-Strain History of 310 Stainless
Steel under a Two-Stair Tension-Torsion Strain .
Controlled Cycling (Specimen S113) ... . eeuiiinnnnnnnnnn., 89
(a) - (d) The Stress-Strain History of 310 Stainless
Steel under a Four-Stair Tension-Torsion Strain
Controlled Cycling (Specimen S111)u.uieeeniennnnnnnnn.. 93
{a) - (d} The Stress-Strain History of 310 Stainless
Steel under a Eight-Stair Tension-Torsion Strain
Controlled Cycling (Specimen S112) .. .ueeriennnnnnnnnn. 97
(a) - (d) The Stress-Strain History of 310 Stainless
Steel under a Strain Path of Slowly Changed Loading
Direction (Specimen SLL4)...u.iiiniiiiiiiniinennnnnnn, 101
(a) - (d) The Stress-Strain History of 1100
Aluminum under a 90° OQut-0f-Phase Tension-Torsion
Strained-Controlled Cycling (Specimen AlO4)............ 105

(a) - (d) The Stress-Strain History of 1100
Aluminum under a One-Square Path of Strain-Controlled
Cycling (Specimen All3) .. uiitiniiieineerennennnnnnanns 109



Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure

Figure

15,

16.

17.

18.

19.

20.

21.
2z.
23.
24.

25.
26.
27.
28.

29.

30.

31.
32.

viii

The Stress-Strain History of 1100 Aluminum under
Cyclic Torsion (Specimen A 109 ). irerinnnnnennnnnn.

The Stress-Strain Response of 1100 Aluminum under
a Random Uniaxial Loading (Specimen Al14)..............

(a) - (d) The Stress-Strain History of 304 Stainless
Steel under 90° Out-Of-Phase Tension-Torsion Strain-
Controlled Cycling (Specimen SS13) [36].ccvinveeenn....
(@) - (d) The Stress-Strain History of 304 Stainless
Steel under a One-Square Path of Strain-Controlled
Cycling (Specimen SSO03) [36f.eeuuiiriernnninennnnnnnns
(a) - (d) The Stress-Strain History of 304 Stainless
Steel under a Two-Square Path of Strain-Controlled
Cycling (Specimen SSOM) [36]. it reirinsnnnneennnnnnens

The Stress-Strain History of 304 Stainless Steel
under Cyclic Torsion (Specimen SS20) [36}... ... .......

Cells Formed in 1100 Aluminum (Specimen A10S)..........
Cells Formed in 1100 Aluminum (Specimen A104)..........
Ladders Formed in Copper (Specimen COO1)...............

Cells Formed in Copper SpeCémen Cool).
(Average Cell Size = 1.32 um®) vinuiiinnnnrenennnnnns,

Uncondensed Cells Formed in Copper (Specimen C005).....
Labyrinths Formed in Copper (Specimen CO03)............
Walls Formed in Copper (Specimen C002)....ocvveeuun....

Cells Formed in Copper Specgmen €o02).
(Average Cell Size = 0.93 uM%) i nniiinnnnnneennnnnnnnns

Planar Bislocations Formed in 304 Stainless Steel
(SPECTMEN SS 2] ittt ettt iiiiernenreieennennnnns

Tangles of Dislocations Formed in 310 Stainless
Steel (Specimen S101) e er e mniiinii i enennanannnnns

Walls Formed in 304 Stainless Steel (Specimen SS10)....

Cells Formed in 310 Stainless Steel (Specimen S102)....

Labyrinths Formed in 310 Stainless
Steel (Specimen SI102) ... iieiiniiinnernneennnnnnnnns




Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

34.

37.

38.

39.

40,

a1.

42.

43.

44,

45,

Dislocation Loops Formed in 7075 Aluminum Alloy
(Specimen A710). . .ue e ri i e

The Stabilized Stress as a Function of Cyclic
Plastic Strain for 1100 ATuminum...........cveuunnn....

The Stabilized Stress as a Function of Cyclic
Plastic Strain for OFHC Copper...vees e ennnnnnnn..

A Comparison of the Stabilized Stress Between 304
and 310 Stainless Steel.iueeeneeeiiinne o rrnnnnnnnn.,

(a) Two Possible Ways of Defining the Yield Point.
(b) Three Types of Unloading and Reloading Paths.
(Specimen AlLd) . e ieniiieieienennnnnnnnnn.

The Deformation Mechanism of Metals
under the Cyclic Loading.uueeinieneinniennnnnnnnnnn.,

A Comparison Between the Dislocation Substructure
and the E1719pse Model.. i ii it e,

A Comparison Between the Two-Dimensional Maximum
Shear Planes and the Strain-Plane Defined
E1T7pse Model. e e i e e

The Deformation State of 1100 Aluminum Under either
Torsion or 90° Out-Of-Phase Tension-Torsion Cycling...,

The Deformation State of Stainless Steel
under Cyclic TorsSion et e it eseeeen e,

The Deformation State of Stainless Steel under
the Loading with a Sudden Change in Loading
Direction [6l].eeeeiiiniene e eee e e

The Cyclic Hardening Behavior of Stainless Steel
under the Cyclic Loading of Fig. 44 {61)...vveennnn....

The Possible Dislocation Substructure Formed in the
Stainless Steel under the Loading of Fig. 44...........

The Deformation State of Stainless Steel under
the Loading with a Slow Change in Loading
Direction {61, .uuenininniin i e,

The Cyclic Hardening Behavior of Stainless Stee]
under the Cyclic Loading of Fig. 47 [61)...evv.unnn....

The Possible Dislocation Substructure Formed in the
Stainless Steel under the Loading of Fig. 47

ccccccccccc



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

50.

51.

52.

53.

%4,

55.

56.

57.

58.

59.

60.

61.

62.

63.

The Relation Between the Total Strain, the Plastic
Strain and the Elastic Range in the Biaxial
Deviatoric SErain Plane. e e i e teeeooonnoenennnnnn 151

A Comparison Between the Stress and
Strain Plane Formuiation

A Schematic Stress-Strain Curve for a Material with
Strong Bauchinger Lffect..ciiiininiieiinnnnennnenannnn. 153

(a) - (c) The Behavior of Active Dislocations During
the Hnloading and Reloading Procedure

A Comparison Between the Suggested Model, the
Classical Plasticity Theory and the Crystal
I E o R A B o= o 155

A Simplified Method of Estimating the Limit Stress
from Lhe Cyclic SEress-Strain CUrve. . . it eeneoceecnns 1h6

A Simplified Method of Estimating the Degree of
Nonproportionality from the Total Strain History....... 157

The Approximated Stress and Strain State
of the Tube Specimen....oeieeiiiiei i aaaaa.. 158

The Flow Chart of Calculating the Correct

value of ¢ and R 159
A Comparison Between the Predicted and the

Experimental Results for the 1100 Aluminum

under a Random Uniaxial Loading (Specimen All4)........ 160

{a) - (d} A Comparison Between the Predicted and the
Stahilized Stress-Strain History of 304 Stainless

Steel under the 90° Out-0f-Phase Tension-Torsion

Cycling (Specimen SS13) [36].ueeeiniiiiiiiniinnnnnnnn. 161

{a) - (d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 304 Stainless

Steel under the One-Square Tension-Torsion

Cyc1ing (Specimen SS03; [36].ceernerneneinnnnneennennas 165

{a) - (d) A Comparison Between the Predicted and the
Stabilized Stress Strain History of 304 Stainless

Steel under the Two-Square Tension-Torsion

Cycling (Specimen SS04) [36].eeeeenniiiinninennnnnnn. 169

(a) - (d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 310 Stainless

Steel under the Two-Stair Tension-Torsion Cycling
(SPECImMEN SLLlZ) i er it iiitiieetaeanennenonensnnennanns 173



X1

Figure 64. (a) - (d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 310 Stainless
Steel under the Four-Stair Tension-Torsion Cycling
(Specimen SIIL) . .ueeiiniiii i it

Figure 65. (a) - (d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 310 Stainless
Steel under the Eight-Stair Tension Torsion Cycling
(Specimen S1I3) i iiiinnniiieeiiinnneenenrnnnnn.,

Figure 66. A Comparison Between the Predicted and the
Experimental Peak Stress for the Loading
O B T

Figure 67. A Comparison Between the Predicted and the
Experimental Peak Stress for the Loading
Lo s O - S

Figure 68. The Experimental and the Assumed Stabilized
Cyclic Stress as a Function of the Plastic
Strain Amplitude. o eeone oo

Figure 63. The Evolution of the Predicted Limit Stress

and the Peak Stress (b) under a 30° Qut-0f-Phase
Tension-Torsion Path Shown in (@)eeseeeereenennrnnnnnn,



i3

T —

xii

LIST OF SYMBOLS

Total Deviatoric Strain Tensor

Plastic Strain Tensor

Strain Tensor Defining the Center of Elastic Region
Strain Tensor Defining the Translation Direction
of Elastic Region

Deviatoric Stress Tensor

Unit Tenscr Defining the Plastic Direction

Unit Tensor Defining the Translation Direction
of Elastic Region

Effective Stress

Limit Stress

Plastic Compliance

Etlipse Area

Anisotropic Ratio

Major Axis Orientation of Ellipse Model

Young's Modulus

Shear Modulus

Effective Yield Strain

Poisson Ratio



L. INTRODUCTION

Ihe plastic deformation behavior of engineering metals has
interested numerous investigators over the Tast several decades.
Studies on this subject can be classified into three categories. The
first kind of study emphasizes the quantitative description of the
stress-strain relation [1-8]. Mathematical models or constitutive laws
which can be used in engineering calculations are developed. Generally
speaking, this approach has reached maturity over the last 30 years and
many sophisticated plastic deformation details can be accurately modeled
[9-13]. The cecond type of study investigates the dislocation sub-
structure of the deformed material [14,15]. Through these studies the
relation between the microstructure and the material strength is under-
stood. An attempt of relating the substructure to the stress-strain
curve in a quantitative way did not succeed because of the complexity of
microstructures [16]. Study in the third category Lries to derive the
macroscopic stress-strain relation from the slip mechanism of metal:
crystals [17,18]. In this respect, mathematical theories are based on
the knowledge about the kinematics of dislocation motion. Although this
approach is very attractive from either a mechanical or physical view-
point, its development is 1limited by the simplicity of assumptions
regarding the s1ip mechanism and crystal structure [19].

Several problems still exist in the plasticity model currently used
for the structural anmalysis. The advance of material testing tech-
nologies has greatly increased the information on the deformation
behavior of metals [20-23]. In order to accommodate these new findings,

the mathematical model has become increasingly complicated [9-12]. How-



ever, even with such high complexity, there are still many features
which cannot be modeled successfully [12,13]. Moreover, it is uncertain
if a model is capable of modeling the material behavior under a loading
condition which cannot be achieved with current experimental tech-
niques. A reason for this uncertainty is because Lhe current plasticity
models are not developed from deformation principles such as the slip,
twinning, diffusion, and so on. They are based upon an artificial
description of the experimentally observed stress-strain curve, usually
the uniaxial case. By reviewing the development of these models, it can
be found that Tittle allempt has been made to understand why the stress-
strain curve of a material will exhibit one particular feature before
the mathematical model s established [3,4,6,8]. As a result, the
mechanistic meaning of the variables and constants in the model are not
clear and no rule can be followed when modifications for new
observdations are added.

Ideally, deriving the macroscopic stress-strain relation from the
dislocation behavior s a very Jlogical way of modeling metal
plasticity. As mentioned earlier, the major problems of this approach
are the assumptions about the crystal structure and slip mechanisms.
The crystal structure of metals is much too complex to be assumed as a
simple lattice. For instance, an ¥FCC crystal can have 12 siip
systems. How one dislocation moves in the crystal is dependent on the
applied loading path, the slip mode, the grain size, etc. Many
different explanations about the experimentally observed dislocation
substructures also suggest that the current understanding about dis-

location behavior s still far away from being capable of making



quantitative assumptions at the wmicroscopic Tlevel {24-30]. As such,
developing a reltiable mathematical plasticity model from this approach
is quite unfeasible at this time.

A possible way of approaching the plasticity problem is to develop
a semi-empirical model in which the slip mechanism and the experi-
mentally observed dislocation substructure are utilized in establishing
the modeling concept while material constants are still determined from
the macro stress-strain curve. With this approach, each assumption of
the constitutive model has a mechanistic basis and the validity of
modeling a particular loading condition can be assured. If Lhe reason
for a feature of the stress-strain curve can be found and compared with
the dominant material property, the material constant for a new material
may be predicted without testing. The necessity of some expensive tests
can be greatly reduced.

The purpose of this study is to pursue a mechanistic ptasticity
model. Although the capability of modeling the material behavior in a
quantitative manner is the major goal of the proposed model, the
mechanism for several fimportant features in the stress-strain curve will
be discussed. In particular, three deformation characteristics will be
studied. The first one is nonproportional cyclic hardening behavior.
[t has been widely observed that the cyclic strain hardening under non-
proportional loading is much more significant than that under propor-
tional loading for materials like copper and stainless siteels [20-23].
On the other hand, materials such as the 6061-T6 aluminum alloy was
found to have no such differences in the cyclic hardening behavior

[31]. A possible mechanism will be proposed to explain the material



dependence of this phenomenon. Another characteristic is the change of
the plastic modulus during the unloading and reloading process. In many
nonTinear plasticity models [6,7,13], a major concern is the capability
of describing features like the cyclic creep in the direction of the
mean stress by unsymmetric stress cycles, the mean stress relaxation by
unsymmetric strain cycles and the memory of the prior loading after
material is cycled with a small strain amplitude. A general strategy
for simulating these behaviors is changing the plastic modulus by
introducing more variables in the calculation. Although many models
have c¢laimed success in simulating some of these features, there is
still no model which can describe all of the features without a complex
discrete memory code [13]. A possible mechanism which is responsible
for all these features will be addressed. The Tlast deformation
characteristic to be studied is the cyclic hardening and softening of
materials under symmetric strdain or Stress cyctes. Although it is
suggested that the observed hardening stage of the stress-strain curve
results from a balance between the hardening and scftening effects [32],
the mechanism of these effects is still not clear. Without a physical
understanding of these effects, it is quite easy to define variables and
constants which are duplicative in thejr physical meaning and, there-
fore, increase the unnecessary complexity of the model. In this study,
a model for the dislocation substructure will be used to explain the
possible reason of material hardening and softening under complex

Toadings.



2. EXPERIMENTS

2.1 Material Properties

Polycrystalline OFHC copper, 1100 aluminum and 310 stainless stee]
tubular specimens were machined from rcound bars. Specimen details are
shown in Ref. [33]. Prior to testing, aluminum was found to have
elongated grains along the longitudinal axes of the specimens. Copper
and 310 stainless steel showed equiaxial grains with an average size of
0.356 mm and 0.013 mm respectively. The dislocaticon substructures of

these materials before testing are shown in Figs. 1 to 3.

2.2 Testing and Resuits

A tension-torsion test frame was used to perform biaxial strain
controlled tests at room temperature. Twelve 1100 aluminum, five copper
and six 310 stainless steel specimens were tested by either torsion or
90" out-of-phase tension-torsion. The axial strain applied ranged from
0.0007 to 0.0035 and the shear strain ranged from 0.0009 tc 0.0061. A1l
specimens were cycled to failure which was defined as a 10% load drop
from the stabilized condition. Results of these tests are shown in
Table 1 to 3. The stabilized stress values reported were recorded at
half the cycles required for failure.

The stabilized shesar stress is also plotted as a function of the
shear strain in Figs. 4 to 6. Additional data on the 304 stainless
steel and the 7075 atuminum alloy, which were tested by Kurath [34],
Bannantine [35] and Jones [36], were collected for comparison. The
compositions and properties of these materials are given in Ref. {34]

and [35]. Figures 7 and 8 show the relation between the stabilized



shear stress and the shear strain of these materials., Since a 90° phase
difference is found between the axial stress and shear stress when the
material 1is cycled by the 90° out-of-phase 1loading, the amount of
hardening can be represented by the stabilized shear stress.

In order to examine the plasticity model, two aluminum and four 310
stainless steel specimens were tested by either biaxial or uniaxial
strain controlled loadings. The biaxial loading paths include sguares
and stairs of different step sizes, see Figs. 9 to 15. The uniaxial
test 1s a tensile test of changing amplitude, Fig. 16. The biaxial
stress-strain response 1is presented by four kinds of diagrams: axial
strain vs. shear strain, axial stress vs. shear stress, axial strain vs.
axial stress and shear strain vs. shear stress. In the axia] strain vs.
shear strain diagram, both the total strain and plastic strain histories
are plotted. The plastic strain is evaluated from the recorded total

strain and stress by assuming

ey = &y - o/E, (2.1)
and

Yy = vy - /G (2.2)

in which £t and Yt are the total axial and shear strains, ep and yp are

the plastic axial and shear strains, E is the Young's modulus and G is

the shear modulus. o and t are the axjial and shedar stresses. Similar



test results on 304 stainless steel are also presented in Figs. 17 to 20

[35,36].

2.3 Microstructural Examination

After fatlure, small samples suitable for electron microscopy were
cut from the bulk region of the tubular specimens by using a diamond
blade saw. These samples were then mechanically polished to about 0.2
mm and, finally, Jjet-electropolished to produce areas suitable for
examination in the transmission electron microscope. A Phillips EM40OT
electron microscope operating at 120V was used to examine the dis-
location substructures. In addition to the three materials tested in
this study, the dislocation substructures of 304 stainiess steel and
7075 aluminum allay were also examined. Tables 4 and 5§ 1ist Lhe testing
results of the specimens chosen for this substructural investigation.
Figs. 21 to 34 are the observed dislocation substructures. Table 6 is a
summary of the dislocation substructures observed for different

materials.



3. DISLOCATION SUBSTRUCTURES

The formation of dislocation substructures represents the physical
change of metals during plastic cycling. To develop a mechanistically
based plasticity theory, this physically observed change in metals has
to be understood. In this chapter, the current understanding about the
dislocation substructure will be reviewed briefly. The results of the
microscopic observations made in this study will be presented and dis-
cussed. A possible mechanism for the nonproportional cyclic hardening

of metals will be suggested.

3.1 Background

Over the Tlast several decades, dislocation substructures in metals
under proporticnal cyclic Tloading have been extensively studied by
transmission electron microscopy [15,74-30,37-46]. Generally speaking,
these substructures can be classified into five categories - planar
distocations, matrix veins, ladders or walls, cells and labyrinths [24-
26].  Structures consisting of only planar dislocations occur in Tow
stacking fault energy materials. Matrix veins are tangles of edge
dislocations along major slip planes. Between these tangles, channels
free of dislocations are also formed by the movement of screw dis-
locations. Ladders are bands with cleared channels and dense walls. It
is believed that the ladders and walls are formed by small-scale
secondary ¢lide in the matrix veins when a critical dislocation density
is reached [27,28]. The formation of cell structures was found to be
associated with muitiple slip systems [28]. The strong Tlight-dark

contrast across cell walls is normally used to differentiate cells from



walls. Labyrinth structures are perpendicularly orientated walls formed
when many slip systems are activated [29,30].

The dislocation substructures were also compared to the slip mode
of materials [37,38]. In the study of a Cu-Zn alloy, Lukas and Klensni]
[37] found that, as the slip mode changed from wavy Lo planar sl1ip, the
dislocation substructure changed from cells and ladders to planar dis-
locations. A similar result was reported for a Cu-Al dlloy by Saxena
and Antolovich [38]. Together with the understanding about the slip
systems involved in various structures, these observations clearly
indicate that dislocation structures are determined Dy the number of
active slip systems which is dependent on the slip mode of the material,

The observed substructures are also affected by the applied strain
range, the number of cycles applied, the distance Ffrom the grain
boundary, the depth beneath the specimen surface, etc. An increase in
the strain range tends to form more cell structures in copper [37].
Ackermann, et al. [25] suggested an evolution procedure for copper
crystals cycled at high strain levels. In general, increased accumu-
tated plastic strain during cycling activates more secondary slips and,
therefore, results in muiti-slip structures. Figuerca and Laird [39]
showed that multi-slip structures might form in the region adjacent to
the grain boundary when the interior substructure was walls. Winter, et
al. [26] compared several samples of polycrystalline copper at different
depths. Although no ohvious difference was observed in their struc-
tures, dislocation-free zones were reported at grain boundaries and

syrfaces.
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3.2 Experimental Resulls and Discussion

The dislocation substructures observed for each material will be
illustrated separately. As the purpose of this study is to compare the
substructures of materials resulting from different loading paths and
relate the microstructures to the macroscopic stress~strain curves, only
the general features of these substructures will be described.
Discussion will be focused on the effects of changing the maximum shear
planes by nonproportional Toadings, More detailed understanding of the
formation procedures of these substructures reqguires further investi-

gations.

3.2.1 1100 Aluminum

The dislocation substructures of aluminum under proportional
toading have been found to be either dipoles or cells [15,40]. The
strain ranges for forming these structures have been suggested by
Grosskietz and Waldow [40]. A transition from dipoles to cells was
found when the applied strain range was about 10‘4. Increasing the
strain range starts to decrease the cell size. Figure 21 shows the
distocation cells formed in 1100 aluminum cycled with a shear strain of
0.0017. Similar structures, Fig. 22, were observed in specimens loaded
with 90° out-of-phase tension-torsion loading. For the strain range
studied, no major difference in cell size was observed although a higher
contrast between cells for the latter case was noticed. This difference

may be allribuled Lu Jocdl ruldlion belween the cells.
A comparison of the stable stress response for proportionally and

nonproportionally lcaded cases is shown in Fig. 35. The strain range
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for the formation of each substructure proposed by Grosskietz and Waldow
[40] 1is also given. The substructures are not changed by the loading
path. This consistency in the substructures can be explained by the
wavy slip mode of aluminum. Under in-phase torsional loading, even
though the maximum shear planes are fixed, thc stresses from the dis-
Tocation interactions and the constraint of grain boundaries can easily
cause slip in all directions so that equiaxial cell structures are
formed. Although 90° out-of-phase tension-torsion loadings can activate
many slip systems by changing the maximum shear planes, the number of
active slip systems is nearly thc same for both cases and the dis-
location substructures are, therefore, unchanged.  The similarity in
cell sizes also suggests that similar mechanisms are responsible for

forming these cells.

3.2.2 OFHC Copper

Five kinds of dislocation substructures have been observed in
copper {24,26]. With increasing plastic strain range, these sub-
structures are matrix veins, ladders, walls, cells and labyrinths. For
torsional cases, dislocation substructures are basically the same as
those for uniaxial tension. Structures like ladders, Fig. 23, walls and
cells, Fig. 24, are observed. For 90° out-of-phase loading, uncondensed
cells, Fig. 25, are observed at very low strain ranges. Labyrinths,
Fig. 26, walls, Fig. 27, and cells, Fig. 28, are the major substructurcs

at higher strain levels.
In comparing the substructures in copper produced by the different

loading paths, two differences are noticed. First, multi-siip
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structures such as cells and labyrinths are found in nonproportionally
lodded specimens at strain Tevels much lower than those observed in
proportionally loaded specimens, Fig. 36. Second, the size of cells
formed by 90° out-of-phase loadings, Fig. 28, are smaller than those
aobserved in torsionally cycled specimens, Fig. 24.

Since copper is a wavy/planar slip material, dislocations cannot
cross slip as easily as in aluminum. In the case where the ma jor slip
plane is unchanged by the applied loading, such as the proportional
loading condition, the amount of secondary sltip depends on the strain
range applied. An increased amount of secondary slip will be activated
as the strain range increases. Associated with this increase of
secondary slip is the transition of the substructure of copper from a
single-slip to a multi-slip structure. The formation of multi-slip
structures at the Tlower strain levels indicates that the rotation of
maximum shear planes have formed more active s1ip systems. Since higher
plastic strain ranges have been found to result in smaller cell sizes by
increasing the secondary glide, the decrease in the cell size in this
case may also result from the increase in the number of active slip
systems. The effect of rotating maximum shear planes by nonproportional
loadings is, therefore, to decrease the required strain range of forming

multi-slip structures in copper.

3.2.3 Stainless Steels
Extensive studies of the dislocation substructures in stain-
less steels after cyclic tension have been performed at different temp-

eratures [42-44]. The observations made by Abdel-Raouf, et al. [42]
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indicates that planar dislocations are the major substructures in 304
stainless steel at room temperature. Dislocation cells and subgrains
were found at elevated temperature. It is suggested by Challenger and
Moteff [43] that the transition from cells to subgrains occurs at a test
lemperature belween 650 and 816°C.

In this investigation, no difference was found between the sub-
structure of 304 and 310 stainless steels. During proportional loading,
stainless steels exhibit planar dislocations, fig. 29, and walls.
Tangles of dislocations, Fig. 30, are thermajor substructures in stain-
Jess steels cycled with proportional loadings at low strain ranges. As
the strain range increases, walls, Fig. 31, cells, Fig. 32, and laby-
rinths, Fig. 33, are observed. Substructures with combined features
were quite often found.

A comparison of the substructures in stainless steels suggests that
a material showing single stip structures under proportional cycling
will exhibit multi-slip structures if the major slip plane is rotated by
nonproporticnal loading paths. This feature also occurs in copper ex-
cept that more cross slips are involved in the substructures of propor-
tionally cycled copper. The planar-slip material is, therefore, more

sensitive to the loading path than wavy and wavy/planar slip materials.

3.2.4 7075 Aluminum Alloy
Homogeneously distributed dislocation tangles, as shown in
Fig. 34, were found to be the major feature in 7075 aluminum alloy under
both torsion and 90° out-of-phase tension-torsion. A comparison with

the microstructure before testing indicates that dislocation sub-
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structure remains unchanged even though the specimen has been cycled to
failure. Two possibie reasons are used to explain why 1ittle change was
observed. First, the applied plastic strain ranges are so small that
the deformation is basically elastic. Second, the observation made in
this study only represents the substructure in the bulk region of the
material which is responsible for the macroscopic stress-strain
response. Fatigue failure is initiated from the persistent s1ip bands
which have been observed in areas close to the surface and crack tip
even when the applied stress is far below the yield stress [45,46].
l[ests at higher strain level may be necessary to examine how the non-

proportional loading path affects the substructure.

3.3 Nenproportional Hardening

[t has been widely observed that the cyclic strain hardening under
nonproportional loading is more significant than that under proportional
loading for materials 1ike copper and stainless steels. The work by
Krempl and Lu [22] showed that, ameng various nonproportional loading
paths, 90° out-of-phase tension-torsion cycling exhibited the strongest
hardening behavior. On the other hand, a material such as atuminum
alloy 6061-T6 does not exhibit such differences in the cyclic hardening
behavior [31].

For the materials tested in this study, different cyclic hardening
behavior is alsa observed. As shown in Fig. 35, 1100 aluminum shows no
difference in the cyclic hardening level between ftorsion and 90° out-of-
phase tension-torsion Toading. Copper and stainiess steels, however,
exhibit a 30 and 50 percent increase in the saturated stress when loaded

nonproportionally, see Fig. 36 and Fig. 37,
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Kanazawa et al. [21] suggested that, when materials were cycled by
nonproportional 1loadings, the rotation of the principal strain axes
during each cycle prevented the material from forming stable dislocation
substructures so that the stress-strain curves for out-of-phase loadings
were above Lhuse for in-phase loadings. It s, however, not understood
why the aluminum alloy 6061-T6 does not show this behavior. The interp-
retation of more dislocation interactions due to the change of maximum
shear planes cannot explain the material dependence of this cyclic
hardening phenomenon.

MCDowell et al. [47] studied the deformation products of type 304
stainless steel subjected to nonproportional loadings. In their study,
the directional distributions of slip bands and transformed materials
were found to be more homogeneous far nonpropeortionally loaded
specimens. Although this observation could be related to the rotation
of principle strain axis directly, no quantitative relationship was
identified. The micromechanical interpretation suggested in that study
followed the same concept as that proposed by Kanazawa et al. [21] uhy
additional cyclic hardening is material dependent remained unanswered.

The difference in the cyclic hardening behavior can be easily
explained by the change of dislocation substructures. Since 1100
aluminum exhibits cell structures under both torsion and 90° out-of-
phase tension-torsion, there is no difference in its hardening levels.
Copper and stainless steels which change their stip mechanisms under
nonproportional loading exhibit additional cyclic hardening. Cells and
subgrains have been observed in stainless steels at high temperatures.

These results suggest that stainless steels will have no additional
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hardening under nonproportional cycling if the temperature is high
enough for the cross sl1ip to occur under proportional loading.

The argument that the increase of cyclic StrESg results from the
change of dislocation substructure from single slip to multiple slip is
further supported by earlier tests on copper crysldals. Jin and Winter
[29] showed that labyrinth structures could be formed in copper crystals
if the tensile axis was along the [001l] direction. When compared to the
ladder structures formed by single slips, labyrinth structures exhibit a
40 percent increase in the saturated stress. With a similar change in
the microstruclures, copper and stalnless steels increase their
hardening levels under nonproportional loading.

Although it is believed that the slip mode of dislocations plays an
important role in the cyclic hardening behavior of metals, other factors
such as the stress-induced phase transformation in some stainless steels
and persistent slip band formation in precipitated materials stiil need
to be studied. A comparison between the cyclic stress-strain relations
of 304 and 310 stainless steels in Fig. 37 shows no major difference in
their hardening behavior. However, measurements of Bannantine [35] show
up to 6 percent of the 304 stainless steel undergoes a stress-induced
phase transformation to martensite after cycling. Similar measurements
on 310 stainless steel specimens do not show such a phase transform-
atfon. These Timited results indicate that the martensite phase trans-
formation does not pilay a major rolc in the nonproportional hardening of

304 stainless steel.
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4. THEORETICAL BASIS

The 1arge scale computing capability of the modern computer system
has greatly changed the direction of the research on plasticity. Before
1970, most of the researchers were concerned about the thermodynamic
principles and the mathematical theory of plasticity. The 1loading
condition that was actually modeled in that period was quite simple. As
the technolegy of computation and material testing improved quickly in
the 1970's, the development of the plasticity theory was to meet the
industrial requirement in which the accuracy and efficiency of the model
were important. A large number of plasticity models which dealt Wwith
complicated loading conditions were developed.

Although many different models have been proposed, they are either
directly or indirectly based on a theory that was fully established in
the 1950's.  This theory, sometimes called the classical plasticity
theory, is the basis of studying plaslicity modeling. Searching for a
mechanistic modeling method, this chapter starts with a brief review of
the classical plasticity theory. After that, the classical theory is
compared to the micro deformation mechanism of metals. A possible
plasticity modeling method developed from a mechanistic point of view is
suggested. In the end, a comparison is made between the proposed method
and the classical plasticity theory. Implementation and comparison of
the model with the experimental result are performed in the next

chapter.
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4.1 The Classical Plasticity Theory

Reviewing classical plasticity theory is not an easy task as it has
been intensively studied from many different viewpoints and several
modifications have been made in the progress of this theory. Since this
study is concerned with the application of plasticity theory, discussion
will be focused on the aspect that directly influences the philosophy of
constitutive modeling, i.e. assumptions for the yield surface, the flow
rule and the hardening rule. In particular, emphasis of the discussion
will be vplaced on the assumptions related to the deformation
mechanisms. Mathematica? formulation of various models 1s Tisted in the

Appendix.

4.1.1 The Yield Surface

The yield surface is & scalar function in stress space that
defines the state of stress at which the material starts to deform
plastically. According te Drucker's second postulate [48], the yield
surface has to be convex toward the origin of the stress space. A
material is said to be elastically deformed if the stress tensor remains
inside the yield surface. Otherwise, the material has plastic
deformation.

Different formulations have been suggested to define the configur-
ation of the yield surface. The most well~known yield surface functions
for metals are the von Mises and Tresca yield criteria [49}. Since the
von Mises yield criterion is simpler than the Tresca criterion, it has

been widely used in the plasticity modeling.
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Extensive research has been conducted to determine the yield
surface experimentally [50-52]. In general, the yield surface of metals
falls between the Tresca and von Mises yield criteria before the metal
is plastically deformed. After plastic deformation, the yield surface
is found to undergo translation, rotation and distortion [50]. Many
researchers also reported corners on the subsequent yield surface
[50,51]. Because different methods are used to define the yield point,
no conclusion is made regarding the behavior of the yield surface after
plastic deformation.

To account for the observed change of the yield surface,
mathematical formulation for the yield surface has also been modified.
The most important modifications are changes in the size of the yield
surface, called isotropic hardening [1], and the translation of the
yield surface, called kinematic hardening [3]. Methods that account for

the distortion of the yield surface have alsu been suggested [53].

4.1.2 The Flow Rule
A flow rule is used to define the relation between the stress
and the plastic strain. In the incremental plasticity theory, this
relation is given as an equation which relates the stress tensor {or
stress rate tensor) to the plastic strain rate tensor.

In the classical plasticity theory, there exists a generalized
theorem about the behavior of plastic flow [1]. Tt is believed that the
plastic flow of materials can be described by a thermodynamic potential,
called the loading function. Physically, the loading function can be

viewed as a potential difference resulting from the applied loading and



the material resistance. The plastic flow is said to be along the
direction that is defined by the derivative of the loading function with
respect to the stress. The plastic strain increment tensor is obtained
by muitiplying a unit tensor of that direction with a scalar repre-
sentative of the magnitude of the increment.

The loading function is different from the yield function from both
theoretical considerations and experimental observations [54]. However,
these two functions are assumed the same in most constitutive models |6-
9]. A plasticity model is called associated if the loading function is
the same ds the yield function. For this case, the plastic flow has the
same direction as the outward normal of the yield surface. A plastic
model which has the Toading function different from the yield function

is calied nonassociated [49].

4.1.3 The Hardening Rule

In developing the flow rule of plasticity theory, it has been
implicitly assumed that, when the material starts yielding, the external
loading i< larger than the material resistance. Like a fluid, the
material is expected to deform continuously even if the applied lecading
remains unchanged. However, this assumption is not valid as most metals
exhibit a Timited amount of plastic deformation after yielding., This
discrepancy is believed to be associated with certain changes in the
material that incrcase the material resistance after yielding. The
purpose of the hardening rule is to describe this kind of change in the

material.
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The number of hardening rules depends on the toading function
used. tach of the variables that define the material resistance can be
modified to account for the related change in the material resistance.
For associated models, the loading function is the same as the yield
function. <Changes in the material resistance dre, therefore, same as
changes in the shape of the yield surface. As a result, the kinematic
and isotropic hardening rules which have been used to describe changes
of the yield surface also describe the associated changes in the
material resistance.

Mathematic formulation of the hardening rule varies between
models. In fact, this is the major reason that plasticity models are
different from each other. Since changes of the material resistance
result from the plastic deformation, most of the hardening rules are
functions of the plastic strain [5,7]. A scalar Tike the effective
yield stress, or size of the yield surface, can be easily assumed to be
a function of the accumulated plastic strain, or plastic work. The
detailed relation between these two quantities is normally determined
from experimental data. For a tensorial variable such as the back
stress, or center of the yield surface, both the direction and magnitude
of the change has to be specified. The assumption for the translation
direction is particularly important for nonproportional plasticity
models as the location of yield surface influences the direction of
plastic flow. It has been concluded by McDowell [55] that the Mroz
kinematic hardening rule can predict the flow direction better than
others. In general, material constants are necessary in determining

this change.
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4,1.4 The Consistency Condition
Upon loading of a hardening material, both the applied load-
ing and the material resistance increase. For a given stress level, the
material will deform to an eguilibrium state at which the applied force
equals the material resistance. If not, the material becomes unstable
and failure occurs. This equilibrium condition is used to determine the
amount of plastic deformation for a plasticity model considering strain
hardening. An equation describing this condition 1dis called the
consistency eguation.
Mathematically, the equilibrium condition is described by taking
the derivative of the Tloading function with respect to stress [49].
Because the value of the Jlocading function remains constant, its
derivative 1is  zero. The consistency equation 1is, therefore, a
derivative equation of the loading function in which the variable for
the material resistance has often been assumed as a function of the

accumulated plastic strain.

4.2 A Critical Review of the Classical Plasticity Theory

Under the general frame work laid out by the classical plasticity
theory, engineers face the following difficulties. First, the number of
material constants continue to increase when new findings have to be
accommodated. It is still unknown how many constants are required to
predict all the possibie fedtures of the stress-strain curve. Second,
there is no direct connection between the mathematical plasticity theory

and the deformation mechanism. It is quite difficult to understand the
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theory from a mechanistic point of view. Consequently, instead of being
a model for the physical phenomenon, plasticity theory has become a
mathematical puzzle for many engineers and students. Third, using
classical plasticity theory, it is generally difficult to predict the
material hehavior without performing a detailed series of experiments to
validate the plasticity model for a given material.

The difficulties of classical plasticity theory arise from the lack
of understanding about the complex mechanism of plastic defermation.
Plasticians have argued that classical plasticity theory is a phenomeno-
logical approach which 1is based on the observation of experimental
results [13}. Material testing and data acquisition technologies were,
however, very limited during the early development period of plasticity
theory. Many essential assumptions of that theory were developed from
the stress-strain response of materials under highly simplified toading
conditions. Although the hardening rule of the Lheory has been modified
after the early development period, assumptions such as the yield
surface and the flow rule have not been changed. The plasticity model
which is used to deal with today's complicated loading conditions g
still based on several over-simplified testing results produced in the
early days.

In view of the difficuities 1in the current development of a
plasticity model, it is suggested that all the assumptions made in the
classical plasticity theory be examined and compared to testing results
for complex loadings and microstructural observations. A critical
review of classical plasticity theory from such an examination 1is

presented in the following sections.
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4.2.1 The Concept ot Yielding
The existence of a yield surface which is defined by a scalar
function in stress space is the most essential assumption for classical
plasticity theory. Both the flow rule and the hardening rule are based
on this assumption. However, definition of the yield point and function
of the yield surface have not been clearly specified in the classical
plasticity theory.

Two possible methods of defining the yield stress are shown in
Fig. 38a. In the first choice, the yield stress is assumed Lo be the
point where the stress-strain curve departs from the linear elastic
portion. It can be found that, with this choice, it is usually diffi-
cult to specify how the yield stress may change during cyclic loading.
Another choice is defining the yield stress by the intersection of the
lTinear elastic stress-strain curve with a 1ine tangent to the nonlinear
stress-strain curve at a higher stress level. In this case, the yield
stress is dependent on the hardening behavior at the higher stress level
that, in many models, is defined by other variables. The vield stressg
is, therefore, not a variable independent from others.

Definition of the yield stress is found to be highly dependent on
the purpose of usage. For example, if the yield stress is used to
define the upper Tlimit of elasticity analysis, the 0.2% yield point
seems to be a reasonable choice. For an elastic-linear plastic model,
the yield point could be defined as the intersection of two linear
curves. In many nonlinear models, the radius of the yield stress has

been used to account for the hardening of the material. However, based
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on the experimental data, Lamba [56] has concluded that the portion of
the stress-strain curve where the slope is extremely small is more
important than the shape of the yield surface. Dafalias and Popov [57]
proposed that it was possible to treat almost any material as having no
purely elastic region by developing a function which was linear for the
range that would otherwise be defined as elastic. The purpose of
defining the yield surface 1is, therefore, very confusing for the
nonlinear elasto-plastic model.

From a micromechanical point of view, the meaning of yield stress
is also unclear. For many commercial metals, a large number of dis-
locations already exist before they are plastically deformed. The
stress required for a dislocation to slip depends on the crystal
orientation, the arrangement of inactive and active dislocations, ete.
In one particular grain, dislocations may start to slip at one stress
level because of the suitable crystal orientation when dislocations in
other grains still remain immobile. After the dislocation starts to
slip, further plastic deformation may become easier by creating many
mobile dislocations through various disloration resources or the
movement of dislocation may stop as a result of the increased inter-
active stress between dislocations and grain boundaries. For this
redason, it is almost impossible to define a stress level at which the
material can be said as to start yielding from a microscopic point of
view. The smooth transition of the stress-strain curve from the linear
elastic region to the nonlinear plastic portion is a reasonable response
for most materials. The case where the yield point is clearly defined

by a sharp corner in the stress-strain curve only occurs in materials
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such as carbon steel. This results from the pinning of dislocations by
a second phase and should be looked as a special case for the plasticity

modeling of metatls.

4.2.2 The State Variables

the idea of using state variables has been introduced in
plasticity and creep modeling of materials [8,58,59]. The state
variable is a scalar or tensorial variable that quantitatively describes
the deformation state of the material after plastic deformation.
Although different methods have been suggested to define the state
variables of metals, they are still based on the observation of the
macroscopic stress-strain curve [58,59]. Generally, it is not possible
to relate those variables to the microstructure of the material [16].

In the classical plasticity theory, every variable that is used to
define the material resistance in the luading function can be viewed as
a state variable. For a simple mode! with only isotropic and kinematic
hardening, the state variables are the yield and back stresses. In many
nonlinear models, additional parameters are introduced to adjust the
ptastic modulus so that more sophisticated features of the stress—strain
curve can be modeled [8]. These parameters should also be viewed as
state variables. The number of state variables required to simulate all
the possible features of the stress-strain curve remains unknown.

A major problem in the current plasticity model is whether or not
their state variables are independent. Ideally, a model can introduce
an infinite number of variables in order to fit the data successfully.

However, a good engineering model should incliude a minimum number of
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variables while being capable of simuiating complex loading con-
ditions. It is postulated that these kinds of state variables can only
be obtained from a good understanding about the deformation mechanism of
materials instead of the observation of the macroscopic siress-strain
curve, If ‘a variable is developed from macroscopic observation, it
should also be verified by the deformation mechanism of the material.

In examining the state variables of the classical plasticity
theory, two difficulties arise. First, the state variables defined in
the classical plasticity theory are all stress related quantities.
since stress is not a physically observable quantity, interpretation of
those variables require further assumptions about the stress field of
the substructure. Usually, the validity of those assumptions cannot be
verified. Second, the deformation substructure can only provide general
information about the hardening level. For example, Kayali and Plumtree
[15] showed that the peak cyclic stress was inversely related to the
cell size. If the cell size of a material is measured and used as a
state variable, the amount of hardening can be defined. The cell size,
however, cannot be used to indicate the level of yield stress which, in
the classical plasticity theory, has been used to specify the amount of
material hardening. As mentioned eariier, the concept of the yield
stress is to define the stress at which the plastic deformation
starts. A material can have a large amount of hardening but a low yield
stress. On the other hand, a material with no strain hardening may have
a relatively high yield stress. For this reason, it is quite difficult
to develop a microstructural explanation for the yield surface. Clari-

fication for the mechanistic meaning of the back stress is even more
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complicated. Since the back stress is a tensorial quantity, estab-
lishing a retation between the microstructure and the stress tensor re-
guires many assumptions and simplifications about the crystal structure
and the behavior of dislocations. The validity of such assumptions is
also difficult to verify. A possible reason that the major state vari-
ables of the classical plasticity theory have not been successfully
explained by the micrestructure of materials may result from their

stress—defined character.

4.2.3 The Flow Rule

The flow rule of the classical pilasticity theory is derived
from two approaches. The first approach assumes that the pilastic work
is always positive [48]. By assuming the existence of the yield
surface, the plastic flow is found to be along the outward normal
direction of the yield surface. Another approach is from the concept of
thermodynamic potential [1]. With this approach, the plastic flow
direction 1is obtained by differentiating the loading function with
respect to stress.

Although each of the approaches mentioned above has its theoretical
background, experimental verification of them can nol be edsily
accomplished. In the first approach, the existence of a yield surface
in stress space must be assumed. According to the previous discussion,
most metals do not show a boundary that cleariy separates the stress
space into either plastic or elastic. As the assumption of a clearly
detined yield surface is very critical in proving the normality property

of the flow rule [48], the applicability of this approach o the
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material which has a vague yield surface is still questionable. Diffi-
culties for the microstructural examination of the second approach
arises from the definition of the Joading function. Loading functions
are abstract gquantities that can not be easily verified by the observed
substructure without many assumptions. The continuous modification of
the definition of the loading function also increases the difficulty of
choosing a correct formulation, Perhaps, further research on the
thermodynamics of solids is necessary to determine the appropriate form

of the loading function,

4.3 A Mechanistically Based Model

According to the observed dislocation substructure and the deform-
ation mechanism of metals, it is suggested that a mechanistic plasticity
model should consider at least three mechanisms. The first mechanism is
the change of the disloucalion substructure during plastic deformation.
Since the distocation substructure is generally formed by inactive dis-
locations, the geometry of these substructures influences the hardening
level of materials. Appropriate variables and evolution rules which
describe the observed substructure should be chosen in defining the
deformation state of the material. The second mechanism is the fact
that, when a metal is deformed, a certain amount of strain is
accomplished by adjusting the atomic spacing. Strain formed by this
mechanism is Tinear and elastic. As only a limited amount of strain can
be accommodated by this mechanism, a stress or strain range in which
this mechanism is dominant has to be specified. The third mechanism

considers plastic flow formed by the slip mechanism. In general, this
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mechanism is associated with the active dislocations which slip between
the inactive dislocation substructure. A schematic diagram describing
the relation between the active and dinactive dislocations, which is
motivated from the interpretation of the dislocation substructure by
Laird [41] and Mughrabi et al. [60], is shown in MNg. 39. A smaller
distance between the inactive dislocations increases the interactive
stress among active dislocations and, therefore, the level of cyclic
hardening. The configuration of the dislocation substructure can also
be changed by the movement of active dislocations particularly when a
large deformation or force is applied. These chdanges, however, occur at
a slower rate than that of the active dislocations. Details of the
hysteresis loop are determined by the behavior of these active dis-
locations.

To construct a plasticity model, quantitative assumptions have to
be made for easch of the mechantsms mentioned previously. The accuracy
and efficiency of the model depend on the assumptions of these
mechanisms. In this section, a possible set of assumptions which can be
made for each mechanism are discussed. Fquations based on these

assumptions are also presented.

4.3.1 The DisTocation Substructure
For the purpose of plasticity modeling, it is normally
necessary to define certain features of the deformed material in a
guantitative way so that the mechanical properties can be defined.
Although the experimentally observed dislocation substructure provides

direct information about the deformation state of metals, they have not
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been used in the plasticity modeling. Since the purpose of this study
is to develop a plasticity model that is as close to the deformation
mechanism of metals as possible, the dislocation substructure is used as
a major state variable of the material. In the following, a method of
defining the dislocation substructure of materials under biaxial
loadings will be presented. The relation between the substructure and
the material strength will be discussed. Evolution of the substructure
under several loadings of changing path is described with experimental

results.

4.3.1.1 Description of the Dislocation Substructure
Description of the dislocation substructure formed by
biaxial Toadings is based on the geometry of the dislocation-free
zone. Two features of these zones are considered important: the size
and anisotropy. To simulate these two characteristics, an ellipse
defined by its area, major/minor axis ratio and major axis direction is
suggested.  The physical meaning of this model can be visualized by
comparing a cell to a ladder. In Fig. 40, it can be seen that the
geometry of a cell is close to a circle which is just an ellipse with
its major/minor axis ratio equal to one. A ladder is geometrically
similar to an ellipse which has the major/minor axis ratio larger than
one. The choice of using the ellipse area as a variable allows the cel}
size to be explicitly defined.
For other substructures, the physical meaning of the ellipse model
cannot be defined by purely geometrical comparison. Interpretation of

the variables has to be based on the formation of the substructure.
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Since a single-slip structure such as the planar dislocation and matrix
vein usually has a major slip direction, the stress required for the
dislocation to slip is a function of direction as the level of inter-
action between dislocations 1is direction dependent. For wall
structurcs, anisotropic behavior cam he expected as a higher stress is
required for the dislocation to cross the wall than dlong the wall,
Although it is quite difficult to estimate how the stress may change
with direction for each substructure, the over-all anisotropy of the
mechanical properties of materials can always be viewed as an ellipse
with an appropriate major/minor axis ratio.

In fact, a quantitative model for each kind of substructure is
unnecessary. For most polycrystalline metals, the change of the crystal
orientation from grain to grain, the effect of grain bhoundaries and
material processing procedures make all kinds of substructures possible
in the material. The ellipse suggested here is a qualitative estimate
for the relative amount of each substructure in the material.

Because the ellipse is used to symbolize the deformaticn state of
the material, assumptions have heen made as simple as possible. From a
mechanical point of view, two perpendicular orientated ellipses may be
necessary a&s there are always two maximum shear planes under two
dimensional loading conditions. However, because one ellipse is enough
to characterize the anisotropic properties of the material, a trans-
formation is suggested to relate thc model to the physical substructure
of materials. As shown in Fig. 41, a geometry of two perpendicularly
orientated ellipses can be transformed into one ellipse if the rotation

coordinate is doubled. For the biaxial case, the model with one single
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ellipse can be directly used in a strain based formulation to determine
the material strength in each direction. It will be seen later that
many important features in the stress-strain curves are better explained

by one ellipse rather than two.

4.3.1.2 The Strength of Materia)

The strength of a material is defined as the stress
required for the material to undergo a certain amount of plastic
deformation. Because the stress is very sensitive to the strain when
the plastic strain is small, it would be more appropriate to define Lhe
material strength by choosing a stress at which the stress-strain curve
approaches a constant stress value. The constant used to define the
expenent of the power law stress-strain curve can also be used as a
measure of the material strength.

According to previous discussions, the slress reguired for a dis-
focation to slip is dependent on the substructure of the material.
Because the distribution of inactive dislocations is not uniform for
most single-slip structures, the strength of material is generally a
function of the slip direction. Using the concept that the interactive
stress increases as the dimension of dislocation-free zone reduces, the
stress, S, required for slip to occur along a direction, e, can be

related to the ellipse by

S« 55 (4.1)
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where D(s) is the dimension of the ellipse along the slip direction.
With this assumption, the material strength associated with a particular

dislocation substructure is determined.

4.3.1.3 Evolution of the Bislocation Substructure
The evolution of the substructure in the material during
the cyclic Toading can be described by changing the variables which
define the ellipse, i.e. the ellipse area, the major/minor axis ratic
and the major stip direction,

For an annedled polycrystalline materijal, the detormation state is
represented by a c¢ircle with a relatively large radius. If fhis
material is plastically deformed, the ellipse area which represents the
cell size should decrease and approach a stable value as the accumulated
plastic strain or plastic work increases. The stabilized area is a
function of the number of siip systems activated in the material. More
active slip systems result in a smaller ellipse area as the dislocation
density increases. The nonproportionality of the loading path is a
major factor in determining the number of active slip systems. As the
amount of cross slip may be increased by increasing the strain range,
the stabilized ellipse area is also a function of the strain range. The
major/minor axis ratio of the ellipse is related to the number of siip
planes activated in the material. If slip is activated along all
possibie directions, the anisotropic ratio is one. Otherwise, it be-
comes larger than one. In this case, direction of the major axis has to
be defined. The direction along which most active slip systems occur is

the major slip direction. In two-dimensioral strain plane, the major
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axis of the ellipse is orientated in the direction with the most plastic
strain.

Since the dislocation density cannot he decreased by increasing the
accumulated plastic strain, the ellipse area is a monatonically
decreasing function of the accumulated plastic strain. In contrast, Lhe
major/minor axis ratio and the major axis orientation are dominated by
the loading condition of the last several cycles. In other words, the
major/minor axis ratio and the major axis orientation are "temporary"
memory and can be "washed out" by changing the loading direction.
Several cxamples are given to illustrate the change of dislocation

substructures by different loadings.

1) Aluminum Under Proportional and Nonproportional Loadings

Fig. 42 describes how the deformation state of aluminum changes
during torsion and 90° cut-of-phase tension-torsion cycling. Under the
annealed condition, the deformation state can be symbolized by a circle
with a large area. As the accumulated plastic strain increases, the
ellipse area becomes smaller as the cell size decreases. Since multi-
slip structures are formed in aluminum under both loading conditions,
the major/minor axis ratio is always one. The material has a constant

strength along all directions.

2) Stainless Steel Under In-Phase Tensian-Torsion
Under proportional tension-torsion, the deformation state of the
annealed stainless steel starts with a circle and then evolves into an

ellipse with a smaller area as shown in Fig. 43. The substructure
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implied by the ellipse is planar dislocations. It can be seen that
there are two components influencing the hardening level. The decrease
of the ellipse area represents the hardening effect resulting from the
accumulation of dislocations. The increase of the major/minor ratio
represents the softening effect as the dinactive dislocations are
arranged in such a way that the slip along the major slip direction
becomes easier than other directions. Since the stip direction remains
unchanged, the macroscopically observed stress s a result of the

balance between the hardening and softening effects.

3) Stainless Steel Under 90° Dut-Of-Phase Tension-Torsion

Under 90° out-of-phase tension-torsion, multi-s1ip structures such
as cells and labyrinths are formed in the stainless steel. Assuming an
annealed initial condition, the deformation procedure of the stainless
steel s a circle with decreasing area which 15 similar to that of
aluminum shown in Fig. 42, Since the substructure is basically iso-
tropic, the hardening level is the same along all possible loading
directions. A higher peak stress is observed as the stabilired area of
the ellipse is smaller than that by proportional loadings. The
softening effect which occurs during proportional loading does not occur

for this case.

4) Planar-S1ip Material Under An Abrupt Change of Loading Direction
The cross hardening effect and its associated hardening behavior is
best described by McUowell's [61] test results on the stainless steel,

see Figs. 44 and 45, After cyclic stabilization, a single-slip
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structure which is described by an ellipse is formed along the loading
direction. With a sudden change of the loading direction, the stress
level increases abruptly as the diameter of the ellipse along the new
s1ip direction is small. After additional cycles are applied along this
new direction, the ellipse first reduces its anisotropic ratio and,
then, evolves into an ellipse which has a new major axis orientation and
a smaller area. The combination of the reduced area and the anisotropic
ratio along the new direction causes the peak stress to decrease
gradually after the change of Tcading direction.

The physical change that might happen to the dislocation sub-
structure under this loading case is described in Fig. 46. Before the
change of lcading direction, most of the grains consist of single-slip
structures such as the planar dislocation, matrix veins and ladders as a
result of the proporticnal cycling. The sudden change of Jloading
direction forces the dislocation to slip along the new direction and
results in the modification of substructures. Depending on the grain
orientation and the existing substructure, substructures in one grain
may change faster than others. The resultant substructure in each grain
can also vary. Some grains may end up with multi-slip substructures
while others still show single-stip structures with the major axis along
the new direction. Since the ellipse model is to describe the effect
from alil possible substructures, the circle which may occur in the
process of transition, as shown in Fig. 46, represents the status that
the material has about the same number of single-slip structures along
the old and new directions. The smaller ellipse area at the final stage
results from of the increased number of multi-slip structures after the

change of loading path.
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5) Planar-S1ip Material Under A Slow Change of Loading Direction

Figures 47 and 48 illustrate the change of deformation state and
hardening level when the loading direction is changed slowly. Starting
with a large circle, the deformation state of the material gradually
becomes an ellipse with the area decreasing and the major axis
rotating. Because the radius that determines the required stress
remains a relatively fixed angle from the major axis orientation, a
smooth transition of hardening level is observed. The recovery of the
peak stress does not occur as the macroscopically observed hardening is
only modeled by the decrease of ellipse drea.

The possible change of the dislocation substructure is shown in
Fig. 49. In the beginning, relatively few dislocations exist in the
material. After the first cycle, single-slip structures are formed in
those grains which have the crystal orientation matching the loading
direction. For grains in which the crystal orientation is not suitable
for single slip, the substructure has either a mixed feature or a ma jor
slip direction slightly different from the loading direction. The
effect of the following cycles is ta form structures which have their
major slip directions close to the new loading direction while
destroying the structure in which slip along the new direction is
difficult. As the cycling continues, the number of multi-structures in
the material alsc increases. The combined effect of these changes is a

ratating eilipse with a decreasing area.
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4.3.2 The Elastic Range

Most metals undergo plastic deformation as a result of dis-
location slip. The formation of dislocations requires certain changes
in the atomic arrangement. The strain observed in metals may also
result from change of the space between atoms. The strain resulting
from this kind of mechanism is the elastic strain. Because higher
energy is required to increase the spacing between atoms, stress is
required to maintain the elastic strain. The elastic strain reduces to
zero when the stress is removed as atoms always return to the location
where the energy can be minimized.

In general, any amount of strain that is measured from a deformed
metal involves changes in both the atomic spacing and the atomic
arrangement, i.e. both the elastic and plastic strain. The amount of
strain formed by each mechanism is, however, dependent on the total
deformation. When the deformation is small, mosl of the Strain comes
from the elastic deformation. If the deformation of materials gets
larger, the contribution of the plastic deformation increases. To con-
sider the condition in which the elastic deformation is dominant, a
strain or stress range, which is defined as the elastic range, has to be
specified.

Since the experiments conducted in this study are strain controlled
tests, a plasticity formulation 1in deviatoric strain space is
employed. Figure 50 illustrates the relation between the total strain,
the plastic strain and the elastic strain. For a strain controlled
loading condition, the probiem of plasticity modeling is to find the

change of plastic strain associated with a given increment of the total
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strain. After the plastic strain increment is calculated, the stress is
determined by the elastic strain which is the difference between the
total and the new plastic strain. The elastic range is a region defined
in the strain space so that, whenever the total strain is in that range,
no change occurs to the plastic strain, i.e. the plastic strain
increment is zero.

A possible way of defining the elastic range starts with the study
of the experimental results. Based on the experimental data, it has
long been observed that the stress range in which the material exhibits
lTinear stress-strain relation may undergo translation, distortion and
rotation. Although those observations have been interpreted as either
isotropic or kinematic hardening in stress space, a similar formulation
can also be done in strain space. In fact, a formulation in strain
space provides deeper insight into the mechanism of those phenomena.

Figure 50 shows the relation between the elastic range and the
total strain. The most significant assumption is that the elastic range
is always adjacent to the total strain. This assumption, which results
in the consistency condition 1in the classical plasticity theory,
represents that, regardless how the material is deformed, there always
exists a direction along which a small change of total strain can be
obtained by adjusting atomic spacing of the material. In other words, a
plastically deformed material can always be further deformed without the
plastic deformation mechanism be involved if the loading direction is
appropriate.

Before plastic deformation, the elastic range is normally isotropic

and has the center located at the origin of the strain space. After
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that, the material behavior usually becomes so complicated that it is
guite difficult to estimate the location and shape of the elastic
range. From the uniaxial hysteresis loop, it can be concluded that the
elastic range cannot cover the region toward which the plastic strain
tensor moves. This region is shown by the shaded area in Fig. 50. The
exact Tlocation of the etlastic range during nonproportional cycling
cannot be determined from the uniaxial test result. A detailed exami-
nation of biaxial nonproportional testing results shows that, during
nonproportional cycling, there does not exist a range in which the
plastic strain increment is exaclly cero. Relatively small changes in
the plastic strain are observed when the total strain tensor moves along
a direction between the reverse direction of the total strain increment
and the reverse direction of the elastic strain. The elastic range
plotted in Fig. 50 is a good estimation for the location of the elastic
region.

From a mechanistic point of view, the atomic spacing of the
material is stretched most along the direction of the elastic strain. A
deformation change that tends to decrease the elastic strain can be
easily obtained by reducing the atomic spacing. The change of plastic
strain is, therefore, small as the total strain increment is along the
reverse direction of the elastic strain. On the other hand, the
arﬁangement of the dislocations can also affect the location of the
elastic range. [f many dislocations are formed along one direction, the
total strain change that tends to activate dislocations to slip across
those previously formed dislccations should have a smaller plastic

strain change as a higher stress is required to overcome the effect of
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interaction. Since the ease of cross slip is dependent on the slip mode
of materials, location of the elastic range may also depend on the
material.

Estimation of the shape and size of the elastic range is more
complicated than that of the tocation. As mentioned earlier, there does
not exist a range in which the plastic strain change is really zero.
Definitions for the shape and size of the elastic range requires a
criterion for the amount of the plastic strain change. As in classical
plasticity theory, the elastic range defined by this approach is 1ikely
to become highly dependent on the criterion used. In view of these
difficulties, it is suggested that definitions chosen for the shape and
size of the elastic range be as simple as possible. In fact, the
accuracy of the shape and size of the elastic range should be determined
by considering the role it plays in the model. In the classical
ptasticity theory, the yield surface is used to define the amount of
hardening and the direction of plastic flow. In particular, since the
plastic flow is believed to be along the outward normal direction of the
yield surface, the exact shape of the yield surface s quite
important. The reason that the elastic range is defined in this model
is only to specify a region in which the change of plastic strain is
small. For this purpose, a function such as the von Mises criterion is
good enough to approximate the shape of this range. The elastic range

ig, therefore, defined as

(e, = c) & (g - g1 - e = 0 (4.2)
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where €. is a tensor defining the center of this range and N is the
effective yield strain defined as the unfaxial yield strain divided
by /2.

In order to make the elastic range be Jocated in the expected

region, the incremental direction of the elastic range center, €eo is
assumed to be along a direction 1, which is defined as
E - £
1= ;a - ;C (4.3)
~a ~c|
where
(s + de ) - (et + det)

ey is the effective yield strain which defines the size of the elastic
range and z a material constant with a value between 0 and 1. Assuming

that dn is the magnitude of the elastic range center increment, i.e.
de. = dn], (4.5)

its value can be related to the total deviatoric strain increment, dgt,

and the effective yield strain increment, dey, by

{e, - e) 1 de, - e de
- ~C ~t Y ¥
N CRE S D ' -0)

Note that £g. (4.6) is obtained by subsliluling Eg. (4.5) into the

derivative of Eq. (4.2). The size of the elastic range may be assumed
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as a constant or it may expand or decrease. If the size of the elastic
range 1s allowed to change, the value of dey in Egq. (4.6) can be
determined by any evolution function similar to the isotropic hardening
rule used in the classical piasticity model. The total deviatoric
strain increment, dgt, is a given quantity for the strain controlled

case,

4.3.3 The Plastic Flow
Modeling of the plastic flow, or the plastic strain increment
tensor, is divided into two parts. The first part considers the
direction of plastic flow which is defined as a tensor in the deviatoric
strain space that has its second invariant equal to one. The second
part discusses the magnitude of plastic strain increment. | ike other
tensors, its value 1is defined as the second invariant of the plastic

strain increment tensor.

4.3.3.1 The Direction of Plastic Flow

In order to develop the assumption for the plastic
flow direction, the experimental result is once again reviewed. Al-
though this observation can be performed in either stress or strain
space, it is found that the strain space provides more information than
the stress space does. A comparison is done for the biaxial case in
Fig. 51.  In the strain plane, both the total strain and the plastic
strain histories can be plotted. The elastic strain, which is the
difference between the total and plastic strain, also indicates the

directjon and magnitude of the stress. In contrast, the only
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information which can be easily shown by the stress plane is the stress
history. Although the pilastic flow direction has been compared in the
stress plane by earlier researchers, discussions on the plastic flow
divection will refer to the strain plane in this study.

The experimental results show that the plastic flow cannot be along
both the direction of the total strain increment and the direction of
stress. In Fig. 18a, it can be seen that the plastic flow follows the
direction of the total strain increment and the stress only if the
loading is proportional, point A to point B, Once the loading becomes
nonproportional, the plastic flow direction 1s between the direction ot
the total strain increment and the direction of stress.

A possible way of assuming the plastic flow direction is using the
difference between the total deviatoric strain tensor and the plastic
strain tensor, see Fig. 50. With this assumption, the plastic flow can
have a direction hetween the total strain increment direction and the
stress direction when the loading path is nonproportional. However,
this assumption is found incapable of predicting the behavior of
materials which have a strong Bauchinger effect. As the schematic
diagram shown in Fig. 52, the plastic flow increment becomes negative
when the material is unloaded from point M to point N. Because the
difference between the current total strain and the previous plastic
strain can be nonnegative within this range, it cannot describe the flow
direction of this case correctly.

The experience obtained from the classical plasticity theory
suggests that the plastic flow direction may be defined by the elastic

range. In view of the difficuity of defining the shape of the elastic
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range, assumptions using shape of the elastic range are davoided. The
method suggested uses the difference between the total strain and the

elastic range center, i.e.

o (g +dey) - ¢
- l(?t + dgt) - EC[

(4.7)

where n is the tensor defining the direction of plastic flow. Note
that, conceptually, this assumption is very close to the fiow rule
devetoped in the classical plasticity theory if the von Mises yield

criterion is used as the loading function.

4.3.3.2 The Magnitude of Plastic Flow

According to the discussion about the dislocation sub-
structure, the material strength is a function of the plastic flow
direction. After the flow direction is determined, the level of
hardening, or the ease of slip, can be estimated from the ellipse model
with Eqg. (4.1). The magnitude of the plastic strain increment is
related to the hardening level estimated in this manner. Since the
material strength has been defined as the stress at which the stress-
strain curve approaches a constant value, an analytical function has to
be assumed to determine details of the stress-strain curve before it
reaches the 1imit stress. This function describes the stress-strain

curve between the yield point and the saturated portion.
By looking at the uniaxial test result shown in Fig. 38b, it is
found that there are three kinds of stress-strain relation. The first

one 15 represented by curve A along which the plastic modulus first
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equals infinity at the yield point and, then, continues to decrease to a
value of almost zero as the stress increases. The second kind is the
elastic unloading case represented by curve B. For this case, the
stress-strain curve exhibits a sharp corner as it turns from the linear
behavior to the portion that has a plastic modulus of the controlling
loop. The third kind of stress-strain relation, curve C, has a combined
feature of curves A and B. Right after yielding, the plastic modulus
decreases in a manner similar to that of the first kind. When the
stress-strain curve approaches the controlling loop, the plastic modulus
decreases at a higher rate and becomes almost the same as thal of the
contrelling loap.

The macroscopic stress-strain relation observed in Fig. 38b can be
related to the motion of active dislocations that have been mentioned
eartier. A general equation that relates the plastic strain to the

distocation can be written as
Asp = N b ax (4.8)

where Asp is the plastic strain increment, N is the number of the mobile
dislocations along the slip direction, b is the Burger's vector and ax
is the average slip distance of dislocations. In this equation, b is a
constant. Both N and ax can be functions of stress. From the ob-
servations in Fig. 38b, it is known thaft the magnitude of the plastic
strain increment becomes very large when the stress approaches the limit
value. Due to the existence of the inactive dislocation substructure,

it can be argued that the average slip distance has a finite value. The
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number of mobile dislocations may, therefore, be the controlling factor
for the magnitude of plastic strain increment. If it is assumed that
the plastic compliance, inverse of the plastic modulus, is proportional
to the number of active dislocations in the material, the observed
stress-strain relation can be explained by the micro mechanism.
Fig. 53(a) shows the possible dislocation arrangement at point PO of
Fig. 38b. MWhen the applied stress reaches the yield stress, a small
number of the active dislocations starts to slip. Due to the increased
interactive stress between these mobile dislocations and the dislocation
wall, Fig. 53(b), their movements do not continue unless a higher stress
is applied. The continuous decrease of the plastic modulus results from
the increase of the number of mobile dislocations that can be activated
by the increased applied stress. If a the applied stress drops
sTlightly, such as from point Pl to P2, the change of strain may result
from reducing the atomic space only. Since the arrangement of mobile
dislocations has not been changed during the unloading period, the
plastic modulus is the same as the major loop when the stress reaches
the level at which unloading happens, i.e. point Pl. If thc decrease of
stress is so large that some of the mobile dislocations have to move
backward during the unloading period, these dislocations, having a lower
interactive stress against the reloading direction, are easier to
activate if the applied loading increases again. The smooth transition
of the plastic modulus during the unloading and reloading periods
results from the movement of these dislocations, Fig. 53{(c). As the
majority of the mobile dislocations remain unchanged, the stress-strain

curve still approaches the major 1loop when the applied stress
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approximates the unloading stress level, The smoothness of the tran-
sition of tha stress-strain curve results in a larger strain at the
unioading stress level which is responsible for the cyclic creep of the
unsymmetric stress cycling and the mean stress relaxation of the
unsymmetric strain cycling.

Observations made so far are limited to the uniaxial condition.
For the nonproportional loading casc, such as the biaxial testing result
shown in Figs. 9 to 11, the direction of unloading and reloading cannot
be easily defined. Particularly, a dislocation activated for one
direction may become inactive as the toading turns to other
directions. As such, a function capable of describing all possible
details of the multiaxial loading path is unlikely to be simple,

In this study, three features are considered important in de-
termining details of the stress-strain curve. First, the plastic
modulus has to be infinity at the yield stress and decreases to almost
zero at the Timit stress. Second, if elastic untoading occurs, the
stress-strain curve has to show a disconlinuous point and follow the
major Toop upon reloading. Third, the ease of plastic flow has to de-
crease continuously as the flow direction changes from the major slip
direction of the mobile dislocations to a fully reversed direction. To
meet these three requirements the plastic compliance, C( i.e,

p!
Idfplldceff’ is calculated as

- )
Cp = g(aL, Geff) doeff + k Cp (4.9)

where g(oL, oeff) is a function of the applied stress and the Tlimit
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o . L
stress, Cp is the value of Idgpl/doeff before the application of do,e¢

and k is a factor due to the change loading direction. The specific
eqguation assumed for function g(aL, ceff) is

c

g(UL! Geff) = 5 (4.10)
(6, - 0 cc)
L eff
and the assumption for k is
k=n:n° (4.11)

where n is the tensor defining the plastic flow direction due to dogge

and QO is the plastic flow direction before the application of dogpee

The value of k is arbitrarily assumed to be zero if Fq. (4.11) gives a

negative value. The effective stress, oaffs 15 defined as

1/2
Tofr = (s:s) / (4.12)
After taking derivative, it becomes
s:ds
do R (4.13)
ef f Oaff

Note that for the uniaxial case with no unloading, k has a value of
onea, Equations (1.9) and (4.10) give an exponential stress-strain

relation after integratiaon.
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So far, the plastic flow direction, n and the plastic compliance,

Cp, which are associated with a change in the total devidtoric strain

increment, dgt have been defined. To determine the magnitude of the

plastic strain increment, the assumption that the total strain consists

of the plastic and elastic strain additively, i.e.

(4.14)

has to be used. The elastic deviatoric strain, ge, is related to the

deviatoric stress hy

5s=26 €, (4.15)
The magnitude of plastic strain increment, dx, is defined as
1
da = (dgp : dgp)z. (4.16)
By combining Eqs. (4.12) and 4.16, dx can be written as
(e, - ) 1 de
dr = -t -p -t . (4.17)
ngf t (et -t ) :in
4% I .

This is the equation used to calculate the magnitude of plastic strain

increment associated with an given change in the total deviatoric

strain.
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4.4 Comparison and Comments

The model developed in the last section is closely related to the
classical plasticity theory. In fact, most of the mathematic formu-
Tation follows the same procedure as that of the classical plasticity
theory. The model 1is, however, initiated from a viewpoint which is
different from the classical theory. The classical plasticity theory
starts with the assumption of a yield surface and thermodynamic prin-
ciples. On the other hand, the proposed model emphasizes the deform-
ation mechanism and experimental results. Figure 54 is a diagram
showing the difference between the proposed model, the classical
plasticity theory and the crystal plasticity theory. The suggested
model uses the information obtained from the microstructural observation
to make assumptions at a macroscopic level. The classical plasticity
theory focuses at the macroscopic level, while the crystal plasticity
theory starts with assumptions at the crystal level. With such a
difference in viewpoints, the proposed model has a number of features
that should be further discussed.

Definition of the state variables is one of the major differences
between the propeosed model and the classical plasticity theory. In the
classical plasticity theory, the leccation and shape of the yield surface
are the main variables which determine the plastic flow direction and
the hardening level of the material. Since the yield surface can only
define the elastic region, additional variables are necessary for
modeling nonlinear region of the stress-strain curve. Up to date, there
s still no universal method to define variables for nonlinear portion

of the stress-strain curve as no fundamental theory has been developed
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regarding the principle of nonlinear deformation behavior of the
material. The proposed model has three kinds of state variables. The
first kind of variables are concerned with the arrangement of inactive
dislocation substructures, the ellipse model that describes the
geometrical configuration of the distocation substructure. From this
kind of wvariables, the 1imit stress, or the hardening level, is
defined. The second kind of variables are related to the number and
direction of the active dislocation. As active dislocations are assumed
to move in the region confined by the dislocation substructure, these
variables are used to describe the stress-strain curve bounded by the
Timit stress. The third kind of state variables define the region in
which change of the atomic spacing is the major mechanism for
deformation. Elastic behavior is expected if the total strain tensor
Ties in this region. The proposed model has, therefore, a compiete
description about the deformation state and mechanism of the material
under plastic deformation.

The shape of the yield surface 1s conceptually important for the
classical plasticity theory as it defines the plastic flow direction.
Although the proposed model also uses the center of the elastic range to
define the plastic flow direction, the shape of the elastic range is not
as jmportant as that of the classical theory. In the development of the
modet, 1t has been mentioned that, experimentally, the relative location
of the elastic range is normally easier to estimate than its configur-
ation. This approach avoids the difficulty of searching for the shape
of the elastic range. Instead, a material constant, z, is introduced to

account for the possible material dependence of the flow direction.
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Another major difference is the space of defining the state vari-
able and developing the mathematic assumption. It is found that the
proposed model might be able to explain the corner of the subsequent
yield surface which have been reported by early researchers. In the
classical plasticity theory, it has been assumed that the yield surface
is a scalar function of stress. For this reason, the yield point
remains unchanged regardless the loading direction. The proposed mode]l
suggests that the stress change associated with a given total strain
increment is dependent on the plastic flow direction. It has been
observed that the ptastic flow direction is generally different from the
direction of stress. The yield point, which is rormally assumed as the
point having a small amount of plastic strain, may depend on the Toading
direction. [f so, the yield surface cannot be defined as a scalar
function of stress. Since the major variables used in the proposed
model are defined by strain, Lhe material behavior that might be
predicted by proposed model cannot be easily compared to the early
experimental work on the yield surface. A detailed study of this
possibility requires further experimental data conducted with

appropriate loading paths.
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5. MODELING AND RESULTS

Implementation of the proposed model will be divided into two
parts. The first part considers the stabilized material behavior under
biaxial strain controlled cycling. In this part, the loading path is
unchanged from cycle to cycle. The purpose of the model is to describe
the stress-strain relation after the hysteresis loop is stabilized. The
second part deals with transient material behavior. For this case, the
loading path is changed during the cycling. The purpose of the model is

to simulate the evolution of the hardening level during such changes.

5.1 The Stabilized Behavior

According to previous discussions, a plasticity model has Lo in-
clude a complete description about the evolution of the dislocation
substructure, the mechanism of the elastic deformation and the behavior
of mobile dislocations. Among them, the dislocation substructure
determines the limit stress or the amount of hardening during cyclic
loading. Since the dislocation substructure of the material does not
change after the material behavior is stabilized, how the substructure
reaches the stabilized stage is normally unimportant for the description
of the stabilized stress-strain curve. As such, the ellipse model,
which has been proposed to model the dislocation substructure, can be
neglected as far as the 1imit stress of the loading path can be
estimated. In order to simplify the calculation, it is suggested that
the Tlimit stress be estimated from the loading path and the material
property without using the ellipse model. An easy method of determining

the Timit stress of a biaxially cycled metal is presented. This method
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is then combined with the formulation for the elastic range and the
plastic flow to simulate the stabilized stress-strain response of the
stainless steel and aluminum under several strain-controlled loading
paths. The stress and plastic strain responses predicted by the model
are compared to the experimental results. The purpose of this mode ] ing
work is to examine the accuracy of the detailed stress-strain relation

predicted by the model.

5.1.1 Mathematical Formulation
The Limit Stress

For wavy slip materials, the 1imit stress is independent of
the loading path as an equiaxial dislocation substructure is expected
for both proportional and nonproportional loading paths. The limit
stress is, therefore, only a function of the applied strain range. A
uniaxial siress-strdin curve is enough to estimate the 1imit stress. As
shown in Fig. 38a, the 1imit stress can be obtained by extrapclating the
experimentally obtained stress-strain curve to the region where the
strain is relatively large. Since the Timit stress is insensitive to
the strain, it can also be approximated by the peak stress of any
stress-strain curve that has a relatively large strain range. A power
Taw or Tinear function can be assumed as the relation between the limit
stress and the applied strain range. Experimental resuits shown in
Fig. 35 suggest that the stabilized 1Timit stress of aluminum is almost
independent of the applied strain range. A constant value is used to

approximate the 1imit stress of this material.
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For wavy and wavy/planar slip materials, the 1imit stress is
dependent on both the 1loading path and the applied strain range.
Figure 55 shows the relation between the limit stress and the strain
range of stainless steel under both unfaxial and 90° out-of-phase
tension-torsion Tocadings. From Fig. 36, it can be found that the
stabilized peak stress of copper increases suddenly as the plastic
strain amplitude reaches 0.001. This behavior cannot be described by a
simple function such as the power law. Assuming that the 90° out-of-
phase tension-torsion loading path has the highest hardening and that
the proporticnal loading path has the lowest hardening, the 1imit stress
of an arbitrary loading path can be obtained by interpolation between
these two limits., Fiy. 55 shows an example of such an estimation.

Although it has been concluded that the nonproportionality of a
loading path is determined by the plastic strain history, the total
strain path, which is the input variable for the strain-controlled case,
can still be used to estimate this quantity. For a total strain path
shown 1n Fig. 56, 1t can be assumed that all the small "perturbations"
observed in the total strain history result from the elastic deformation
mechanism. The plastic strain path follows the over-all trend of the
total strain path. An easy way of estimating the degree of non-
proportionality is drawing a "wide" 1ine along the total strain path.
The width of this line should have the order of the effective yield
strain., Since the plastic strain increment can have a component normal
to the major loading direction whenever the total strain increment is
not tangent to the major loading direction, the width of this line

should be Tless than the effective yield strain. In this study, the
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width of the this Tline is arbitrarily assumed to have a value of the
uniaxial yield strain divided by the sguare root of two. The maximum
difference in the incremental direction of this Tine, Aw, divided by 90°

is defined as the nonproportionality of the loading path, g, i.e.

A
8 = 58 (5.1)
The limit stress is calculated as
o, = 8loC[e/2) - o2(ac/2)] + o2(4e/2) (5.2)
L L L L ’

where OEO(AE/Z) and UE(AE/Z) are the 1imit stresses with a strain ampii-
tude of Ae/2 for the 90° out-of-phase tension-torsion and the uniaxial
tension cases. Note that, in Eq. (5.2), a linear relation has been
assumed between the directional difference and the degree of non-
proportionality. Depending on the experimental results, it may be
necessary to develop an empirical nonlinear relation between these two

parameters.

The Elastic Range

Since the elastic range is not used to define the amount of strain
hardening for the proposed model, the size of the elastic range does not
have to be changed during the plastic deformation of materials. In view
of the fact that the experimental determination of the yield point 1s
guite difficult for the multiaxial cyclic loading case, the size of the

elastic range is assumed constant for simplification. As thic range isg
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defined in strain, its value equals the strain at which the stress-
strain curve departs from the elastic region. The shape of the elastic
~range is also assumed unchanged as the plastic flow direction is not
detined by the configuration of this range.

Equation (4.2) of the last chapter defines the elastic range for
the proposed model. To determine its moving direction, E£qs. (4.3) and
(4.4) are used. For the calculation in which a continuous Toading path
is approximated by a number of discrete points, a problem arose when
Eqs. (4.5) and (4.6) are used for estimating the movement of the elastic
range. Since discrete points used to approximate the strain path
normally don't include the strain at which the material starts yielding,
an incremental equation such as Eq. (4.6) may result in a constant error
in the location of the elastic range. For this reason, Eg. (4.5) is
substituted into Eq. (4.2) to solve for the magnitude of movement
directly. The magnitude of the elastic range center increment asso-

ciated with a total deviatoric strain change, dgt, is written as

2

dn = b - (b2 - ¢)% (5.3)
where

b = (gt + de, - EC) | (5.4)
and

Cc = (gt + dgt - EC):(gt - dgt - Ec) - eyz. (5.5)
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The Plastic Flow

The amount of plastic flow is calculated hy the procedure proposed
in the Tast chapter. Equation (4.7) is used to determine the direction
of flow. Constant ¢ is obtained by fitting the stress-strain history of
the 90° out-of-phase tension-torsion case. Egations (4.9) and (4.17)
are used to calculate the plastic modulus and the magnitude of plastic
strain increment. Because Eqgs. (4.9) and (4.17) are first order
approximations of the exact stress-strain curve, computational error may
become significant when stress approaches the 1imit stress. To sotve
this problem, a procedure similar to that of solving the change of
elastic range center 1is used. When the stress calculated from
Fq. (4.17) is close to or larger than the limit stress, the magnilude of

plastic strain increment is calculated as

d = b - (b - ), (5.6)
in which

b = (gt + dgt - € )iD {5.7)
and

C = (e +dey - e iley - dey - c) - (o /26)C (5.8)

The value of dx calculated from Eg. (4.17) is negative for some combi
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nations .of n and dgt. This situation happens when the sign of (gt
- Ep):dgL is different from that of (e -Sp):g. Since a negative of da
is not allowed in the model, da is assigned to be zero when it occurs.
Ihe Toading condition of the biaxial test conducted on the tubular
specimen is not exactly a strain controlled case. Instead, the vari-
ables controlled by the testing machine involve both strain and
stress.  The major finput data arc the normal strain alony the longi-

tudinal axis of the specimen, e__, and the shear strain tangent to the

2z
surface of the specimen, €0 SEE Fig. 57. Since the tubular specimen
is assumed to have a plane stress loading condition, the normal strain
along other two axes, € and £ag® Are not known while the normal stress
of these directions, o, and 9gg? OT€ assumed zero. Since Eqgs. (4.17)
and (5.6) assume a full knowledge of the total strain change, they
cannot be used to calculate the magnitude of plastic strain increment
directly. An iterative scheme s used to solve this problem.
Initially, strain increments dsrr and dEBS are calculated with an

assumption of no plastic deformation, i.e.

(5.9)

where v is the Poisson ratio. These quantities are substituted into
Egs. (4.17) and (5.6) to calculate the magnitude of plastic strain

increment, da. After dx is determined, dsrr and dee are corrected by

6
considering the condition that dorr and daSe are zero, which is

dz—:rr = dEea = -y dEZZ + 3 da oy (5.10)
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The correct values of dgrr and de98 are obtained by continuing this
calculation until dx approaches a constant value. During this iterative
calculation, the plastic modulus is alsc modified to have a value closer
to the exact value. Using this method, the valuc of dr is found to have
an error less than one percent after a few iterations. Figure 58 1is the

flow chart for such calculations.

5.1.2 Results and Discussion

A computer program written in C is used to implement the
proposed model. This program is used to model the behavior of aluminum
and stainfess steel.  The loading path for aluminum s the strain con-
troiled uniaxial path shown in Fig. 16. Material constants for aluminum
are shown in Table 7. The stress-strain response predicted by the
propesed model is compared to the experimental result in Fig. 59. The
loading paths for the stainless steel are the biaxial paths shown in
Figs. 9 to 1l and Figs. 17 to 19. Material constants for the stainless
steel are shown in Table 8. Comparisons of the predicted paths tn the
experimental results are shown in Figs. 60 to 65. The limit stress of
these loading paths is estimated by the procedure discussed in the last
section,

In comparing the predicted stress-strain histories to the experi-
mental results, it is found that the proposed model can predict the
stabilized response of materials successfully., Fig. 589 shows that the
Stress-strain curve under various unloading and reloading conditions can

be reasonably approximated by Egs. (11) to (13). Figure 18 shows that,
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when the total strain path has a sudden change in its incremental
direction, the instantaneous change of the plastic flow direction is
Tess than that of the total strain. If the total strain continues to
increment along the new direction, the plastic flow turns to that
direction gradually. If the increment direction of the tota] strain
keeps changing as in the 90° out-of-phase tension-torsion case, Fig, 17,
the plastic flow direction can not reach the new increment direction of
the total strain. A constant difference exists between the plastic flow
and the total strain increment direction. For this case, the plastic
flow direction also deviates from the direction of stress by a constant
angle. Figures 60 to 65 show that the assumption made for the plastic
flow direction can <imulate this feature correctly.

There are also a number of features which the model cannot predict
well. tor a square strain path shown in Fig. 18, the effective stress
at the corner is larger than the stress between corners by almost 30%.
Although this difference can be easily related to the difference of the
effective strain between those two points, the loading path of this case
does not involve a clear unloading and reloading procedure such as that
of the uniaxial test. A detailed examination of the experimental data
shows that the plastic strain continues to increment along the previous
flow direction when the total strain increment direction has turned to
the new dircction. This behavior persists for a short period and
results in the sudden drop of the effective stress which can be observed
in Fig. 18. A similar test conducted on aluminum shows that this effect
is less obvious for aluminum than stainless steel, see Fig. 14. It is

quite possible that this feature is related tc the time-dependent



64

behavior of the stainless steel. (Limited to the assumption of time-
independence, the proposed model cannot predict this behavior correctly,
The simplified method of estimating the 1imit stress is found not
accurate for some of the loading paths. Particularly, the predicted
maximum stress of the two-stair path loading case, Fig. 63, has an
twenty two percent error when compared to that of the experimental
data. This error is believed to be the major reason for the inaccuracy
of predicting the plastic strain history in Fig. 63. The method is
refatively accurate in estimating the 1imit stress of the four-stair and
cight-stair path. The "wide" line method of estimating the 1imit stress
is accurate only if the total strain path is close to proportional.
Another source of error comes from the assumption of the elastic
range. As mentiored earlier, there does not exist a range in which the
plastic strain increment is exactly zero. This is particularly true for
the nonproportional path. Assuming zerc plastic strain increment in the
elastic range makes the predicted stress increases faster than the
experimental result when the elastic strain increases. The over
estimated stress in the predicted result of the s<tair path tests,

Figs. 63 to 65, is a good example of this effect.

5.2 The Transient Behavior

In order tc simulate the transient material behavior due to the
change of the loading path between cycles, the e1lipse model has to be
included in the plasticity modeling. The ellipse that describes the
change of the dislocation substructure in the material is used to

determine the limit stress of each cycle. As the formulation for the
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elastic deformation and the plastic flow remains unchanged, this section
will focus on the mathematic assumptions of Lhe ellipse model. The
purpose of this section is to present a possible way of including the

change of dislocation substructures in the plasticity modeling.

5.2.1 Mathematical Formulation
In the last chapter, the relation between the ellipse model
and the cyclic hardening behavior of the material has been explained in
a qualitative manner. In this section, this relation will be quantified
by & number of mathematic assumptions regarding the definition and evo-
lution of the ellipse. These assumptions are developed from a purely

empirical approdach with no theoretical consideration.

The ET1lipse Area

Formulation for the ellipse model starts with the assumption that
the 1imit stress before the plastic deformation, oi, is given. Assuming
that the major/minor axis ratio equals one at the beginning, the initial
ellipse area, A;, is = if the 1imit stress is normalized by the initial
Timit stress. The 1imit stress can, then, be related to radius of the

etlipse, r{s), by

5L = T6) (5.11)

where o is the Joading direction. For the two-dimensional biaxial case,

the direction of lcading is defined as
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(5.12)

where nu and nt

are the plastic flow direction tensors resulting from
the axial and torsion loadings.

In view of the cyclic stress-strain relation shown in Fiy. 37, the
stabilized limit stress is assumed to be dependent on the plastic strain
ampiitude through an exponential function. Assuming the stabilized
Timit stress at zero plastic strain amplitude, oE, and the stabilized
1imit stresses at infinite plastic strain amplitude under uniaxial
90

loading, uE, and 90° out-of-phdase tension-torsion, o s be given as

material constants, the stabilized ellipse areas at those Timits are

;
a
A = (—=17 s, (5.13)
oL
i
L2 =«
AE = (5% (5.14)
GL o]
and
.
90 L2
“L

where pu is the stabilized major/minor axis ratic for the uniaxial

case. The stabilized ellipse area with a maximum plastic strain
amplitude of Aep under the uniaxial loading, Ag, and 9C° out-cof-phase

. . 0
tension-torsion, Az , are

(5.16)
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and

L) e ) (5.17)

in which k. is a material constant.

The stahilized ellipse area of an arbitrary loading path, Ags 15
obtained by calculating the degree of nonproportionality of the loading

path, g, and interpolating the area between Az and Azo, i.e.

A = B(Ago - AL+ Al (5.18)
The nonproportionality parameter, g, is zero for the uniaxial case and
one for the 90° out-of-phase tension-torsion case. The value between
these two 1imits is obtained by counting the number of directions along
which plastic strain occurs. A 180 degree two-dimensional direction
range is divided into 20 divisions. For each division, the amount of
the accumulated ptlastic strain of that direction is recorded. A
direction division is said activated if the accumulated plastic strain
along that direction is larger than 0.2 percent. The nonproportionality
parameter, g, is related to the number of the activated divisions

through an eguation given as
3 2
B = (kg - 2)p7 + (3 - 2k }p" + k. p (5.19)

where p is the number of the activated divisions divided by the number
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of total divisions and k8 is a material constant. Eq. (5.19) is derived
from the assumption that the relation between the nonproportionality of
a loading path and the number of the activated divisions can be
described by a third order polynomial function. The condition that the
nonproportionality parameter is insensitive tu Lhe number of activated

divisions when the number of the activated directions becomes large,

ds
b - 0 whenp =1 (5.20)

has also been considered.

The ellipse area always evolves from the initial value, =, into the
stabilized value, AS. [t s assumed that the ellipse area is an
exponential function of the accumulated plastic strain. Incrementally,
Lhis evolution procedure can be described as

A = (A

s - ) lae (5.21)

where IAspl is the magnitude of the plastic strain increment.

The Major/Minor Axis Ratio and The Major Axis Direction

In order to allow the major/minor axis ratio he changed in the way
described in the last chapter, a parameter, g, is calculated for each of
the direction division. The initial value of this parameter, g,, is

defined as
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G = (5.22)

where pu is the stabilized major/minor axis ratio under uniaxial
cycling. When the direction of the plastic strain increment, ¢, is in
the range of division i, the parameter of that division, g, is increased

by
ag = [1 - (q - o)} lAepllkt (5.23)

where ky is a material constant. To allow the major/minor axis ratioc be
erasable, the parameter of the division having a direction different

from the direction of the plastic strain increment is decreased by
29 = (a4 - g5) Isin(e - )| fae | /k, (5.24)

in which 6 is the direction of the division being considered.
The major/minor ax1s ratio is determined by comparing the distribu-

tion of these direction parameters. To do this, a ratio defined as

z?? q.|cos(s-8.)|n/20
_ i=0 T i
@ = s _ (5.25)
2520 q1|s1n(¢—ei)|n/20

1s calculated for each division. In that equation, ¢ is the plastic
strain increment direction, « and & are the ratio and direction for each
division. The major/minor axis ratio is the maximum of a among all
divisions. The direction at which the maximum value of « i5 recorded is

the major axis direction of the ellipse.
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In general, Eqs. (22) to (25) make the major/minor axis ratio
equal ot if only one direction division is activated. When a large
number of divisions are activated, the value of this ratio reduces to
one.  Since the parameter g is dynamically changed by Egs. (23) and
(248}, the major/minor axis ratio becomes dependent on the loading path
of the Tlatest cycles. The evolution behavior described in the last

chapter can, therefore, be described.

5.2.2 Results and Discussicn

The loading conditions used to examine the capability of the model
are the two cyclic biaxial tests on 304 stainless steel conducted by
McDowell, as shown in Figs. 44 and 47. A detailed description about the
loading path is given in Ref. [61].

To model the transient material behavior, there are generally two
sets of material constants required in addition to the constants used in
predicting the stabilized behavior. The first set of constants include
the initial 1limit stress, 01, the stabilized T1imit stress at zero
plastic strain amplitude, U‘L’, and the stabilized 1imit stresses under
the uniaxial and 90" out-of-phase tension-torsion loading at a large
plastic strain amplitude, oE and GEO, the cyclic hardening parameter,
kns @nd the constant for the change rate of the nonproportinnality
parameter, kB. Another set of constants includes the stabilized cross
hardening ratio under the uniaxial Jloading case, pﬁ, the factor

describing the evolution rate of the ellipse area, k., and the factor

p’
for the evclution rate of the major/minor axis ratio, kt'
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Material constants from first set are important for the quanti-
tative description of the material behavior. Particularly, the stabil-
ized 1imit stresses are critical for the modeling of the stabilized
hysteresis loop. The initial 1limit stress can be obtained from the
uniaxial stress-strain curve at the first cycle. The stabilized 1imit

E and UEO, can be obtained by plotting the stabilized

stresses, oE, g
pcak stress as a function of the plastic strain amplitude for both the
uniaxial and the 90° out-of-phase tension-torsion loading cases. The
cyclic hardening parameter, kn, can be determined by fitting an
exponential relation into the cyclic stress-strain curve similar to
Fig. 68. Determination of the constant kB requires a number of tests
that activate different number of sl1ip planes. By plotting the cyciic
stress as a function of the number of the activated planes, this
constant can be determined.

The second set of constants are designed for the description of the
transient material behavior. Like the constant kB, these constants
normally require Llests of high complexity. For example, the uniaxial
cross hardening ratio, ou, can onty be determired by a test that changes
the loading direction abruptly after the material behavior has been
stabilized under a proportional cycling, such as the test in Fig. 44,
The evolution rate constants, kp, kt and kB, can only be obtained by
f1tting the transient material behavior during the change of the Toading
path. Since the effect of these three constants cannst be uncoupled by
any test, they are guite difficult to determine.

Comparing the transient model of this section to the stabilized

modei suggested in the last section, it is found that the number of
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material constants increases drastically from six to fourteen. Although
these additional eight constants can help the model to describe the
transient material behavior under complicated loading paths, it has lost
the requirement of simplicity which is usually important for engineering
applications. Additionally, in view of the compiexity involved in
determining the value of those material constants, it is unlikely that
the 1imit stress predicted from this approach can be more accurate than
the method suggested in the last section. For these reasons, the values
of the constants introduced in this section are estimated through a
trial and error process. It is not suggested that this transient model
be used for engineering calculation. The purpose of the modeling work
here is to show the mechanism presented in the last chapter. A list of
the constants for the 304 stainless steel ig presented in Table 8.

Figures 66 and 67 show the predicted cyclic stresses as functians
of the cycle number for the paths shown in Figs. 44 and 47. From these
figures, it can be seen that the predicted results agree with the
experimental data qualitatively. Most significantly, the ellipse model
is shown to be capable of describing the sudden increase of the cyclic
stress that has been discussed earlier, Fig. 66. The tendency of the
cyclic softening effect after the change of the loading direction is
also predicted.

Although the suggested model seems to work well for many cases, it
shotld he noted that this model is developed from an apprudach that is
not mathematically rigorous. As a result, how the model may behave
under a loading condition cannot be easily predicted. A significant

problem of this kind is the definition of the plastic compliance given



- 73

in Eq. (4.9). In that equation, the plastic compliance, C., after an

p
increase of the effective stress. daeff, is defined as a summation of
two quantities: one is a function related to the second derivative of
the stress-strain curve, g(oL, OEff)dUEFF’ and the other is the modified
initial plastic compliance, kcg. In general, the slope of the stress-
strain curve defined by this method is not a single function of the
stress. As the 1imit stress, 5 » €an be changed in the transient model,
the resultant stress-strain relation becomes more unpredictabie when the
loading path becomes complicated. It is found that Eq. (4.9) may pre-
dict incorrect peak stress if the limit stress is changed during the
cycling. An example is given in Fig. 69(b), which is the predicted peak
strass for a Toading path given in Fig. 69(a). Assuming the stabilized
Timit stress is 430 MPA, the 1imit stress predicted by the ellipse model
increases from the initial value, 260 MPa, to the stabilized value
gradually. Regardless of the increase of the Timit stress, the peak
stress obtained from Eq. (4.9) decreases, Fig. 69(b). This result
suggests that Eq. (4.9), although works wcll for many other cases, is
not an appropriate method of defining the slope of the stress-strain
curve. How to develop quantitative assumptions so that a plasticity
model can have well-defined mathematical properties while still
satisfying the requirements from the mechanistic consideration is still

a highly challenging issue in the area of plasticily modeling.
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6. CONCLUSION

The macroscopic mechanical behavior of metals under nonproportional
cyclic Tleoading is an integration of highly complicated deformation
mechanisms occurring at the microscopic Tevel. In order to develop a
mechanistic medel for the metal plasticity, it is necessary to identity
the controlling mechanisms which are responsible for the macroscopic
material behavior, With  the controlling mechanisms being chosen,
quantitative assumptions are made for each of those mechanisms. The
macroscopic plasticity model is a combination of the guantitative
assumptions made for those mechanisms.

The following three conclusions are drawn from the observation of

the dislocation substructure.

*  The major dislocation substructure formed in simple metals, such
ds dluminum, copper and stainless steel, under the nonproportional
cyclic loading can also be created by the proportional loading. How-
ever, all the substructures resulting from the nonproportional cycling
belong to the category of <ubstructures that involve multi-slip

mechanisms.

* The stip mode dominates the substructure formed in the
material. Materials which can cross slip easily form multi-stip
structures under both proportional and nonproportional loadinys.
Materials which cannot cross slip easily form single-slip structures
under proportional loadings and muiti-slip structures under non-

proportional loadings.
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* The additional cyclic hardening observed for materials such as
copper and stainless steel results from the change of the dislocation
substructure from a single-stip structure to a multi-slip structure when
the loading changes from proportional to nonproportional. The material
which has the same substructure under both loadings does not increase

the hardening level for the nonproportional cycling casec.

A cyclic plasticity model developed from the deformation mechanism

of metals should consider the following mechanisms.

* The dislocation substructure represents the arrangement of the
inactive dislocation in the material. Since active dislocations s1ip in
the area which is confired by the inactive dislocation, the level of the
cyclic hardening of a material 1is related to the dimension and

configuration of the dislocation substructure.

* The strain of a deformed metal results from two mechanisms: the
adjustment of the space between atoms and the slip of the active dis-
location. Under small deformation, the macroscopically measured strain

can be assumed as resulting from these two deformation mechanisms

additively.

*  The strain resulting from the change of atomic spacing, the
elastic strain, is linear and elastic. This mechanism dominates the
total strain only if the tota) strain is within a small range that can

be specified in the strain space.
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* The strain resulting from the slip of active dislocations, the
plastic strain, depends on the dislocation substructure and stress.
This mechanism s the major mechanism for the deformation of materials
when the stress is high. The dimension of the dislocation substructure
determines the amount of strain hardening of the material. The amount
of strain hardening increases as the size of the dislocation-free zone

decreases.

In this study, a number of quantitative assumptions have been made
to describe the three major deformation mechanisms of metais: the dis-
Tocation substructure, the elastic range and the plastic flow. By
combining these assumptions, it is found the stress—strain response of
the material under a highly complicated Tloading condition can be
successfully modeled. In general, a model developed from this approach
is capable of predicting more sophisticated material behavior than those
based on the classical plasticity theory. The number of material
canstants is also reduced. As the plasticity model s supported by the
microscopic deformation mechanism, estimation of the material constant

for a new material without testing becomes feasible.
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(T: Torsion, 0: 90° Qut-of-Phase Tension-Torsion)

SPEC PATH pe/2 avy/2 ba/2 at/2 ben/2 Bynd2 N

I.0. % (% (wa)  (wea) () ) (Cycles)
A104 0 0.15 0.25 60.0 31.5 0.071  0.127 1969
A108 0 0.15 0.25 63.3 28.7  0.061  0.139 2949
A103 0 0.11 0.18 60.3 30.9 0.027  0.052 12938
AL07 0 0.11 0.18 62.5 29.9  0.023  0.06l 19402
AL10 0 0.09 0.15 57.6 29.0 0.014 0.036 109781
A106 0 0.07 0.13 51.9 28.1 0.006 0.019 268168
All? #] 0.07 0.12 51.0 28.3 0.003 0.012 145380
AL01 T 0.25 30.4 0.132 7644
AL09 T 0.17 30.9 0.051 9543
Al02 T 0.13 30.4 0.013 25914
Alll T 0.11 26.9 0.005  >700000
A105 T 0.09 zl.4 0.004 >512000
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Table 2 Test Results of OFHC Copper
(T: Torsion, 0: 90° Out-of-Phase Tension-Torsion)

SPEC. PATH ae/2 ay/2 Ac/2 at/2 asp/z ATp/Z Ne

I.0. (%) (%) ~{MPa)  (Mpa) (%) (%) {Cycles)
{002 0 0.18 g.32 159.9 83.2 0.087 0.154 6051
€003 0 0.12 0.20 125.4  66.6 0.030 0.054 34582
Coo5 0 0.09 0.15 105.5 60.2 0.008 0.007 115587
cool T 0.32 64.1 0.178 61670
Coo4 T 0.20 57.0 6.080 340315

Table 3 Test Results of 310 Stainless Stee]
(T: Torsion, 0: 90° Qut-of-Phase Tension-Torsion)

SPEC. PATH be/2 ay/2 bc/2 at/2 Asp/Z Ayp/Z Ne

I.D. (%) (%) (MPa)  (MPa) (%) (%) (Cycles)
sio02 0 0.35 0.61 438.5 245.6 0.133 0.275 1838
$101 0 0.20 0.35 310.5 177.5 0.046 0.122 38879
S106 c 0.15 0.25 236.2 137.2 0.028 0.068 383011
5104 T g.61 170.2 0.390 50980
S107 T 0.45 143.2 0.264 368523

S105 T 0.35 142.6 0.189 835713
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Table 4 Test Results of the 304 Stainless Steel Specimens
Chosen for Microscopical Examination

(I: In-Phase Tension-Torsion, 0: 90° Out- of -Phase Tension-Torsion)

SPEC. PATH be/2 ay/2 ac/2 at/f2 be /2 Ayn/2 N
1.0. B W ey () (B (B (cyeles)
§§10 0 0.35 0.61 477 267 0.235 0.206 3560
§528 0 0.20 0.35 300 168 0.041 0.152 50000
ssiz I 0.25 0.43 176 101 0.156 0.297 52900
Tab1e 5 Test Results of the 7075 Aluminum Alloy Specimens
Chosen for Microscopical Examination
{T: Torsion, O: 90° Qut-of-Phase Tensijon-Torsion)
SPEC. PATH he/2 ay/2 aa/f2 at/2 hen/2 Ay /2 N
1.0, W R (wea) ) () () (cycles)
A710 0 0.41 0.70 286 185 0.006 0.003 4953
A709 0 0.20 0.34 140 91 0.000 0.000 243211
A702 T 0.69 184 ¢.000 18760
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Table 7 Material Constants of 1100 Aluminum

Shear Modulus, G (MPA)

Poisson Ratio, v

.Uniaxlal Yield Stress, o, (MPA)
Strain Hardening Constant, ¢

Fiow Direction Parameter, ¢

Table B Material Constants of Stajnless Stee]

Shear Modulus, G (MPA)

Poisson Ratio, v

Uniaxial Yield Stress, o, (MPA)
Strain Hardening Gonstant, c

Flow Direction Parameter, ¢

Cyclic Hardening Constant, Kk,
Nonproportionality Change Factor, k,
Ellipse Area Change Factor, kP
Ellipse Ratio Change Factor, k,
Stabilized Uniaxial Ratio, p¥
Initial Limit Stress, o} ( MPA)

Zero Plastic Strain Limit Stress, o2 (MPA)

Infinite Plastic Strain Limit Stress, o (MPA)
{ Uniaxial cycling )

Infinite Plastic Strain Limit Stress, of° (MPA)
{ 90° Qut-0f-Phase Tension-Torsion)

25928
0.33
32
0,012

0.7

77418
0.33
160

0,001

0.0007

0.15

260

220

280

560
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Figure 1. Dislocation Substructures of 1100
Aluminum Before Testing.

Figure 2. Dislocation Substructures of OFHC
Copper Before Testing.
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Dislocation Substructures of 310 Stainless

Steel Before Testing.

Figure 3,
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Cells Farmed in 1100 Aluminum (Specimen ALOG}.
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Figure 21. Cells Formed in 1100 Aluminum (Specimen AlQ9).
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Figure 22, Cells Formed in 1100 Aluminum (Specimen ALU4).

Figure 23. Ladders Formed in Copper (Specimen COOL).
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Figure 24.
(Average Cell Size = |.32 um

Cells Formed in Copper (Specgmen Cocl).
)

Figure 25. Uncondensed Cells Formed in Copper (Specimen CGO05).
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Figure 26. Labyrinths Formed in Copper (Specimen C0Q3).

Figure 27. Walls Formed in Copper (Specimen C00Z).
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Figure 28. Cells Formed in Copper (Spec}men C002).
(Average Cell Size = 0.93 .m )

Figure 29. Planar Dislocations Formed in 304 Stainless Steel
(Specimen SS12).
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Figure 20. Tangles of Dislocaticns Formed in 310 Stainiess

Figure 31. Walls Formed in 304 Stainiess Steel (Specimen SS10).
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R A e AR

Figure 32. Cells Formed in 310 Stainless Stee] (Specimen S102).

Figure 33. Labyrinths formed in 310 Slainless Steel {Specimen $102).
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Figure 34, Dislocation Loops Formed in 7075 Aluminum Alloy (Specimen A710}.
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a.
Po
P2
TYPE A TYPE B

Figure 38. (a) Two Possible Ways of Defining the Yield Point.

(b) Three Types of Unloading and Reloading Paths.
{Specimen Al14).
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Active
Dislocations <4— Slip Directions
M =

Dislocation
Wall (inactive
dislocations)

D .
Distance between Dislocation Walls
Determines the Hardening Level

Figure 39. The Deformation Mechanism of Metals
under the Cyclic Loading.



141

Figure 40. A Cocmparison Between the Dislocation Substructure
and the tiltipse Model.
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Figure 41. A Comparison Between the Two-Dimensional Maximum Shear
Planes and the Strain-Plane Defined Ellipse Model.
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(OOO00°

>
Increasing Cycles

Figure 42. The Deformation State of 1100 Aluminum Under either
Torsion or 90" Qut-0f-Phase Tension-Torsion Cycling.
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Increasing Cycles

Figure 43. The Deformation State of Stainless Steel
under Cyclic Torsion.
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INCREASING CYCLES

Figure 47. The Deformation State of Stain]essﬁtee]_ undgr the
Loading with a Slow Change in Loading Direction {61].
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Figure 50. The Relation Between the Total Strain, the Plastic
Strain and the Elastic Range in the Biaxial
Deviatoric Strain Plane.
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Figure 51. A Comparison Between the Stress and Strain Plane Formulation
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Figure 52. A Schematic Stress-Strain Curve for a Material with
Strong Bauchinger Effect.
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Active Dislocations %

>
¥
4

Major Slip Dislocation
Direction —p Walls

Slip Due
to Unloading

Figure 53. (a) - (c) The Behavior of Active Dislocations During
the Unloading and Reloading Procedure.
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The Classical
Plasticity Theory
(observation and
assumptions)
e

*._
The Suggested
Model (observation
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Specimen

52 oo

Grain
g
AN
N +—
V o The Suggested
/7 Dislocation Model (observation)
Substructure
Crystal Plasticity
Theory
(observation and
assumptions)
Crystal
Structure

Figure 54, A Comparison Between the Suggested Model, the Classical
Plasticity Theory and the Crystal Plasticity Theory,
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"Wide Line"
Approach

Total Strain Path

Width of this Line has
the Order of Effective
£ Yield Strain

Figure 56, A Simplified Method of Estimating the Jegree of
Nonproportionality from the Total Strain History.
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Figure 57. The Approximated Stress and Strain State of the Tube Specimen.
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) (n)
Given &, ‘Yze’-..
Assume &, ¢

Det. Flow
Dir. 1
(Eq. 4.7)

Cale. Plastic
Compliance

C, (eq. 4.9)

calc ai®
(eq. 4.17)

Get Plastic
Strain

(n+1) = o0} U
—§p -f‘p +dA"n
L 2

Get Correct
G

Calc. Plastic
Compliance
C_ (eq. 4.9)

p

Calc. da+?
(eq. 4.17)

Figure 58. The Flow Chart of Calculating the Correct value of ¢ and e
rr
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under a Random Uniaxial Loading (Specimen All14).

—B0



161

0.003 0.004
l 1311

0.001 0.002
SR A W T |

-=0.001 0.000
La s v st a3

SHEAR STRAIN / 1.732

-0.003 -0.002
L ea braaaa

Qm‘

LIMIT STRESS

— : TOTAL STRAIN
——  EXPERIMENTAL
= 485 MPA -— : PREDICTED

®

FTrT Ty RNV sy vy irrirniyrrprrrTvrryyenoea

004 -0.003

Figure 60.

~0.002 -0.001 0.000 0.001 0.002 0.003 0.004

AXIAL STRAIN

(a) - (d) A Comparison Between the Predicted and the
Stahilized Stress-Strain History of 304 Stainless
Steel under the 90" Qut-0f-Phase Tension-Torsion
Cycling (Specimen S513) [36].
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Figure 61. (a) - {(d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 304 Stainless
Steel under the One-Square Tensicn-Torsion
Cycling (Specimen SSO3) [36].
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Figure 65. (a) - (d) A Comparison Between the Predicted and the
Stabilized Stress-Strain History of 310 Stainless
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Figure 66. A Comparison Between the Predicted and the Experimental

Peak Stress for the Loading of Fig. 44 [6&l].
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APPENDIX

Mathematical Formulation of Plasticity Models

A.l Krieg (1975) [7]
A.1.1 The Loading Surface:

(s-a):(s-w)-R°=0
A.1.2 The Limit Surface:

{s* - a*) 1 (s* - o¥) - R*2 =0

A.1.3 The Flow Rule:

C:(S - cz)
g = T . (S - a)
PoR% s (%—) s - o) 77T
0

w| o

where

o= (%ﬁ -1 (s -e) ta*-a

A.l.4 Hardening Rules For The Yicld Surface:

- v2/3 apGle_|
= "P i
R "R ni(s - a)
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where

A.1.5 Hardening Rules For The Limit Surface:

Ré = /273 Gky|& |

*
1}

Bk(1-v)é /1.5

A.1.6 Notation:

S Deviatoric Stress Tensor for the Loading Surface
a Tensor of the Center of the Loading Surface

R Radius of the Loading Surface

s* Deviatoric Stress Tensor for the Limit Surface
a* Tensor of the Center of the Limit Surface

R* Radius of the Limit Surface

e Total Deviatoric Strain Tensor

gp Plastic Strain Tensor

A.1.7 Material Constants:
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G Shear Modulus

Rg Radius of Initial Loading Surface
p Metelastic Coefficient

k Asymptotic Plastic Stiffness

B Isotropic Proportioning Factor for

the Loading Surface
g Isotropic Proportioning Factor for

the Limit Surface

A.2 Drucker and Palgen (1981) [9]

A.2.1 The Yield Surface:

p L]2 N C c
e’ = B{=5) (s - 57) (s - 5%):3]
a
where
L
Jy = 5 813

A.2.3 Hardening Rules:
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and

WP = [ (s - s%):ic dt
g 2

A.2.4 Notation:

S Deviatoric Stress Tensor
§C Tensor of the Center of the Yield Surface
Ep Plastic Strain Tensor

A.2.5 Material Constants:

k Yield Stress in Simple Shear
Wo, o, Constants
B, N, o*

McDowell (1985) [10]
A.3.1 The Yield Surface:

$ls-als-o) -R =0

A.3.2 The Limit Surface:
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A.3.3 The Flow Rule:

&= F (S

where
[sx 5] 1.1
91960 . > 2
h = k[l + 2222 (s hﬁ——[} )]s
K %57 %
5-a

A R

and

=~
1]

ulk{w,q) - ki b n

k(¢,q) = olk(1,q) - k(0,q)] + k(0,q)

b = experimentally determined function
A.3.4 Hardening Rules For The Yield Surface:

é = M[E(¢,Q) - R} 4o

s - a)i - (/3R] (s* - 3)
- (s - a):(s* -5
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where

b= U[;{* (¢,9) - RI,

R(e:q) = o[R(1,q) - R(0,q)] + R(0,q),

E
i

= (1 .1 M/2
(fp‘;p)

and
. _ * - N . _ _
¢ H (1 J d’) n U(l J ¢]1m1t),
in which
d
0 (51 - #3)
\] = | . . |5
gLz} - ()]
o1 if x 20
ua =Ly if x <0,
1 if x=0
9(x) = { X if x = 0,
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€ and €4 are the largest and smallest principal strains and

(é)1 and (é)3 are the largest and smallest principal strain rates.

A.3.5 Hardening Rules For The Limit Surface:

R*

where

w*

A.3.6

ép = Héfl (ép:ﬂ*) n*

and

I

(

n [E* (6,0) - R*] ¢* §

ulR (o,q) - R¥],

5,0) = 6[R*(1,q) - R(0,q)] - R*(0,q)

Definition and Changing Rules Of A Strain Memory Surface

%‘(gp - gp)i(gp - Py - ¢

(5 u(F) © - a(@)] ;

Io= m*in + vBa(y)
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n* = unit normal tensor of the strain surface

~

a(q) = experimentally determined function

A.3.7 Notation:

S Deviatoric Stress Tensor for the loading Surface
a Tensor for the Center of the Loading Surface

R Radius of the Loading Surface

s* Deviatoric Stress Tensor for the Limit Surface

a* Tensor for the Center of the Limit Surface

R* Radius of the |imit Surface

% Plastic Strain Tensor

gp Tensor for the Center of the Strain Memory Surface
q Radius of the Strain Memory Surface

A.3.8 Material Constants:

k, Ha U*i R(lsq)a R*(l,q), k(l!q)s

R(0.q), R¥(0,q), k(0,q)

A.4 Naghdi and Nikkel (1986) [11]

A.4.1 The Loading Surface:

~ ~

o

g = 4g2 [y - (1 + EE)ID]:[I - {1+ %E)Ipl -k (strain space)
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f={(- %-;Ip) (r - % &Ip) -k (stress space)
where
; i (o:D - as) kK + aSkO - aoks

ko - kS

A.4.2 The Flow Rule:

0 ifg<0org-=0 and é <9
P

9 I i = q

iy (2v -~ ay") ifg=0and g>20

where

9 - 4u(r -3 azp) ¥ when g = 0,
A = 8Buk > 0,

- Oto—us i;p b
L= 20k + 2[1 + (ko - ks] (2 -5 " )sy"]
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A.4.3 Hardening Rules:

k= [s(k)r + n(k)zp]:xp
where
. [k - kSJ
B = B
kO - kS
( kK - ks)
n = n
ko - ks

A.4.4 Notation:

T Deviatoric Stress Tensor
Y Total Deviatoric Strain Tensor
yp Plastic Strain Tensor

A.4.4 Material Constants:
U Shear Modulus
Gy g5 B Constants
ko, ks, n

A.5 Banallal and Marquis (1987) [12]
A.5.1 The Flow Rule:

where
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in which

et if x =0
u) = ek o,

A.5.2 Hardening Rules:

where

3.
5]

it

o(p) = o + (1 - 0_) exp(-WP),

N(A) = (d - f) A + f,

H

gAQ + (1 - A)Q
Us(A) = —gm 7 TR

Q

A = sin(a)
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in which

A.5.3 HNotation:

s Deviatoric Stress Tensor
X Tensor of the Center of the Loading Surface
Ep Plastic Strain Tensor

A.5.3 Material Constants:

ka Ys Ks a, N, C, QO’ Qms g, d, f-) ¢0’ (bm
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