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ABSTRACT

The changes 1in crack opening stresses and the effects of these
changes on crack growth rates are investigated for several problems 1in
fatigue cracking outside the regime where small-scale yielding assump-
tions are strictly valid. The primary tool used here for the determi-
nation of opening stress, Sopen= is an elastic-plastic finite element
simulation of fatigue crack growth. Computations are performed on a
CRAY X-MP/48 supercomputer. Several modeling issues are investigated,
including the effects of mesh design, crack advance scheme, material
properties, and constitutive model on the resulting values of S

open*

Special attention is given to the dependency of § on § the

open/smax max?

maximum stress. Crack opening hehaviar is interpreted and explored in
terms of information about crack opening displacements, crack-tip
plastic zones, and stress-strain histories. Parameters which might be
used to correlate crack growth rates under these conditions are
critically reviewed, and the potential role of closure in these param-
eters is explored. Fatigue crack growth data obtained under conditions
of intermediate- and Tlarge-scale yielding and biaxial Tloading are
successfully correlated only when closure-modified parameters are em-
ployed. The changes in Sopen for a crack growing from a hole are in-
vestigated. Simple models are developed to correlate this particular
crack opening bechavior and the associated accelerated crack growth

rates.
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1. INTRODUCTION
1.1 Background

Under certain conditions, a large percentage of the total useful
service life of a component or structure subjected to cyclic loading
coincides with the slow, steady growth of a small fatigue crack.
Successful engineering analysis and design for these conditicns, then,
may depend on the avaitability of an accurate model to correlate and
predict the rate of growth of cracks for a given combination of load
history, component geometry, and material properties. Most such models
in current use are based on the concept, first proposed hy Paris i1,2],
that the average crack growth per cycle can be described as a power-Taw
function of the crack tip linear elastic stress intensity factor, K.
This principle, with certain occasional modifications, has been
successfully applied to explain and predict crack growth behavior for a
wide range of stress levels, stress states, crack Tengths, materials,
variable amplitude histories, and geometric configurations.

One of the most significant advances in the study of fatigue crack
growth was the discovery by Elber [3,4] of the crack closure
phenomenon. He found that the tip of a fatigue crack was, in generatl,
closed during some portion of the loading cycle. He proposed that only
the portion of the loading cycle during which the crack tip was open was
actually "effective" in propagating the crack. This concept has since
been used extensively to explain stress ratio effects and variable
amplitude loading effects, and it has further been proposed as a

possible factor 1in other apparently anomalous crack propagation

behaviors.



Nevertheless, there remain a number of important problems in
fatigue crack growth which have not been solved by traditional
applications of K-based parameters. These include the growth of very
short cracks, thickness effects, stress biaxiality effects, and notch
effects. In addition, when stiresses are high and plastic deformations
become large, linear elastic fracture mechanics ultimately 1loses its
validily. Analogous elastic-plastic parameters have been proposed and
have met with some success, but several critical questions remain.

The phenomenon of crack closure also involves many unresolved
issues. For example, debate continues over whether closure occurs at
all in plane strain, and what implications this may have for crack
growth in real components. Belh experimental measurement and analytical
estimation of accurate crack opening levels are difficult tasks, and as
a result there is not yet a clear picture of which parameters have the

most significant impact on crack opening stresses.

1.2 Purpose and Scope of this Research

The present research has two parallel thrusts. The first is an
analytical investigation of crack closure and the factors which control
its magnitude. Special attention will be given to the influence of
maximum stress, constitutive relationships, and stress biaxiality. The
primary tool used here for the determination of opening stresses under
various conditions is an elastic-plastic finite element simulation of
fatigue crack growth. Insight is also drawn from simpler anatytical
models and original experimental measurements. Chapter 2 presents

details of the finite element formulation, a discussion of several



crucial modeling issues, and the basic results of the analysis for
uniaxially stressed center cracks.

The second thrust of the research 1is the application of this
closure information to the correlation of experimental crack growth
data. Attention is focused on problems which have not been resolved by
traditional applications of aK and closure-modified aK, Considered
primarily are those problems in which the assumptions of small scale
yielding (SSY) are not strictly satisfied, including both intermediate
scale yielding (ISY) and the large scale yielding (LSY) typically
associated with low cycle fatique.

Chapter 3 begins with a critical review and analysis of parameters
which have been prupoused to correlate crack growth data associated with
ISY and LSY. The possible role of closure in these parameters is
discussed. Correlations are attempted for crack growth data from two
steels over a wide range of stresses and crack lengths. The importance
of crack closure information for these correlations is evaluated.

Cyclic biaxial stressing of mode I cracks is considered in Chapter
4. Finite element simulations of closure under these conditions are
presented and discussed. Three sets of crack growth data from the
Titerature are correlated with and without consideration of closure
behavior, and the correlations are compared.

The problem of crack growth from notches is the focus of Chapter
5. The opening behavior of these cracks is characterized with the
finite element analysis. A simple model 1is developed to explain the
behavior to a first approximation. The model is compared with

experimental crack growth data for notches of various sizes and shapes.



Chapter 6 provides a summary of the research and further discussion
of the significance of crack closure for engineering analysis and

design.



2. FINITE ELEMENT FORMULATION AND BASIC RESULTS
2.1 Background

The first finite element modeling of fatigue crack growth may have
been carried out by Miyamoto et al. [5]. They compared monotonic and
cyclic loading with special attention to changes in the stress and
strain distributions and crack opening displacements upon release of the
crack tip node. Premature contact of the crack surfaces during
unloading in a tension-tension cycle was observed but not investigated
in depth.

The first major study of crack closure with the finite element
method was published by Ohji, Ogura, and Ohkubo beginning in 1974 [6-
10]. They applied Lheir model to the study of crack growth from notches
(especially the non-propagating crack problem), variable amplitude
loading, and biaxial loading. At about the same time Newman published
the results of his independent investigations [11-141, giving more
attention to the details of the model itself.

In the following ten years, only 4 handful of papers gave attention
to this technique. Shiratori et al. [15] published a detailed analysis
of stresses, strains, and displacements near the fatigue crack under
simple constant amplitude and overload histories. Socie [16] considered
crack closure under constant and variable amplitude loading of the SAE
keyhole specimen, although more of his attention was directed to the
total life prediction problem. Nakagaki and Atluri [17,18] took a
radically different approach tc the problem, employing special crack-tip
elements and translation of the near-tip mesh, and studying mixed mode

configurations in addition to the standard mode I case. Nakamura et al.



[19,20] evaluated closure in the compact tension (CT) specimen with
special attention to the comparison between ideal and fatigue cracks.
Blom and Holm [21] studied closure in the CT specimen at different
stress ratios under plane stress and plane strain.

Interest in the finite element modeling of fatigue crack closure
has surged in recent years, however, including four papers presented at
the May 1986 ASIM International Symposium on Fatigue Crack Closure.*
Fleck [22,23] adapted Newman's original formulation to examine closure
under plane strain, and Chermahini [24,25] expanded Newman's formulation
to consider a simple three-dimensional problem. Nicholas, Palazotto,
and Bednarz [26] employed a more general constitutive model and analyzed
shorl cracks at high stresses. Finally, Lalor and Sehitoglu |27-29]
have published research which is a direct predecessor of the present

thesis, and which is described in more detail in the next section.

2.2 Finite Element Formulation
2.2.1 Formutation of Lalor and Sehitogiu

Lalor and Sehitoglu developed an original elasto-plastic
finite element code for their study of fatigue crack closure. A small
deformation formulation was employed. Iteration to the correct solution
of the nontinear equations at each load step was carried out according
to the direct Newton-Raphson method, which is based on the tangent
stiffness matrix. While this requires a complete solution of the full

system of eguations at each iteration, which can be computationally

*The edited proceedings are being published by ASTM as Special
Technical Publication (STP) 982.



expensive, convergence is generally very rapid. This technique also
permitted updating of the nodal coordinates at each increment, which
represents a first approximation to a large deformation formulation.

The material model was based on concepts of incremental, rate-
independent classical plasticity. The von Mises criterion was used to
identify the yield surface. Kinematic hardening was chosen as the best
simple simulation of the Bauschinger effect associated with reversed
yielding. Ziegler's modification of Prager's hardening rule was
observed. The stress-strain relationship was modeled as bilinear. The
constitutive equation was numerically integrated according to a mean
normal method with subincrementation and radial return.

The changiny boundary conditicns associated with intermittent
opening and closing of the crack surfaces and with crack advance were
accommodated through a series of truss elements along the crack Tine,
following the concept of Newman [11-14]. The stiffness of a given truss
was set to an extremely large value when the crack was "closed" at that
location, and set to a negligibly small value when the crack was
"open." Stresses and displacements along the crack line were monitored
on each load increment to determine if boundary conditions should be
changed at any location. Crack advance was accomplished by a similar
sharp decrease in the stiffness of the truss at the crack tip node at
some specified time in the Toading history, typically at maximum load.

The meshes were composed of four-noded isoparametric elements (Q4
elements), which permit linear strain distributions. This represented a
significant advance over the constant strain elements used in a majority

of the previous research [5-16,19,20,22,23,26]. True higher-order



elements are generally not feasible due to the computational expense
associated with the additional degrees-of-freedom required.

The majority of the actual computation involved in the research of
Lalor and Sehitoglu was carried out on a dedicated HP-9000 super-
minicomputer. Typical execution times for a single simulation were on
the order of 100 hours.

Further details of the formulation can be found in Refs. 27-29.

2.2.2 Formulation used in the Present Research
A1l finite element analyses conducted as a part of the
present research were based on the formulatien and computer codes
developed by Lalor and Sehitoglu. Significant modifications fall into
four categories: optimization and vectorization, pre- and post-
processing, constitutive relationships, and mesh development.

Optimization and Vectorization. The Tlengthy execution times

characteristic of the earlier research made more advanced studies
unfeasible. To overcome Lhis 1imitation, access was obtained to the
CRAY X-MP/48 supercomputer at the National Center for Supercomputing
Applications, University of I11inois at Urbana-Champaign. In order to
make optimal use of the new machine, the entire program was extensively
rewritten to reduce redundancies and streamline execution.  Special
attention was given to vectorization of all matrix operations. Reduc-
tion of the stiffness matrix and back-substitution to obtain nodal
displacements were identified as particularly time-consuming portions of
the program. The simple Gaussian scheme of the original program was

replaced by highly vectorized routines, based on Choleski decomposition,



from a commercial software package. As a result of these changes, a
reference problem that reguired 100 hours to execute on the HP-9000
required fewer than 20 minutes on the CRAY, corresponding to a decrease

in execution time of approximately 300x.

Pre- and Post-Processing. Special attention was given to the
format of information input to and output from the program. Input files
were designed to be compact and easily modified in only a few minutes.
Each run of the program generated six lengthy output files of standard
format. A series of post-processing graphics programs were developed to
be able to read and visually display any desired information from the
raw output files quickly and with a minimum of user input. Many of the
figures in this thesis were taken directly from computer-generated plots
based on the raw ocutput files.

Constitutive Relationships. In addition to the bilinear stress-

strain relationship used in the previous research, a power-law hardening
model was developed and installed as an optional alternative. Details

are given later in this chapter.

Mesh Development. Eight new meshes were developed for the present

research with the aid of original mesh generation programs. Most are
conceptually similar to the meshes of Lalor and Sehitoglu, in that they
simulate mode I cracks growing from a central hole in a remotely loaded
two-dimensional plate. The meshes differ primarily in the size and
shape of the central hole, the size and number of the elements along the
crack line, and the uniformity of element size and shape.

A typical mesh 1is shown in Fig. 2.1. Note that one-quarter

symmetry is observed. Strictly speaking, the dimensions of the mesh are
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unitless, since loads are directly applied as stresses along the remote
boundaries.  The halt-widths of the central holes range from 8 to 32
units. Final crack lengths typically range from a = 100 to a = 125, or
a/W ratios of 0.1 to 0.125. A c]qser look at a typical fine mesh region
is given in Fig. 2.2. Here the element width along the crack line {and
hence the crack growth increment, aa) corresponds to aa/W = 0.002. The

truss elements along the x-axis are not shown in these figures.

2.3 Modeling Issues

One of the great dangers of the finite element technique s that
nearly any run of a program will produce a great many numbers, and the
complexity of Lhe problem being solved makes it virtually impossible to
tell at a quick glance whether those numbers actually give a correct
solution. The danger emerges when those numbers are accepted as being
correct without any study of the accuracy and sensitivity of the mode]l
itself. This is especially true in the finite element analysis of
fatigue crack closure. This is 4 complex nonlinear problem with
reversed plasticity in which primary attention is focused not on the
usual gquantities of stress and strain but on displacement histories as
loads and boundary conditions continuously change. Unfortunately, only
a handful of the previous researchers in the area have exhibited any
serious study of how their model design might be influencing the
quantitative or qualitative nature of their results.

In this section, careful attention is given to a series of critical
decisions about mesh design and crack advance techniques. The possible

effect of each of these decisions on the accuracy of the final result is
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evaluated. These discussions serve not only as background to the
present research, but also as a critique of previously published

research and as suggested guidelines for future researchers.

2.3.1 Mesh Refinement

The refinement of the mesh along the crack line is important
for at least two reasons. Girst, the mesh must be fine enough to cap-
ture the severe stress concentration at the crack tip. Second, the
element spacing defines the crack growth increment, which should be as
small as possible in order to simulate “real" crack growth. In
opposition to these arguments for an abundance of tiny elements,
however, are considerations of time and cost. Extensive mesh refinement
leads to large stiffness matrix bandwidths and many total degrees-of-
freedom, both of which multiply computer execution times, and also
requires many increments of crack growth (many cycles, many more load
steps). A balance between these two sets of considerations is required
which does not seriously degrade the reliability of the results.

Newman [13] was the first to identify and examine the problem of
mesh refinement. Working with three meshes composed of constant strain
triangles of varying refinement along the crack Tline. he identified
critical mesh spacings necessary for dependable solutions at different
stress levels. He described this mesh spacing in terms of the ratio of
crack growth increment to the plastic zone size at maximum Toad.

The design of the current research was to determine opening levels
at a fixed final crack length for two different mesh spacings at a wide

range of stress levels and two stress ratios, and to observe when the
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different meshes gave markedly different opening levels. The results
are shown in Fig. 2.3. The symbol "$" is used to represent stress here
and often throughout this thesis to emphasize that far-field stress
levels are being quantified, not stresses at the crack tip. Here the
stress-strain relationship is bilinear and 9y is the yield stress, the
point of intersection of the elastic and plastic 1ines. The values H
and £ represent the slopes of the plastic line and the elastic line,
respectively. Material properties and constitutive relationships are
discussed in more detail later in the chapter. Each individual data
point in this figure {and other figures like it throughout the text)
corresponds to one (or more) specific finite element simulations. The
lines connecting the poinls represent the author's judgment about
general trends and are included as an aid to visualization.

Observe first that above a certain stress level at each R-ratio,
the two meshes give reasonably similar results. There is a consistent
tendency for the finer mesh to yield slightly higher opening levels,
although the difference is not always significanl. A remaining question
is whether successively finer meshes (e.g., aa/W = 0.001, 0.0005,...)

would give continuously higher values of S or whether an upper bound

apen
value would be quickly reached. An important side note is that at this
crack length (a = 100, a/W = 0.1), cracks experiencing R = -1 cycling at
maximum siresses above 0.6 o have not yet grown cut of the influence of
the circular hole, and so opening levels are lower than final stable

values. This phenomenon will be discussed in more detail in the next

section.
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Observe second that at intermediate values of maximum stress,
normalized opening levels sharply increase and then sharply decrease
with Smax/oo'
and is not indicative of any significant physical behavior. In this

This "false peak" is an artifact of the modeling process,

region the mesh is not sufficiently fine to capture reversed yielding at
the crack tip upon unloading. Since there 1is no reduction of the
forward (tensile) plastic deformations (which Tlead to residual
deformations in the wake of the crack tip), these deformations are
artificially large and induce artificially high opening levels.

Finally, observe that as the maximum stress approaches zera,
opening levels rapidly drop off towards zero. In this region the mesh
is insufficiently fine Lo capture a significant amount of forward
plastic deformation. In the absence of substantial crack tip plastic
strains, the basic mechanism of plasticity-induced crack closure is
absent, and so opening levels will be artificially low.

It is reasonable, instead, to postulate that normalized opening
levels should continuously decrease as maximum stresses increase. This
is observed in the present model when major mesh defectiveness is elimi-
nated. Based on this postulate, and based also on the earlier observa-
tion that opening levels may increase slightly with mesh refinement even
at high stress levels, it is possible to construct a schematic repre-
sentation of an idealized "correct" solution independent of any arti-
ficial mesh effects. Such a representation is given by the dashed 1ine
in Fig. 2.3, and is intended only for qualitative consideration.

Each of these same three observations appears to hold true for the

data of Newman, replotted as Fig. 2.4 from Fig. 11 of Ref. 13. Here
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meshes I, II, and III are progressively more finely divided; mesh I
corresponds to asa/W = 0.0028, mesh II to aa/W = 0.0007, and mesh III
to aa/W = 0.00035. Note the artificially low opening levels for coarse
meshes and low maximum stresses, the apparent "false peak" at inter-
mediate stresses, and the convergence to mesh-independent stable values
at higher maximum stresses.

The data of Newman suggest a simple criterion for mesh sufficiency
based on the ratio of the element size to the forward crack-tip plastic
zone size, Estimating the width of the plastic zone along the crack
Tine at maximum load according to a simple Irwin-type relationship for

center-cracked panels under plane stress,

;9 = () (2.1)

a value of Aa/rp < 0.05 seems to be a good rule of thumb for reliable
results with Newman's constant strain triangle elements. This ratio
also corresponds approximately to Lhe inflection point in the data of
Ogura et al. ([9], Fig. 5) below which closure levels decrease with
decreasing Smax- Such a criterion also suggests that some of the
results published in Refs. [5,15,19,20,26], all using constant strain
trianglies, may have been adversely influenced by insufficient mesh
refinement.

Returning to the present research and Fig. 2.3, and comparing
results at the two R-ratios, it appears that a single criterion based
only on the forward plastic zone size is not sufficient. For the Q4

elements used in this work, Aa/rp < 0.10 seems to be an indicator of
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mesh sufficiency for R 0, and aa/r_ < 0.15 for R = -1. The more

p
generous criterion at R = -1 is due to the important role of reversed
piasticity in modeling the crack closure phenomenon.

The curves in Fig. 2.3 are composites drawn from the results of
several different crack growth simulations at a fixed final crack
length. The same trends could be observed, however, in a single test at
constant 5., as crack length increases, Consider a hypothetical
simulation in which the initial crack Jength in an unnotched mesh is
zero. Early in the test the strain intensity at the crack tip will be
insufficient to cause forward yielding in the finite-cized crack tip
elements, and opening levels will be low. Note that this phenomenon is
distinctly different from the well-known "short crack" problem, although
the results would appear similar. As the test proceeds and crack length
increases, the forward plastic zone will be sufficiently captured by the
mesh but the reversed plastic zone will not be. and so opening levels
will be artificially high. Finally, as the crack length increases
encugh to satisfly a Aa/rp criterion, the opening levels will decrease
slightly to reach a stable level. While no such test with initial crack
length equal to zero was conducted in the present research, the
phenomenon of artificially high opening levels at intermediate crack
lengths was observed in a number of simulations. In several cases this
would have led to erroneous conclusions about opening behavior had not
the phenomenon been recognized as a modeling defect.

Comparisons of the mesh-independent results of Newman and the

present research 1in Fig. 2.5 (based on similar strain-hardening

behavior) suggest that higher-order elements (Q4 vs. CST) will predict
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higher opening levels. This seems to be consistent with the trend in
Fig. 2.3 towards higher opening levels with increasing mesh refinement
at sufficiently Tlarge stresses. A higher-order element should better
capture the crack-tip singularity in forward Toading and hence develop

larger tensile plastic strains (i.e., larger residual deformations}.

2.3.2 Initial Defect Size and Stabilization Behavior

The conclusions of the previous discussion suggest that there
is no benefit in starting with a zero-length crack analogous to a
"naturally" occurring microcrack. In addition to being very computa-
tionally expensive due to the large number of load increments required,
the results al short crack lengths are 1ikely to be unretliabie. A more
economical approach is to start with some initial crack tength large
enough to satisfy the criteria for mesh sufficiency, and then grow the
crack only long enough to insure that a stable opening level has been
reached.

The nonzero initial crack length can be developed in at least two
ways. First, the crack can be initiated from the root of & hole or
notch in the mesh. Although the initial crack length is still actually
zero in this case, the plasticity caused by the notch is generally
sufficient to bypass the types of mesh problems discussed earlier. An
added bonus is that this mesh design simulates a real-world fatigue
problem: initiation and propagation of fatigue cracks from local stress
concentrations.

An alternative approach is simply to start with the crack tip at

some arbitrary initial position in an unnotched mesh. A possible dis-
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advantage here is mesh economy: a hole or notch represents some large
number of elements and nodes which do not have to be included in the
mesh, thus reducing the total degrees-of-freedom 1in the system of
equations. In addition, the nature and possible symmetry of the hole or
notch may provide a unique opportunity to design the mesh in such a way
as to sharply reduce the bandwidth of the stiffness matrix. Since
solution times for matrix reduction are typically proportional to the
square of the bandwidth, this can be a significant source of cost reduc-
tion. Design of a mesh with a large region of extremely fine elements
and a narrow bandwidth is something of a difficult artistic problem in
its own right, even with the aid of renumbering schemes and other
optimization tools. The notched meshes used in the present research
typically had bandwidths of 22 to 29 node numbers for meshes with 800 to
1000 total nodes. For two degrees-of-freedom per node, this corresponds
to stiffness matrix bandwidths of 44 to 58 and total stiffness matrix
orders of 1600 to 2000.

The danger involved in either of these schemes for developing
initial crack lengths is that the final stable opening levels (or per—
ceived stable levels) might be artificially influenced by the scheme it-
self. This is clearly a possible problem with the use of notches: the
notch introduces a significant redistribution of stress ﬁhich can sig-
nificantly perturb the crack-tip stress and strain fields. FEven without
da notch, the problem may remain. If crack closure is dependent on the
previous history of crack tip deformations, then arbitrarily throwing
away & large portion of that previous history is philosophically

suspect.
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Results of the present finite element analysis demonstrating the
effects of notches on stabilization behavior are shown in Figs. 2.6 and
2.7. Results at R = -1 for three different stress levels and two
different notch acuities are shown in Fig. 2.6. Here each of the six
piecewise linear curves decscribes a single run of the finite element
program. In each case opening Tevels start low and gradually increase,
rising rapidly at first and then more slowly as a stable level is
attained.

Several general observations should be interjected at this point.
First, note that in the present research the minimum "step size" between
normalized opening levels is 0.04, because the load range between zero
and maximum Toad was always broken down intoc 25 equal load steps.
Actually, however, the resolution of opening Jlevels was somewhat
finer. A common phenomenon was for the stable opening stress in a given
run to smocthly oscillate between Lwo adjacent levels. This was taken
as an indication that the true opening stress was at some intermediate
tevel, proportional to the relative amount of time spent at each
standard Tlevel. Second, note that once a stable level is reached,
opening stresses do not further increase with crack length. This
suggests that opening levels are not a function of the stress intensity
factor K. Instead, it seems clear that opening Tevels are primarily a
function of the normalized maximum remote stress. And third, note that
although it is not clear from this picture, opening levels at Smax/”o =
0.6 and 0.8 have not yet fully stabilized at a = 100.

What does this figure tell us about the effect of notches on

stabilization behavior? First, it suggests that stabilization is
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relatively rapid at Tow stress amplitude but somewhat slow at higher
stress amplitudes. the 1initial notch here has a half-width of 32

stabilization at Smax/co = 0.4 occurs after a total aa of about 28 (14

crack growth steps of aa = 2 each), but stabilization at Smax/

has not yet occurred after the crack has grown a distance equal to twice

o, = 0.8
the initial notch half-width. Second, these required distances for
stabilization do not change significantly with notch acuity. Results
for a mild circular notch (Kt = 3) and a moderately sharp elliptical
notch (Kt = 7) are systematically but only subtly different.

Similar results for crack growth from a circular hole at R = 0 are
given in Fig. 2.7. Note that stabilization is relatively more rapid,

occurring even al Sm /ao = 0.8 by the time the crack has grown a dis-

ax
tance equal to one notch radius, but still requiring at Teast eight

max’ %o
also that the Smax/cO = 0.5 run shawn here exhibits the "false peak"

crack growth steps (one-half the notch radius) at S = 0.5. Note
behavior discussed in the previous section on mesh refinement.

This last observation points oul that 1t 1s Tmportant to dis-
tinguish between true notch effects and the simple effects of in-
sufficient mesh refinement. Such a distinction can be made by comparing
the behaviors of cracks initiated at holes of different sizes. Such a
comparison is made in Fig. 2.8. The crack opening curves corresponding
to circular holes with radii of 8, 16, and 32 are geometrically similar,
indicating that a true notch effect is involved.

A more detailed explanation of this notch effect is given in a
later chapter. Here it is sufficient to note that a significant effect

does exist and must be considered when interpreting finite element
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closure data. Unfortunately, such a consideration does not seem to have
been taken into account in some published research. Ogura et al. [8],
for example, report stable values for cracks which have grown only about
10 percent of the original notch depth.

The effect of initial crack length, independent of any notch, on
stabilization behavior 1is 1illustrated in Fig. 2.9. Several analyses
were conducted at different stress ratios and stress amplitudes; the
results shown here are typical. Opening levels for a crack growing from
a notch have stabilized by the time total aa = 32. Another crack
started at an initial length of 32 units beyond the initial notch (total
3y = 64) still required another 24 units (12 steps) of crack growth to
reach the same stable level. Other analyses suggested that, as for
notches, stabilization lengths increased with increasing Smax/go‘ This
same trend was noted earlier by Newman [13].

In general, cracks begun from an initial crack length eventually
reached the same opening Tevel as naturally occurring (10 = 0) cracks
experiencing the same lvading history. The only apparent exceptions to
this rule are cases where one or both crack growth simulations being
compared fell victim to problems of insufficient mesh refinement; this
caused some confusion in Refs. [28,29].

What conclusions can be drawn about the use of notches and initial
crack Tengths to reduce computational expense? Both techniques are
valid and eventually give accurate stable opening leveis. Un-
fortunately, in those cases where economizing is most needed (negative
R-ratios and large maximum stresses), stabilization is relatively
slow. Special care must be given to verify that the crack has grown

beyond the region of influence of the initial defecl.
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A final note on the topic is that the concept of a "stable" level
is unfortunately somewhat vague. How long must the opening Tevel remain
unchanged before it can be consider "stable"? At Tow stresses "stable®
hehavior may be relatively obvious; opening levels rapidly rise to a
level from which they do not change for thirty or more crack growth
increments. At higher stress levels the issue is cloudier. Opening
ievels may remain constant for ten or fifteen steps before smoothly
rising to the next higher level. Since the fine mesh region is
necessarily small and therefore the total number of possible crack
growth steps limited, it may not always be possible to identify the
"stabte" level with full confidence. No definitive answer or empirical
criterion is suggested here as a resolution of this dilemma, only a

caveat to the future researcher and the interpreter of past research.

2.3.3 Crack Tip Node Release Scheme

A limitation of the finite element model for fatigue crack
growth 1is that crack advance must occur in relatively large discrete
jumps corresponding to element sizes rather than in the relatively
smooth, continuous series of infinitesimally small "da" values occurring
in the physical situation. Another limitation is that there s no
quantitative consensus dabout the mechanism that actually causes crack
advance. Even in the research community, crack growth rates are
typically correlated as an average over large numbers of cycles with
empirical models based primarily on quantities remote from the crack
tip. The combined result of these two limitations is that crack advance
scnemes are typically arbitrary and are perhaps the most unrealistic

feature of the model as a whole.
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The most common scheme is that originally suggested by Newman [11-
13], who released the crack-tip node (and hence extended the crack) at
the maximum load 1in each cycle. Newman completed redistribution of
loads due to the node release before beginning the next unloading
increment. A similar technique was employed by Fleck, Chermahini, and
Blom and Holm. Ogura et al. released the crack tip node numerically at
the minimum load in the cycle. Since the crack tip was closed at that
point, the node was effectively released during the ensuing loading
cycle, at the moment when the usual criterion for crack opening was
satisfied at the crack tip node. This pattern was also”followed by
Nakamura et al. Nakagaki and Atluri released the crack tip node at
different points along the forward loading excursion and found, for
their formulation, that the apparent opening level was heavily dependent
on the timing of the node release. They arbitrarily chose a release
point along the loading ramp in order to give an opening stress similar
to certain reported experimental values. Lalor and Sehitoglu employad a
node release scheme in which the crack tip was advanced immediately
after the point of maximum load, during the first increment of un-
loading. Nicholas, et al., released the node gradually during the
unloading excursion, beginning at maximum load, and completing the
process by the time the mean load was reached.

Since nu comparative study of node release schemes had been
reported for standard finite element schemes, and in view of the large
effects reported by Nakagaki and Atluri with their nontraditiona?l
scheme, such a study was carried out with the present formulation.

Three primary node release schemes were compared: node release at
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maximum load with stabilization (after Newman), node release at minimum
load (after Ugura, et al.), and node release immediately after maximum
load (after Lalor). Each of these schemes involved release of a node on
every cycle. It was further postulated that the sudden release of a
node at or near maximum load could result in artificial residual strains
or stresses which would not be eliminated before the next node release
occurred. For this reason, further node release schemes were investi-
gated in which the crack tip node was released just after maximum Toad,
but two or more full cycles were completed at a given crack length
before the next node was released.

The results of such a study for R = 0 are shown in Fig. 2.10.
Observe first that there 1s not an extremely large effect of node
release scheme. All four schemes shown gave similar results, especially
at higher stresses. Observe second that the scheme involving node
release immediately after maximum load gave the "smoothest" and most
consistent results, both in terms of final stable opening stress (shown)
and in terms of transient c¢losure behavior (not shown here). ihis
scheme also gave the highest crack opening stresses.

Allowing two cycles per crack growth increment (as opposed to only
one) resulted in a slight decrease 1in opening levels. This is
apparently due to a minor redistribution of stress around the crack
tip: normal stresses in the one or two elements immediately behind the
crack tip increased slightly, while stresses immediately ahead of the
crack tip relaxed slightly. No significant changes in COD, plastic zone
size, etc., occurred. For the bilinear hardening model, these changes

in opening Tlevel essentially occurred only during the second cycle
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following node release. Alternative schemes in which three or mare
cycles were allowed per crack growth increment did not result in stil]
lower values for Sopen'

One small difficulty exists with either of the schemes in which a
node is released at or near maximum Toad on every cycle. The
immediately previous crack tip node, now the first node behind the new
crack tip, nearly always ciloses during the very first unloading
increment. This happens because a complete redistribution of loads and
plastic strains does not occur immediately upon node release; the COD
actually changes very Tlittle. A similar behavior was npreviously
reported by Fleck [23]. This problem was dealt with here by simply
fgnoring Lhe closure of this node and treating the crack conceptually as
if it did not extend until the next forward loading excursion had
begun. This means that crack closing levels were generally determined
by the behavior of the second node behind the real crack tip, while
crack opening levels were based on the behavior of the first node behind
the crack tip. The other crack advance schemes in which this problem
did not occur (release at minimum Toad, or two cycles per crack growth
increment), however, showed that the first two nodes behind the crack
tip tended to close naturally at the same increment. Ignoring the first
node upon unloading, then, should cause no difficulty.

Throughout the remainder of this thesis, the crack advance scheme
involving node release immediately after maximum load on each cycle was
chosen as the standard technigue, due to its general efficiency and
consistent performance. Alternate schemes do not appear to give

particularly different results in many cases. The fact that the chosen
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scheme gave the highest SOpen values was also of some attraction, noting

the general tendency observed earlier to slightly higher S values

open
with increasing mesh refinement.

2.4 Basic Results

In this section the basic results of the analysis will be presented
and briefliy discussed. Stable opening levels, crack tip plastic zones,
and crack opening displacements will be examined for mode I center
cracks under uniaxial plane stress tension. Attention will be focused
on the effects of maximum stress in the cycle, material properties, and
constitutive model. Differences in opening and closing levels will be

cons idered.

2.4.1 Effect of Maximum Stress

Stable crack opening Tevels, normalized by the maximum stress

in the cycle, are presented as & function of §__ /

max for & single set of

0
material properties in Fig. Z.11. These results, and others throughout
the remainder of the thesis, are based on meshes with ara/W = 0.002 and
are independent of any significant notch or initial crack length
effects. Two primary features should be noted. The first is the strong
stress ratio effect, the difference in opening levels between R = 0 and

R = -1, This also corresponds to a pronounced difference in the

effective stress range ratio, U, where

U = “Seer _ Smax_ Sopen - t- (Sopen/smax)
a3 Smax ~ *min L-R

(2.2)
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This R-ratio effect was a primary focus of the earliest crack closure
studies [4].

The second important feature to be noted is the proncunced decrease
in normalized opening stress with increasing maximum stress, which is
especially prominent for R = -1. This phenomenon, which motivates a
majority of the applications of crack closure concepts in this thesis,
is clearly supported by all previous finite eiement closure models which
have considered more than one stress level. Unfortunately, it is a
phenomenon which has been Targely ignored or assumed not to exist in a
great deal of experimental research and a great many applications of
closure concepts to 1ife prediction. [t has been common, for example,
to develop formulas for U as a function of R without any consideration

or definition of S [4,30].

max

This phenomenon is also supported by a number of simple analytical
models for crack closure. ATl are generally based on a Dugdale [31] or
Bilby-Cottrell-Swinden [32] type of strip yield model which has been
modified to Teave material in the wake of the advancing crack tip.
These include the early efforts of Di11 and Saff [33], Shiratori, et al.
[34], Fuhring and Seeger [35], and Budiansky and Hutchinson [36]; the
more well-known Newman model [37-39] which considers constraint effects
in addition to R and Smax &ffects; and the more recent contributions of
Sehitoglu [40-41] and Ibrahim, et al. [42]. Several of the more genaral
and more accessible models are compared with the present FEM results in
Fig. 2.12. Since the simple analytical models assume elastic-perfectly

plastic material response characterized by the 1limit stress L for

comparison purpcses the FEM results given correspond to nearly
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negligible Tinear hardening characterized by H/E = 0.0l above a yield

stress o_.
0

At first glance the decrease in opening level with Sma appears to

X
be paradoxical. Plasticity-induced crack closure is a result of in-

elastic deformations at the crack tip, which are left behind as residual
deformations in the wake of the crack tip. It would seem, then, that
when Tnelastic deformations are significantly larger (higher maximum
stresses), crack closure should be more pronounced. This paradox seems
to be resclved, however, by a careful examination of Fig. 2.13. In this
figure the crack opening displacement (COD) at maximum load is shown as
a function of distance behind the crack tip, giving the profile of the
crack surfaces (nule Lhe major difference in the scales for ordinate and
ahscissa). Two types of cracks are represented. The solid 1line
corresponds to a fatigue crack which has been grown in short steps from
a very small initial Tlength to a length of a = 100, and which has
therefore developed a wake of residual deformations. The dashed line is
also generated from finite element analysis (with the same meshes), but
in these cases the initial crack length was set to a = 100 and the
cracked body was loaded once from zero to maximum load. The difference
between the "stationary" crack profile and the "fatigue" crack profile
is a reasonable first estimate of the residual deformations, Gresid'
The comparison should, in reality, be a more complex one involving a
general multiaxial problem 1in reversed plasticity. However, the
original concept of residual deformations as an easily visualized and
quantified entity is something of an idealization itself. The present

comparison as a definition of & has also been suggested by previous

resid
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finite element researchers [13,19,20]. There are some changes 1in
plastic zones and stress and strain distributions ahead of the crack tip
for corresponding stationary and fatigue cracks, but the most
significant reason for the major differences in COD appears to be the
displacements caused by previous crack tip strain histories.

What, then, can be learned from this comparison of COD values at
varfous maximum stresses? First note that, as expected, as the maximum
stress increases, the residual deformations increase (the difference
between the stationary and fatigue cracks increases). Overcoming this
effect, however, 1is the large increase in Lotal COD with increasing

S The crack opening event can be idealized as a competition between

max-
(1) the total "ideal" COD, which increases during a loading cycle with
the remote stress, and which is loosely suggested by the behavior of the
stationary crack, and (2) S ragid? which is essentially constant during
the loading cycle. When the "ideal" COD at or near the crack tip first
exceeds 8 acid at that location, the crack tip "opens". If two cracks
have the same "ideal" COD but different deformation histories, the one

with the larger 8 will open later. On the other hand, if two

esid
cracks have the same 8 resid but different loading, the one with the
larger "ideal" CO00 will open earlier. In Fig. 2.13, the residual
deformations at higher Smax values are a smaller percentage of the total
corresponding COD, and so normalized (not necessarily absolute) opening
stresses are Tlower. Again, remember that these arguments arc

idealizations intended to develop an intuitive feel for crack opening

behavior, and are not presented as rigorous analytical mechanics.
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Comparisons between R = 0 and R = -1 behavior can be made in the
same context. Total ideal COD values are essentially the same in both

cases, but the clearly larger s vatues for R = 0 Tead to higher

resid
opening stresses. Examination of the R-ratio effect also points out the
significant role of reversed plastic deformation; the large Sresid
values encountered in R = 0 histories (where forward loading and tensile
plastic deformations are dominant) have been significantly reduced in
R = -1 histories by the compressive yielding at and behind the crack

tip.

2.4.2 Effect of Material Properties
2.4.2.1 H/E Ratic

The constitutive model used in a majority of this
research is based on a bilinear representation of the stress-strain
curve. The first Tinear portion represents elastic behavior. and is
characterized by a Young's Modulus of E = 205410 MPa. The elastic
Pocisson's ratio, v, is taken as 0.3. The second 1inear portion
represents strain hardening behavior, and may be characterized by the
plastic modulus H, where H = do /dEp. The intersection of the two lines
defines the yield stress Tye In the present research, o, is typically
430 MPa and H is chosen to be 13670 MPa, so that the non-dimensional
ratio H/E is nominally about 0.07. These properties correspond to a
1070 Class U railroad wheel steel which was the subject of earlier crack
closure research [40,41] and which is typical of a much wider class of
moderately strong steels. The properties input to the finite element
program can be easily changed, however, and this provides the

opportunity toc systematically examine possible effects un closure.
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High values of H/E correspond to materials with appreciable strain
hardening, such as soft steels. Low values of H/E, approaching zero,
are representative of high strength steels and many aluminum alloys.
Here a value of H/E = 0.01 was generated by changing H but leaving E
and S unchanged. The basic results for crack opening stresses at the
two H/E ratios are shown in Fig. 2.14. At both R-ratios, crack opening
levels are higher for H/E = 0.01 at low maximum stresses and lower for
H/E = 0.01 at high maximum stresses. Another possible summary statement
is that opening levels are similar at intermediate stresses, but the
effect of maximum stress on opening levels is more pronounced for low
hardening materials.

These effects can be more easily understood in the context of
Fig. 2.15, which shows COD values at maximum load for fatigue and
stationary cracks at the two H/E ratios. At Tow maximum stresses,
$pasid is larger for H/E = 0.0l because plastic strains are more easily
developed at the crack tip. Total COD values for the two H/E values at
low 5 are relatively similar, huwever, because at low stress levels the
COD s more controlled by the remote stress-strain behavior, which is
predominantly elastic and hence unchanged with H/E. Put another way,
elastic constraint is high, and so increases in local plasticity are
more significant. At higher remote stresses, however, (such
as Smaxlgo = 0.8) constraint is beginning to be lost due to the onset of
general yielding. In this case the dominant event is the larger total
COD generated for H/E = 0.01 because of larger tensile plastic
deformations generated at intermediate distances from the crack tip.

Residual deformations for H/E = 0.0l may even be smaller than for H/E =
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0.07 because of the increased role of reversed plasticity at higher

stress amplitudes.

2.4.2.2 oO/E Ratio

Another significant material property is characterized by the
nondimensional form cO/E. For steels, this ratioc is typically 0.001 -
0.003, while for aluminums, the large change in E results in ratios
often around 0.005 - 0.007. Does this affect crack closure? Several
finite element simulations suggest that the answer is "mo". One example
is shown in Fig. 2.16. Here H. E. and Smax/go values are the same in
both cases, but % is changed by a factor of three. Results for the two
runs, expressed in  customary normalized form, are essentially
identical. Other studies 1in which I remained constant but H and E

changed by factors of three led to the same conclusion.

2.4.3 Crack Tip Plastic Zones

The finite element provides useful Information about forward
and reversed plastic zones which can lead to a broader perspective on
fatigue crack growth and closure as a whole. Figure 2.17 shows typical
forward plastic zone sizes and shapes at maximum load for a common crack
length (a = 100, a/W = 0.1) and different Smax values. At Tower maximum
stresses plastic zones are approximately circular or lobe-shaped and
their sizes are small compared to crack lengths, so plastictty fis
confined and "small scale yielding" criteria are generally satisfied.
At higher maximum stresses, the characteristic shape of the plastic zone

changes to more closely resemble an intense shear band, aligned at an
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angle to the crack line not far from 45°. There is no major difference
between the two H/t values, other than a general tendency to larger
plastic zones at H/E = 0.01.

A typical characteristic dimension of the plastic zone ahead of &
crack tip is its width along the crack Tine at maximum load, commonly
denoted as rp. This quantity was estimated by Irwin [43] and later by
Rice [44] for an elastic-perfectly plastic material (H/E = 0) in plane
stress as
L (Cnaxy®

rp ki 9 (7.3)

For a reference cenler crack in an infinite plate, K = Smax/FE and so

max

S 2
;E _ [ max] (2.4)

Shih [45] later extended Eq. (2.3) to include strain hardening materials
by introducing the factor (l-n)/(l+n), where n 1s the strain hardening

exponent in an eguation of the form
o= K(ep)n (2.5}

This factor implies that plastic zone sizes will be smaller Ffor
materials that strain harden more.

Information about forward plastic zone widths is summarized in
Fig. 2.18. Here sizes are quantified with the non-dimensional ratio

(rp/a)/(S 2, where a value of 1.0 implies an exact correlation

max’ %o’
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with the Irwin estimate. Each point on the figure represents the

average of 10 to 20 different measurements of r_ (from finite element

p
results at different crack Tengths), so a total of over 200 plastic
zones are represented here. Values for rp/a were remarkably constant
with crack Tlength outside of the region of significant notch effects
(which data were excluded from this analysis).

Observe several interesting features of this figure. First, for
the low hardening material, the numerical results are remarkably similar
to the perfectly plastic estimates of Irwin. Second, as expected,
plastic zone sizes are slightly smaller for higher hardening
materials. Third, forward plastic zone sizes for R = 0 and R = -1 cases
are similar but not identical (although maximum stresses are
identical). Plastic zones are preferentially larger for R = -1, which
may suggest a slight closure effect. Fourth, as maximum remote stresses
approach yield and the characteristic shape of the plastic zone changes,
the current definition of T becomes Tess significant as a descriptor of
overall plastic zone size, and rp/a begins to decredse sharply. This is
most obvicus for H/E = 0.01, R = -1, Smax/Go
/oo = 0.7. See again Fig. 2.17.

= 0.8, where non-normalized

r_ s actually less than for Sma

p X

Typical sizes and shapes for reversed plastic zones, or active
plastic zones at minimum load, are shown in Fig. 2.18 for a single H/E
value but two R-ratios. Note the significant difference in scale
between this figure and Fig. 2.17. Again, at lower maximum stresses the
region of reversed plastic strains tends to be approximately circularly
shaped, while for Tlarge maximum stresses and R = -1, the reversed

plastic zone more closely resembles an intense shear band.
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The width of the reversed plastic zone, dencted here as Arp, was
predicted by Rice [44] to have a width equal to 1/4 of the width of the
forward plastic zone for zero-max (R = 0) cycling, based on the doubling
of the stress-strain curve for simple reversed uniaxial loading. Rice's
model was based on an elastic-perfectly plastic material, dand no closure
effects were considered.

Velues of Arp, normalized by the forward plastic zone size rp, are
shown fn Fig. 2.20. Again, each open or filled point represents the
average of measurements at many different crack lengths. Observe first
the c;ossed points and dashed 1line corresponding to a stationary
crack. These values were obtained from the finite element model by
settingf the initial crack Tlength equal to a = 100, loading once to
maximum load, unloading to zero remote Toad without advancing the crack,
and measuring the plastic zone widths at both max and zero load. In
these cases the crack Lip had not closed when zero load was reached, so
crack closure was not a factor., These crossed circles represent only
%%

value correspond to the two different H/E values, which had 1ittle

cne pair of measurements each. Different circles at the same Sma

effect on these particular results.

Retes of Arp to rp for the stationary crack were remarkably con-
stant with Smax at around Arp/rp = 0.2, a slightly lower value than that
predicted by Rice. Ratios at R = 0 for the fatigue crack, where closure
plays & significant role, were sharply lower, generally no greater than
0.16 and approaching 0.1 at lower applied stress levels. This observa-
tion, and the abservation that the ratio Arp/rp is slightly different

for different H/E (with a systematic crossover), suggests that crack
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closure has a significant impact on reversed plastic zone sizes. This
conclusion 1s strengthened by a look at Arp/rp values for R = -1, where
opening levels change more dramatically with Smax/co’ and Arp/rp ratics
also change more dramatically. This conclusion is also in keeping with
physical intuition about crack behavior. When the crack prematurely
closes, the crack tip effectively changes Tocations, and the crack-tip
sinyularily, which was driving the high rates of reversed plastic
strain, effectively vanishes from its original Jlocation. As a result,
the development of the reversed plastic zone is arrested or at least
greatly impeded.

These observations and discussions have at least three implications
of major consequence for fatigue crack growth in general. First, it
suggests that, at Teast in principle, crack closing levels (not opening
levels) could be directly calculated from experimentally determined
values of Arp/rp (assuming that such could be reliably measured).
Second, it suggests a possible direct T1ink between crack closure
behavior and an actual crack advance mechanism. Several researchers
have suggested that the range of crack tip plastic strain may be related
to the rate of crack growth [46,47], and these observations point out
the influence of closure behavior on those reversed crack tip strains.
And third, simple estimates of reversed plastic zone size which do not
take closure into account are 1ikely to be erroneous. This may cause
special difficulty for schemes which attempt to use Arp as a correlating

parameter for fatigue crack growth rates.
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2.4.4 Effect of Constitutive Model
The bilinear stress-strain curve is a useful idealization of
material behavior and lends itself well to simple numerical (and
analytical) schemes. Nearly all previocus FEM closure research has
employed this type of model, either with perfect plasticity or some
nonzero hardening modulus. In several important features, however, the
bilinear model does not accurately represent the constitutive response
of real materials. Stresses may be overestimated at very small plastic
strains and again at very large plastic strains. Observed phenomena
such as cyclic ratchetting and mean stress relaxation are nol simulated
by simple linear hardening schemes. While these limitations may not
cause problems in many analysis tasks, it 1is useful to consider
alternative constitutive models and the possible effect of these models
on crack closure hehavior.
The expression for the plastic strain rate in a time-independent

material may be written as

P 1 af af -

€. T 9 a

(2.6)

where H is a scalar multiplier, 5 is the current stress, 6kg its rate,

and f = 0 describes a smooth yield surface. To construct the new formu-

lation we choose
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where J, = 1/2 Sijsij’ Sij is the stress deviator, S?j is the coordinate
of the center of the yield surface in stress deviator space, k is the
yield stress (maintained constant) in simple shear, and A and N are
constants. These are the simplest permissible choices which satisly the
basic requirements for the accurate simulation of cyclic material
response, including rounding of the stress-strain curve on each load
reversal following significant plastic deformation, cyclic ratchetting
with nonsymmetric stress cycling, and mean stress relaxation with
nonsymmetric strain cycling [48]. The constants A and N may be easily
related to the usual parameters in a simple Ramberg-0sgood power-law

formulation, £Eq. (2.5), by the expressions

% -1
M= D (2.9)
_ {(1/n)-1
A = iﬁ)T (2.10)
n K

Another advantage of this type of stress-strain relation is its easy
adaptation to much more complex constitutive behaviors, including cyclic
hardening and softening, variable relaxation and ratchetting rates, and
time- or temperature-dependent properties [49,50].

The specific model parameters chosen are given in Fig. 2.21, where
the power-law representation of the 1070 steel is also compared with the
earlier bilinear representation. The radius of the initial yield
surface 1is chosen to correspond to the 0.025 percent offset yield

stress, which is 277 MPa. Note that the 0.2 percent offset yield stress
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in the power-law formulation is approximately the same as the yield
point in the bilinear model, 430 MPa. A1l calculations reported in this
thesis based on the power-law relationship use these material proper-
ties, unless explicitly specified otherwise.

The basic results for crack opening stresses, comparing the two
models, are shown in Fig. 2.22. For R = 0, the power-law hardening
model gives values for Sopen/smax which are significantly higher. This
is also true for low maximum stresses at R = -1, but normalized opening
stresses drop off sharply with increasing maximum stress at R = -1.
At Smax/u0 = 0.8, for example, opening slresses are dramatically Tower
for power-law hardening than for linear hardening. This curve actually
resembles the H/E = 0.01, R = -1 opening stress curve more than it does
the curve for H/E = (.07.

Some of the reasons for these differences are suggested by plots of
the crack cpening displacements in Fig. 2.23. For R = 0, residual dis-
placements seem to be much larger in the power-law model. This is con-
sistent with the development of plastic strains at lower stresses for
power-law hardening in compariscn to linear hardening, which leads to
more plastic deformation at the crack tip. The same appears to be true

for R = -1, S /

max = 0.4, AtS /o = 0.8, R = -1, however, the

0 max’ %o

entire plate is experiencing at least limited plastic strains with a
power-law model. The ensuing loss of constraint leads to the sharp
decrease in opening levels. Reversed deformation at the crack tip also
appears to be a significant factor in this case. The difference between
stationary and fatigue COD values is much smaller and even becomes

"negative" farther behind the crack-tip, due at Tleast in part to the

effect of the notch.
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Another significant difference between the power-law and linear
hardening models, in addition to the general shape of the stress-strain
curve, is that the present power-law formulation implicitly incorporates
mean stress relaxation behavior. This can be particularly important for
positive mean stresses. The difference is illustrated in Fig. 2.24,
Here the stresses and strains (oyy and Eyy) at a single material point
are tracked throughout the entire 1load history, as the crack tip
approaches and passes that location. The chosen material point corres-
ponds to an integration point in the element just ahead of the node at x
= 100, y = 0 (i.e., when the crack Lip corresponds to that node, the
crack length is a = 100, and the material point is immediately ahead of
the crack tip). Clearly, mean stress relaxation does not occur with the
Iinear hardening model, but does occur with the power-law hardening
model,

This mean stress relaxation phenomenon introduces a new dimension
to the choice of crack advance scheme, In an earlier discussion of
modeling issues, it was pointed out that some local redistribution of
stress occurred if the cracked body experienced twn full cycles of
loading each time before the crack was advanced one element. After the
second cycle, however, the stress-strain response was stable and did not
change with further cycling. These observations were &ll based on the
linear hardening model. With the power-law hardening model, however,
mean stresses will continue to relax on each cycle. An extreme casc is
shown in Fig. 2.25. Here six loading cycles were completed at each
crack length before the crack-tip was advanced one node. This figure

shows the normalized stress distribution along the crack 1ine at maximum
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load for each of the six cycles at a = 100. Stresses seem to have
stabilized after five or six cycles. For comparison purposes, the
stress distribution corresponding to the usual crack advance scheme (one
cycle per crack growth increment) is also shown. Only slight mean
stress relaxation occurs in that case. The final stress dislribution
with full mean stress relaxation 4is probably not particularly
realistic. Immediately ahead of the crack tip mean stresses have
relaxed almost completely away, while farther in front of the crack tip
the criterion for mean stress relaxation implicit in the constitutive
model (yielding upon reversed loading) hdas not yet been satisfied.
Nevertheless, an important interplay between two competing effects has
been illustrated. As the crack-tip advances, stresses at a given point
ahead of the crack tip will increase. On the other hand, as cycling
continues, mean stresses in the region of inelastic deformation will
slowly decrease. The aclual stress distribution will depend both on the
rate of crack advance and the rate of mean stress relaxation, neither of
which is explicitly modeled by the current FEM formulation. Certainly
mean stresses in a real component will fade away much more slowly than
in the present constitutive model. In this context it is therefore
probably reasonable to advance the crack at a fairly high rate (aa =
element size) with respect to the total number of cycles. Nevertheless,
there will Tikely always be at least minor perturbations in the stress
fields associated with the discrete and nonsynchronized jumps in crack
length and mean stress.

These large changes in mean stresses are significant because they

tead to Targe changes in crack opening stresses. Figure 2.26 presents
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preliminary results for Sopen/smax values determined with different
crack advance schemes. The parameter changed is the number of load
cycles completed at each crack growth increment. More (cycles /aa)
bring about Tower crack-tip mean stresses. C(learly there is a major
effect: opening stresses drop sharply with decreasing mean stress.
Apparently the drop in mean stress near the crack tip produces crack
opening behavior typical of remote stress histories with Jower mean
stresses. C(rack opening levels for R = -1 remote loading, for example,
have previously been noted to be significantly Tower than for R = 0
remote loading,

The presentation of two different constitutive models leaves the
engineer or future researcher with an obvious question: which model is
"right"? Or, which model gives the most accurate results? At first
glance, the preference would seem to be for the power-law model, since
it is more sophisticaled. Certainly 1t 1s superior in its abitity to
accurately simulate real material behavior involving extensive cyclic
plasticity, including realistic hysteresis loop shapes and the mean
stress relaxation phenomenon. This may be particularly important under
certain conditions, such as high R-ratio cycling. And yet this more ad-
vanced model is not without significant limitations., Its complexity is
something of a 1iability. Given that mean stress relaxation can be
modeled, for example, now we must be concerned with modeling the proper
rate of mean stress relaxation and insuring that extremely unrealistic
behaviors are not generated. The experience base of this model is much

smaller, both within the current research activity and in previously

published research. Modeling issues such as mesh refinement and the
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effect of notches or initial defects are not yet as well characterized,
and other, as yet undiscovered, pitfalls may be lurking.

fhe bilinear model, although incapable of simulating complex
phencmena and matched to real stress-strain curves only through somewhat
arbitrary choices of % and H, is well-understood and well-behaved. The
stress-strain response is inherently stable and easily related to even
simpler models commonly encountered in complex analyses, such as the
elastic-perfectly plastic idealization.

One important issue involved in making a choice between the two
models is the nature of real material response, especially in ferrous
metals. Many of these alloys exhibit yield point behavior, which means
that the stress-strain response is essentially purely elastic until the
yield point is "broken." After this moment the constitutive response
gradually approaches a stable state described by a smooth curve,
changing at a rate which is related to the magnitude of the plastic de-
formations. The present power-law formulation is an excellent repre-
sentation of a cyclically stable stress-strain relationship, and there-
fore 1is probably a better descriptor of near-tip behavior. But the
bilinear form 1is a much better estimate of pre-yield point behavicr,
which probably dominates the stress-strain field remote from the crack
tip at all but the highest nominal stress levels. The power-law model
may tend to seriously overestimate plastic strains in material which
would not yet have seen the yield point broken. This may, in turn, have
serious consequences for loss of elastic constraint and therefore loss
of closure. The sharp drop in Sopen/smax with high Sma at R = -1 1in

X

the power-law analysis may be indicative of such. The “"ideal" consti-
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tutive model might handle both pre-yield and post-yield behaviors with
appropriate formulations, but this would introduce still further comptii-
cations,

Ultimately, the gquestion of accuracy should be resolved by an
appeal to experimentally measured crack opening stresses. Un-
fortunately, the experimental data avajlable exhibit even wider scatter
than the competing finite element models and are accompanied by several
controversial issues. Some of the most accurate measurements of Sopen
currently available are those of Davidson and Lankford [51,52], who have
worked extensively with stereoimaging of scanning eleclron photo-
micrographs obtained during in-situ fatique cycling. Their results for
high maximum stresses and R = 0 cycling are closer to the simylations
using the power-law scheme. More common results for R = O cycting. such
as the well-known values originally published by Elber [4], tend to give
lower Sopen which are more in keeping wilh the bilinear figures, but
some dependence of results on measurement location [53,54] may be
involved here.

Finally, what is probably the most crucial issue in the selection
of a constitutive model has not yet been mentioned here: the role of
plane strain constraint. It is well known that the severe stress
concentration at the crack tip Teads to triaxial stress states with
significant hydrostatic components. The associated constraints on
deformation will vary with specimen thickness, proximity to the specimen
surface, and distance from the crack tip. A full three-dimensional

analysis 1s necessary to characterize properly this stress state. Such

an analysis has been reported by Chermahini and Newman [24,25] for one
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simpie case, and their results confirm not only the significant
variations in o, (out-of-plane stress) within the cracked body but also
the implications for crack closure behavicr. It should be pointed out
here that the entire issue of crack closure under plane strain is a
controversial one, and remains an unresolved question under active
study.

A simple two-dimensional estimate of this effect can be achieved by
modeling the entire plate as under the influence of plane strain. This
type of FEM analysis has been recently reported by Fleck [22,23], who
concluded that, in general, crack closure did not occur under Steady-
state plane strain conditions. These results are somewhat in contra-
diction to the earlier work of Blom and Holm [21] and perhaps even
Ogura, et al. [9], both of whom reported plane strain closure levels.

Plane strain closure analyses have not yet been fully completed
with the current CM formulation, but Lhe recent results of Lalor and
Sehitoglu [28,29] and preliminary studies with the present model suggest
that closure does occur under plame strain. Preliminary results are
shown in Fig. 2.27 in comparison with plane stress values. The general
tendency to Tower SOpen values with increasing constraint should be
noted. It could be assumed that these plane stress and plane strain
Tines represent wupper and Tower bounds for an actual material
response. However, significant differences in out-of-plane deformation
between near-tip and far-field locations may induce quite different
effects on crack-tip inelastic deformations and remote elastic

constraint and hence leave the boundedness in question.
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The bottom Tine is that an extremely accurate description of a pure
plane stress response may or may not give an accurate description of
experimental closure behavior, even in thin sheets. There is no par-
ticular evidence that the present plane stress analyses are signif-
icantly deficient because of their two-dimensional Timitations, and
certainly some experimental evidence exists that suggests their Sopen
values to be reasonably accurate. Nevertheless, the three-dimensional
aspects of the problem should be explored more fully, both with full
three-dimensional analyses and perhaps with pseudo three-dimensional
analysis such as the two-dimensional overlay technigues used by Dodds
and Read [55] in monotonic fracture studies.

In the remainder of the present thesis, the results obtained with
the linear hardening model will, in general, be preferred. This is due
primarily to reasons stated earlier, including greater experience and
associated greater confidence with Lhe model and fewer potentially
disruptive side issues with which to deal. This choice should not he
construed as a rejection or critical judgment of the power-law model.
In a few situations where the power-law model was judged to capture best
a significant trend, it was employed, although care was taken never to
mix and match the models for the purpose of getting a better

correlation.

2.4.5 Opening Levels versus Closing Levels
The "crack opening stress" identified throughout this thesis

1s the point during the forward loading excursion when the crack tip

first becomes fully open; i.e., there are no points of contact remaining
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atong the crack surfaces behind the crack tip. Another characteristic
stress level is also descriptive of the crack closure phenomenon: this
is the "crack closing stress," the moment during the untoading excursion
when some point along the crack surface first makes contact with the
y = 0 Tine (assuming symmetry across the y-axis). Often the opening and
closing levels have been assumed to be exactly the same. While the
opening level is generally regarded to be more significant to the
physical crack advance mechanism, several researchers have found it more

convenient experimentally to measure S rather than S In that

clos open-
case the assumption about similarity is a rather attraclive one,

The present finite element simulation suggests that opening and
closing levels are not the same. See Fig. 2.28. Closing levels are
consistently Tower than corresponding opening levels. As maximum
stresses become greater, this difference increases. In the limit, as
maximum stresses approach and pass the level of general yielding,
closing Tevels (not opening levels) approach the minimum stress in the
cycle. This trend has been confirmed experimentally [56] and is
probably associated with the large total crack opening displacements

generated under these conditions, which require very extensive reversed

plasticity to be reduced back to zero.

2.5 Conclusions
1. The finite element method is a powerful technique for the
simulation of fatigue crack growth and the analysis of fatique

crack closure,
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In order to preserve the reliability of the results, special
attention must be given to mesh refinement along the crack line
and to transient closure response as the crack moves beyond its
initial position. Mesh refinement is more 1ikely to be a
problem at low stress amplitudes and high stress ratios, while
opening levels will take Tonger to stabilize at higher stress
amptitudes and lower stress ratios.

Crack opening stresses (normalized by the maximum stress)
decrease with increasing maximum stress. This dependency on
maximum stress is greater for Tlower stress ratios and lower
hardening moduli.

Crack closure behavior can be understood in terms of the
interaction between residual displacements behind the crack tip
and the total crack opening displacements. Normalized crack
opening stresses will decrease wlith either decreases in
residual displacements or increases in total COD.

The size of forward and reversed crack tip plastic zones is
somewhat dependent on crack closure levels.

The choice of a constitutive model can have a major impact on
crack closure modeling. Important factors include the in-
elastic strain response at Tow stresses and the phencmenon of
mean stress relaxation.

Crack closing levels are generally lower than crack opening
levels, and the difference is greater at Tower stress ratios

and higher maximum stresses.
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3. CORRELATION OF CRACK GROWTH RATES IN
INTERMEDIATE AND LARGE SCALE YIELDING

The range of the elastic stress intensity factor, aK, has achieved
widespread acceptance as a correlating parameter for fatigue crack
growth (FCG) rate data from tests in which only small scale yielding
(SSY) has occurred. As stresses and plastic strains increase and begin
to violate the strict criteria for SSY, however, &K often fails to
correlate the data, and other parameters must be adopted. In this
chapter, attention 1is given to the engineering parameters which are
specifically developed to correlate crack growth rates under conditions
of intermediate and large scale yijelding (ISY and LSY). First, a
variety of previously suggested parameters are critically reviewcd and
compared from an engineering standpoint. Second, the possible role of
crack closure in these parameters is discussed, and finite element
analyses and experimental investigation of crack closure under ISY and
LSY are presented. Third, selected parameters with and without closure
considerations are used to correlate a variety of cxperimental crack

growth rate data.,

3.1 Existing Parameters for FCG under ISY and LSY
3.1.1 Background
3.1.1.1 Intermediate Scale Yielding
The inherent paradox in the use of a linear elastic
parameter such as AK to describe the fatigue process, which is driven by
plastic strains, has long been recognized. The landmark paper of Paris
[1] which demonstrated the validity of a K-based parameter was rejected

by the Teading journals of its day for this very reason [57]. the
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original use of K as a descriptor of monotonic fracture in ductile
metals was also not without criticism and theoretical difficulty. For
cracks under both monotonic and cyclic loading, however, it was soon
generally understood that if plastic deformation (characterized by the
width of the crack tip plastic zone, rp) was confined to a very small
region relative to the crack length (rp << a), K-based equations were
still accurate representations of the near-tip stress and strain fields
and hence of the fracture event.

Practical engineering problems occasionally demanded some
stretching of these boundaries, huowever. Could K still be used when SSY
assumptions were not strictly valid? 1Irwin [43] considered the redis-
tribution of stresses caused by near-tip yielding and proposed that use
of a fictitious crack length a' Ted to a more accurate description of

actual stress fields ahead of the crack. He suggested
a' =a+ Ty (3.1)

where ry is the radius of the crack tip plastic zone, estimated for a
plane stress crack as
1 ( K )2

= == [ (3.2)
Y 27 Oys

r

This leads to a slight increase in K (or 2K). To a first approximation
(neglecting the iterative effect that increasing K means increasing a',
which in turn further increases K, and so on), we can write for a

reference center crack (K = Syma) that
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re =3 () a (3.3)

As S approaches ays, the Irwin type of correction factor suggests an
increase in K by a factor of 1.22,

The application of these concepts to cyclic Toading is straight-
forward, requiring only the replacement of X with Kmax in Eq. (3.2) and
S with S, in Eg. (3.3). This adaptation assumes that the forward
plastic zone size is of primary interest. The reversed plastic zone
size upon unloading, Arp, could also be considered Lo be of greatest
significance. Following the suggestion of Rice [44] that Arp = rp/d,
however, results in a crack length correction factor which is
essentially negligible.

Equation (3.2} has typically been interpreted as representative of
a elastic-perfectly plastic material. Shih [45] suggested for a power-

law hardening material the more general form

v = T G (3.4)

1 - K
1 ny C—*“)Z
where n is the strain hardening exponent in @ constitutive model of the

form

€

ol (3.5)
0 0

Kumar and Shih [58], in a more general consideration of the J-integral

ds an elastic-plastic parameter, chose to use an adjusted crack length

given by
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a' = a+ Ty (3.6)

where ¢ was defined as

1

¢:—-———
1+ (p/p,)°

(3.7)

Here PO is a limit load. This form was also employed in the EPRI
elastic-plastic fracture handbook [59]. Primary motivations for ¢ were
considerations involving Lhe more genmeral form of J, especially at and
above general yield, and so no conclusions about increased accuracy in K
should be construed. The result of ¢ is a further reduction in the
total correction factor. For the nominal case where 0/60 = P/P,
and o = 640 & = 0.5. Dowling [60] has correctly pointed out that the
value of ¢ 1s somewhat arbitrary and that, in general, contributions
from the Ty term are almost never significant when a complete elastic-
plastic parameter is used. In the present research, ¢ contributions

were neglected (¢ = 1).

3.1.1.2 Large Scale Yielding
Many important fatigue problems involve nominal
stresses which are at or well above the yield stress, at least in local
regions. Accurate description of crack growth under these conditions is
not possible even with modified forms of aK, and so alternative

parameters have been developed.
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3.1.1.2.1 Strain-Based Intensity Factors
One of the first attempts to develop a LSY
FCG parameter was the work of Boettner, Laird, and McEvily [61]. They
successfully correlated crack growth rates at very large strains in a

variety of materials with the rclationship
_ ~\
aN = C(AE ./a) (3.8)

where Asp is the plastic strain range. This is an attractive formula-
tion conceptually because it can be interpreted as the inversion of the
Coffin-Manson relationship for low cycle fatique,

Ae
P o (ZNF)C (3.9)

2 T °f
A major disadvantage of this form is that during SSY, Aep goes to zero
and the parameter is not functional, so it is impossible to make any
comparison with aK-controlled FCG.

A minor modification to Eq. (3.8) which increases its generality is
to replace Aep by ae, the total strain. At very high strains, the
elastic component 1is negligible and so Aep = Ae. At low strains ae is
all elastic and hence proportional to ac. This form was first
explicitly stated by McEvily [62].

Solomon [63] introduced what he called a "pseudostress” intensity

factor,

A(PK) = E Aeva (3.10)



54

by including Young's modulus in the parameter. This has the advantage
of reducing almost exactly to expressions for &K when Aep is negli-
gible. This type of strain-based intensity factor was further popu-
larized by [1 Haddad [64,65] and Skelton and co-workers [66 68],

generally represented (for a reference center crack) as

aK_ = Ese /na (3.11)

3.1,1.2.2 Crack Tip Opening Displacement

Many of the early studies of fatigue crack
growth laws and mechanisms focused on the crack-tip opening displace-
ment, ét, as the critical parameter both for understanding and quanti-
fying crack advance processes. Included here is the work of Tomkins
[69,70], McEvily [62,71], Lardner [72], Pelloux [73,74], and others. A
variety of theoretically-based and semi-empirical formulas were

proposed, and few appeared twice in the Titerature.
Many of these publications were attempts to describe crack growth

under traditicnal SSY conditions. Conceptually, however, &, is eqgually

t
valid as a characteristic parameter for LSY, and this motivated further

work by McEvily [75] and Tomkins [76-78]. Both developed estimates

of &, based on the Rilhy-Cottrell-Swinden (BCS) model {32] for an

idealized monctonically loaded crack. This form is

a
5, = % FQ a n[sec (3] (3.12)
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where o, 1s a characteristic flow stress, generally taken as the yield
stress. In order to extend this model into the regime of LSY, McEvily
and Tomkins each replaced % and E with related elastic-plastic quanti-
ties. McEvily replaced the elastic modulus E with a form of the secant
modulus, while Tomkins chose a form of the tangent modulus, Both
substituted the ultimate strength 9, for O

McEvily and Tomkins each ultimately suggested some direct relation-
ship between 6t or its component parts and the crack growth incre-
ment ad.  While attractive from a theoretical or mechanistic noint of
view, this step does 1imit the immediate engineering usefulness of the
parameter. Tanaka and Hoshide [79] have presented a more general use
of Gt in a Paris-type power law crack growth expression, determining 8y

values from the related parameter aJ or from experimental measure-

ments. Others [56,80] have explored similar engineering applications.

3.1.1.2.3 "Equivalent" Stress Intensity Factor
Gowda and Topper [81] employed the theories
of Neuber [82] about the relationship between stresses and strains at
the crack tip to develop what they called an equivalent or modified
stress intensity factor. They wrote this as

p

i
BKY = Ak (1 + 172 (3.13)

f‘\f;ﬁ

where aK is the usual stress intensity factor, except that the ag factor

in AK (and the strain terms AEE and Aaﬁ) are based on net section
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stresses and strains. The same basic concept has been more recently
employed by Bhanderi, et al. ([83], who proposed an intensity
factor KY = /E;E;. Here KG and KE are the wusual stress and strain
intensity factors but calculated on the basis of the stresses ay

and €y at the crack tip location in an uncracked body.

3.1.1.2.4 Range ot the J-Integral
Dowling and Begley [84,85] were the first
to propose the range of the J-integral as a correlating parameter for
elastic-plastic fatigue crack growth. Working from the fundamental
identity of J as an energy term, they estimated aJ from load-deflection
curves for deeply-cracked compact tension and center crack specimens

according to the approximation

J = e—(ﬁ“:zﬁf P ds (3.14)

where P is the 1locad, 4 the Jload-line deflection, B the specimen
thickness, and (W-a) the remaining ligament.

Considering next the smooth cylindrical specimen with much smaller
crack sizes, for which no similar approximation formula was available,
Dowling [86] drew on the work of Shih and Hutchinson [87] to develop an
expression for aJ. They had suggested that J could be estimated by

summing elastic and plastic components,

Jd=J,+ Jp {3.15)
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where

2

1= (3.16)

for plane stress and

Jp = h(n) o e, @ (3.17)
Here h(n) is a function of the strain hardening exponent determined from
numerical analysis, and changes with specimen geometry, stress state,
and crack Tlength. This type of simple estimation scheme has been
adopled by many researchers [88-93], including further studies by
Dowling [94]. Other researchers [95-97] have continued to work from the
more fundamental definition of Eq. (3.14). Currently aJ is the most
commonly used elastic-plastic parameter, although serious objections
have been raised by several authors (e.g., [98]) concerning its validity

and theoretical suitability.

3.1.2 The Structure of Estimates for LSY FCG Parameters
Each of the proposed parameter for LSY FCG has a certain
attractiveness of its own because of the particular insight it provides
into the crack tip event. The crack tip opening displacement, for
example, probably has scme direct relationship to the mechanism of crack
advance, while aJ may provide some direct measure of the intensity of
the near-tip stress-strain field. No matter how true these concepts are

in theory, however, these parameters are onily useful to the engineer
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when they can be easily quantified for a particular combination of
geometry, material, and load history. This suggests that attention
should be focused on the schemes used to estimate these parameters in
practice. The paragraphs that follow will critically compare the
structure of the common estimates for each of the major parameters.

We begin with the most common parameter, aJ. The most common
estimation scheme, based on tgs. (3.15) through (3.17), may be expanded

as

2, .2
8 = f—iégl——lﬁ + F2h(n) ao bey @ (3.18)

where F 1s Lhe Lolal elastic geometry correction factor relative to a
center cracked plate (CCP) and h(n) is based on the CCP. Alternate
forms of h(n) have been used, but the concept is similar. This may be
rewritten for discussion purposes as

™

8d = ra Ac{aee + (hiﬂl) Asp] (3.19)

Estimates of 8y typically begin with the BCS expression,
Eq (3.12). Tomkins [78], for example, made the substitutions previously
mentioned and then employed a series expansion of the gn(sec(x)) term to

get the form

2
_ I amaxa ™ rjmax Asp a
t T 2o, £ T o, (T) (3.20)

which can be rewritten as
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. m d Ac "_4_
Gt = _EE;__ [Aee + (l+n) AEpJ (3.21)
McEvily [75] chose not to carry out this type of an expansion and

simplification, but working from his initial equations and assumptions

it is possible to derive the form

_ra Ag
t 4ou

[Aae + ZAep] (3.22)
Consider next the eguivalent stress intensity factor of Gowda and

Topper [81]. 1In order to compare #K' directly with AJ, it is necessary

to consider Lhe quantity (AK')?/E (compare Egq. (3.16)). For the simple

case of a small crack in a large unnotched plate, this gives

2
iﬁéml— - F%r 3 2o [Aae + Asp] (3.23)

Finally, consider the strain intensity factor, KE. Here we derive

2
(AK } 2 de
= Fmaso [ae + (24 E-EE] Aep] (3.24)

The common structure of all these parameters is obvious. It may be

generalized to the form

AZ = Ct a Ag [Aae + Cp Aep] (3.25)
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where A7 is the range of the parameter, Cy s the coefficient common to
the entire expression, and Cp is the coefficient of the plastic strain
term. If a power law da/dN versus aZ relationship is used, Ct is
relatively insignificant unless there are major changes in crack or
specimen geometry. The only significant difference in these parameters,
then, is Cp. With the exception of the strain intensity factor, Cp is a
constant dependent only on specimen geometry and the strain hardening
expenent. The typical range of Cp is from 1.0 to 4.0, with an average
value around 2.5.

The major parameters are compared visually in Fig. 3.1 for two
specific materials, a ductile 1026 steel and a strong HY100 steel. In
this figure the dependenl vartiable 1s the vatio of the total param-
eter, AZ, to its elastic component, AZe = Ct a Ao Aee, which reduces to
(1 + Cp(Asp/Aee)]. Calculations are based on a plane stress Mode I
center crack in an infinite plate of material which obeys Eq. (2.5).
This figure also gives some indication of the remote plastic strain
amplitude at which the plastic componenl of each parameter becomes
numerica11y'sign1ficant.

So what are the philoscophical implications of these observations
about parameter structures? First of all, no matter which of these
parameters an engineer is using and what he has named it, he may be
basically using a single parameter, the product of stress, crack Tength,
and a weighted summation of strain components. Such a parameter could
perhaps have been generated just as easily from an intuitive empirical
process. Second, extensive analyses and debates over the validity and

suitability of various parameters may be missing the point. The most
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important issue often may not be whether a given parameter is "correct",
but whether a particular estimation scheme bears resemblance to any
significant reality. This does not mean that conceptual, mathematical,
and mechanistic studies are worthless, but iL does mean that their con-
clusicns may have no practical impact on the design engineer. Third, in
view of the first two implications, comparisons between two parameters
for the purpose of proving that one is right and the other is wraong may
have Tittle value unless new estimation schemes are developed which
characterize the unique qualities uf & particular parameter.

From a more quantitative standpoint, four conclusions seem worthy
of note._ First, one significant difference between various parameter
estimates is the value of Cp. The best choice of Cp and the factors
that contribute to its determination need to be investigated from either
a theoretical or empirical standpoint. Second, the C; factor will in
some cases be significant, particularly when large changes in specimen
geometry occur. One criteria for the selection of the most useful
parameter should be its ability to handle such changes.

The third conclusion relates back to the question of crack growth
during S5Y and when simple parameters such as aK are sufficient.

Returning to Eq. (3.25), we reorganize it as

2
az = [$2K° 4 ¢ 4o ae a (3.26)
E p p



62

where C' 1is a new constant independent of stress or strain*.  This
equation impTies that any time the product of Cp and the remote plastic
strain is small relative to the elastic strain, it is sufficient and
valid to use only 4K as a correlating parameter. Such an implication
may have particular significance for ferrous metals that exhibit yield
point behavior. In these materials the remote stress-strain response is
essentially purely elastic (i.e.. remote plastic strains are negligible)
until the yield point is broken. Now, "breaking” the yield point does
not necessarily require exceeding the upper yield point stress and it
does occur gradually with cycling at Jower stress amp1itudes.
Nevertheless, at Tow stress amplitudes the inelastic material response
will probably more closely follow the elastic line than the stable
cyclic stress-strain curve obtained from an incrementa] step test, and
this is good news for ak.

The fourth conclusion relates to the third but points out a
problem. At stresses between the yield stress and the endurgnce limit
(assuming that one exists), the inelastic material response can be
extremely history-dependent. Cyclic stress-strain Curves obtained from
conslanl amplitude tests, block tests, and incremental Step tests can be
quite different at these lower stresses, for example [99-101}. Several
of the elastic-plastic parameters, unfortunately, have a strong

dependence on Asp at relatively Tow values of Asp. Here the uncertainty

*Actually there is a term missing which could be included, the
additional contribution of a plasticity-modified aK based on a medified
crack length a' (Eq. (3.1)). As was mentioned earlier, however, this
term is rarely significant and hence may be best omitted in the
interest of simplicity.
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in Agp can cause great difficulty. Furthermore, it may be that large
percentage changes in relatively small values of remote Aep really have
considerably less effect on da/dN values than would be predicted. No

solution is proposed here, only a warning.

3.2 The Role of Crack Closure
3.2.1 Background

Etber [3,4] revolutionized the study and application of
fatigue crack growth concepts by his discovery of the crack closure
phenomenan in the late 1960s. He proposed the replacement of AS hy
Aseff in expressions for AK, now renamed AKeff’ where ﬂseff = Smax -
Sopen and Sopen is the remole slress at which the crack tip first fully
opens. Attention was typically focused on the changes in U = ASeff/AS
with changing R and with variable amplitude histories. Normalized

opening levels were typically assumed to be independent of S 4.

max

Some preliminary attempts have been made to incorporate closure
concepts into elastic-plastic FCG parameters. Dowling and Begley
[84,85] and Mowbray [95], in their early work on aJ, estimated closure
levels from the cusp in the unloading line of the load-displacement
curve. ImpTicit in this methodology is the assumption that opening and
closing Tevels are similar.

When cracks are small relative to overall specimen dimensions, no
compliance changes in the load-displacement trace are visible and this
technigue fails. In this case investigators have attempted to estimate

opening levels either by drawing inferences from long crack behavior

[86,94] or by visual inspection of the crack surfaces at Tlow
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magnification [92]. A common result of these schemes is the assumption
Lhat Sopen = Spip @nd U = 1. Other investigators assumed a priori that
only the tensile portion of the cycle was effective in propagating the
crack, so that Aseff = Spax and, for R=-1, U = 0.5 (e.g., [89]).
Haigh and Skelton [66] reached a similar conclusion with information
from potential drop measurements. Heitmann [91] took U from Schijve's
modification of Elber's original expression for U as a function of R.

ATl of these methodologies have in common the assumption that within the

range of their data, U does not change with Smax*

3.2.2 Finite Element Modeling
The basic finite elemenl results for normalized crack opening
stresses as a function of maximum stress, presented eariier, suggest
this assumption to be questionable. Returning to Fig. 2.11, we note
that for R = -1 (which 1is characteristic of LCF), Sopen/smax changes

significantly with Smax' Comparing, for example, S 0.3 to

max/ %
Smax/aO = 0.9, U changes from 0.32 to 0.44. This corresponds to a
change in AKeff of 1.4X, which (for a typical Paris exponent of 4)
suggests a change in da/dN of 3.5X. Such a change should certainly be
noticeable in a set of experimental crack growth data.

Unfortunately, the finite element model in its present form does
not give stable opening stresses for applied stresses at or above
general yield with the linear hardening model. The constitutive scheme
still converges and stress and strain distributions are generally

reasonable, but opening stresses are discontinuously higher and may

change erratically with increasing crack length. Closing stresses are
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stable and close to minimum load. This difficulty may be associated
with the sharp change 1in the global stiffness at o = % or may be
related to numerical difficulties with the large truss stiffnesses when

global stiffnesses are low. Research is continuing on this problem.

3.2.3 Experimental Measurement of Closure at High Strains

Another method to assess crack opening behavior dur{ng Tow
cycle fatigue is direct experimental measurement. Preliminary results
for Sopen/smax as a function of 5.  were first reported by McClung in
Ref. [102], with additional results later presented in [56]. In these
tests, through cracks in small plate specimens of a 1026 steel were
initiated at 50 ym electro-discharye machined edge notches. Ten or more
acetate replicas were taken of the specimen surface during a single
loading excursion, and these replicas were later processed for in-
spection in the scanning electron microscope at magnifications up to
4500X. Examinations and comparison of consecutive replicas in the near-
tip region, which may be directly inspected at the specimen surface for
this geometry, made it possible to determine a crack opening stress to

within 10 percent or less. Further details are reported in Ref. [56].
The results are summarized in Fig. 3.2. Here the solid circles
represent the average of several measurements at each stress or strain
amplitude, while the scatterbands dindicate the range of measured
values. Note that the highest Smax value corresponds to a far-field
plastic strain range about 1 percent, while at the lowest Smax value the
plastic strains are Tless than 1074, In the same figure these experi-

mental quantities are compared with the finite element simulations for
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H/E = 0.07. Note that the 1070 steel on which the finite element prop-
erties are based has a cyclic strain hardening exponent similar to the
1026 steel. The two materials differ primarily in their oO/E values,
which were shown earlier to be inconsequential for closure behavior.
Superimposed alsc on the figure are predictions based on the modified
Dugdale model of Newman [37-39]. Strictly speaking, this is a SSY
elastic-perfectly model, but here we follow the suggestion of Newman
that the model can approximately accommodate strain hardening by
choosing the flow stress 9 equal to the average of the yield and
ultimate stresses.

Agreement between the experiments and two models is generally

good. The FEM andlysis may slightly underestimate the Sma dependence

X
at Tow stresses. At still higher stresses, it is likely that the FEM
opening levels will begin to drop off more sharply with increasing Smax
as do the results for H/E = 0.0l and the power-law model, and this would
correspond to the experimental data.

These results suggest that for R = -1 cycling at stress amplitudes
at or above the yield stress, U values will be in the neighborhood of
0.5. This matches the potential drop measurements of Haigh and Skelton
[66]. Iyyer and Dowling [103,104] have recently published experimental
closure Tlevels for Tow cycle fatigue cracks in smooth cylindrical
specimens which confirm the dependence of U on Smax+ 'heir specific
gquantitative values, which are somewhat lower, may be only approxi-
mations due to experimental Timitations such as low magnifications, few

crack observations, and possible time-dependent contributions. Rie and

Schubert [105] and Hatanaka, et al. [106,107] have also reported lower
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opening levels for smooth specimens. This may be a characteristic of
the specimen geometry, but another possible explanation for the
difference is that in a cylindrical specimen the crack tip is embedded
in the specimen and cannot be inspected directly. Measurements based on
surface behavior may not be representative of interior behavior. A
related factor is the dependence of apparent opening level on measure-
ment Tocation. Several early researchers [53,54] noted that if the
measurement position was not close to the crack tip, opening stresses

appeared lower.

3.2.4 Closure and the Structure of FCG Parameters
Given Lhal opening levels can be determined, a remaining
guestion is how properly to incorporate U into estimates of elastic—
plastic parameters. The straightforward approach is illustrated in
Fig. 3.3. Here 4o and the related term Ae, are modified by the factor U
but in general, unless U is very small, Asp remains unchanged.

For aJ this leads to the basic form

AJeff = F% 1 a ac UF (Aee + %iﬁl Asp) (3.27)
so that while the entire parameter is reduced by some factor between U
and U2, Cp is increased by the factor 1/U. This unfortunately tends to
aggravate the previously discussed problem with Aep sensitivity at Jow
stresses, when U values are generally smaller. This formulation is
conceptually consistent with the fundamental definition of J as a

measure of energy (elastic and plastic strain energies are denoted in
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the figure by the cross-hatched areas), and the equations reduce nicely
to the customary forms for AKeff when plastic strains are negligible.

A slightly different form occurs when this type of approach fis
applied to the strain intensity factor. Now the "effective strain' may

be described by (Aep + UAee), and the parameter may be written as

(2K ) Ae
.._.........E_eff. = 1 da Ao U2 [AE + [—2— + _E*—) he ] (3-28)
E e U U2 e p
e

Again, Cp increases when closure is considered.

A second approach to incorporating closure information in FCG
parameters was used by Heitmann [91] and others [108]. These re-
searchers assumed c¢rack closure to reduce the etastic term but not the

plastic term. For a aJ formulation, this looks Tike

2 Jae, + 00k | (3.29)

2
A =F" v aac U
T\'U2 P

eff
so the plastic term becomes even more dominant. In Heitmann's wark,
however, a new value for h{n) was developed which was smaller than the
current suggestions of Dowling [60], and this tended to offset some of
the U effect.

A third approach has been recently suggested by Bowling
[109,110]. Responding to some criticisms of the validity of Ad as a
parameter for cyclic Tloading, especially when closure occurs, he
proposed that the point on the far-field hysteresis loop corresponding
to the closing stress be adopted as the proper reference point. See

Fig. 3.4, which 1is based on Fig. 3 in Ref. [109]. Here point "o"
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identifies the crack opening stress and point “c" the closing stress.
Dowling postulates that during a hypothetical reloading from c to b, the
changes in stress and strain which occurred during b-c will he exactly
reversed. The changes in 6t for c-b and o-b should be exactly the
same. But during o-b the unique hysteresis loop curve shape requirement
for J is violated, while the requirement is met for c-b.

In practice, this scheme may often give effectively the same
results as the straightforward approach. Figure 3.5 shows a hysteresis
loop corresponding exactly to the response of a 1026 steel under fully
reversed strain cycling with ae = 0.01. The opening stress is known
from experiments to be roughly zero. In order for the product (sSIREM)
(AED)g$$” to be egual Lo the product (ASEE?S) (Aep)g;$5 and hence for
the two plastic aJ terms to be the same, the closing stress would need
to correspond to Sc]os/smax around -0.95. This is a typical closing
Tevel, as suggested by the experiments of McClung [56] and Dowling [103]
and the present FEM model. There will still be some changes in the
elastic ad term, but at such 1large slrains the elastic term is
relatively insignificant.

One issue of potential concern with this new scheme is that in the
limit as far-field plastic strains go to zero, an effective stress range
based on the closing stress may be different from the ASeff based on the

opening stress, which is customarily used for AKE The present FEM

ff*
results for opening and closing levels (Fig. 2.28) suggests that the
numerical difference may not be trivial.

The bottom line about crack closure and elastic-plastic FCG param-

eters, from a pragmatic standpoint, is that the value of Cp increases
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when closure is considered. Typical values of closure-modified C range

P

from 2 to 9, roughly a factor of 2 higher than C,. values which do not

p
consider closure.

3.3 Crack Growth Data and Correlations

Fatigue crack growth data from double edge notched specimens of a
1070 steel have been previously reported by Sehitoglu [41,111]. The
material corresponds exactly to the finite element model described
earlier. In terms of the stable cyclic stress-strain curve as described
by Eq. (2.5), the material is characterized by the constants K' = 1472
MPa and n' = 0.192. Further details of the material, specimen geometry,
and test procedures are given in [41,111]. For the present research,
the original replicas of the specimen surface were re-measured in order
to extract all possible crack length data; only a portion of the data
was processed previously.

These data correspond to the regime of small and intermediate scale
yielding. Maximum stresses range from aboul one-third of the yield
stress up to the yield stress. A1l tests were conducted at R = -1.
Cracks are Tong compared to the microstructure and notch size but
moderately short compared to the specimen width.

The ability of various aK-based parameters to correlate the data is

examined in Fig. 3.6. Here aK is calculated as

8K = 1.12 aS vrma [sec(%%]]lfz (3.30)
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Observe first that aK alone is not successful in correlating the data
(upper left). The "layering" effect associated with noncorrelation is
more easily visualized in the lower left graph, where each set of data
corresponding to a particular Smax 1S replaced by its linear least-
squares regression line.

The second attempt to correlate the data is based on a plasticity-
modified sK, where the crack length is replaced by its modified value
according to Eq. (3.1). See the middle plots. The correlation is only
slightly better, and still unacceptable.

The final attempt to correlate the data employs the crack closure
information obtained from finite element analysis, Fig. 2.11. The
plasticity-modified AKmod is multipiied by U to give &Keff' This
parameter is generally successful in correlating the data, as exhibited
by the rightmost graphs. The crack growth data corresponding to the
highest stress level may still 1ie slightly above the central tendency
of the other data, but this should not be surprising. Remember that aK
can be understood as the elastic term in a general elaslic-plastic
parameter. As maximum remote stresses approach the yield stress, some
inelastic deformation will occur throughout the cracked body and the
missing plastic term is no longer negligible.

A wider range of crack growth data is available for a hot-rolled
1026 steel characterized by a 0.2 percent offset yield strength of 322
MPa and a cyclic strain hardening exponent of 0.215. A first series of
tests were conducted on small flat specimens with a rectangular cross-

section measuring 0.1" x 0.5" (2.54 mm x 12.7 mm). Small cracks

(typically 0.1 mm - 1.0 mm) initiated at 50 um notches were grown under
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constant amplitude strain cycling at strain amplitudes ranging
from ae/2= 0.001 to 0.007. The lowest strain tests correspond to Smax
roughly 60 percent of the yield strength and Aep values on the arder of
10'4, while the highest strain tests correspond to Smax values 20 per-
cent above yield and Asp values about 0.01. These are the same
specimens, and in some cases the same tests, used to determine crack
vpening siresses, as described earlier, Here all tests were R = -1,
except for one low strain test at R = -0.25. Further details are given
in Ref. [56].

These crack growth data are correlated in Fig. 3.7 (top) with the
range of the J-integral, where aJ takes the traditional form [60]

2
8d =1.25 7 a [1991— + /1/n 4 Asp] (3.31)

E

Clearly the quality of the correlation is low. A much better correla-
tion is accomplished with AJeff’ however (see bottom figure). Here
opening stresses are estimated from finite element resulls at low
strains {for consistency with other data sets to be introduced). At
high strains where FEM results are not available, opening stresses are
taken directly from experimental measurements. Closure information is
applied to Eq. (3.31) in the straightforward manner, by replacing ac
with bogpe-

Another set of crack growth data for the same material has been
previously published, in part, by Sehitoglu [93]. Here the specimens
were rectangular bars nominally 2 in. wide by 0.225 in. thick (50 mm x

5.7 mm). Cracks were initiated as a center slot notch of total width 2c
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= 0.3 in (7.6 mm). A1l tests were load controlled at a load ratio of
R = -1. Maximum stresses ranged from Smax/% = 0.30 to 0.51. Crack
lengths considered in this thesis were beyond the region of significant
notch influence but stil1l within the limits of a/W < 0.4. The data are
presented graphically in Fig. 3.8 as a function of AJeff' Here AJeff has
been calculated from AKeff according to Eq. (3.16), where closure
information was based on finite element results and the original aK was
calculated from the usual expression, including finite width effects.
Remote plastic strains were entirely negligible. This particular data
set would have been correlated equally well by an ordinary AJ or Ak,
because U does not vary widely within the range of wmaximum stresses
considered.

A comparison of the high stress, short crack length data (Fig. 3.7)
with the Tow stress, long crack Tength data (Fig. 3.8) demonstrates even
more vividly the need to consider closure information. See Fig. 3.9.
Here only data for R = -1 are shown for clarity. The correlation
with aJ (top) 1is clcarly inadequate. When crack opening stresses are
taken into account (bottom), the correlation is remarkably strong.

A third data set from the same material is based on the growth of
small cracks in smooth, cylindrical specimens at fully reversed large
strains. These data are shown in Fig. 3.10, where the calculation
for AJeff s based on the suggestion of Dowling [60] according to

2

= Coma 128 vn o se | (3.32)
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Here C, = 0.434, E' = E/{1-v%), and hy = 0.76 vI/n. The crack depth, a,
is based on the measurement of surface crack lengths 2 and the
assumption of semicircular crack shapes (2a = g). Crack opening
stresses were taken from the earlier experimental measurements on flat
specimens. Again, the difference between AJ and AJeff correlations
within this data set was small, because U varied little between Ae/2 =
0.003 and 0.005. The scatter of these data is generally greater,
probably because of irreqgularly shaped cracks, crack linking and
branching, and other phenomena associated with naturally occurring
three-dimensional cracks.

A comparison of these data with all previous data from the same
material reveals, again, a strong currelation (Fig. 3.11). Note that
this figure includes data from three different specimen geometries,
crack lengths ranging from a = 0.075 mm to 2a = 20 mm, maximum stresses
ranging from 0.30 a, to 1.2 Tys and plastic strains ranging from

essentially zero up to Asp = 0.01.

3.4 Conclusions

1. Engineering estimates for the four most common elastic-plastic
fatigue crack growth parameters have essentially the same
structure and are numerically similar, despite their widely
differing theoretical backgrounds.

2. Normalized crack opening stresses change significantly between
small-scale and large-scale yielding conditions. Changes in
closure behavior have further implications for the numerical

structure of estimates for crack growth parameters.
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3. Crack closure information must be considered in order to
construct successful correlations of experimental fatigue crack

propagation data at a wide range of maximum stresses.
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4. CLOSURE AND GROWTH OF MODE I CRACKS IN BIAXIAL FATIGUE
4.1 Background

The effect of biaxial stressing on fatigue growth rates has been
the subject of numerous investigations. Early experimental studies
[112-116], which often were based on nontraditional, complex specimen
designs and test methods, did not give conclusive results. More recent
investigators [117-128], typically testing cruciform specimens, observed
a general tendency for faster crack growth when remote stresses parallel
to the crack are of opposite sign to normal stresses {(x = -1, where A =
SX/Sy)’ and slower crack growth when Sy is of the same sign as Sy‘
Nomenclature is illustrated further in Fig. 4.1. Other researchers
[129-130] reported no significant change in fatigue crack growth rates
with biaxiality. A more detailed review of some of this data is given
by Smith and Pascoe [131]. Note that in this thesis, discussion will be
limited to Mode [ cracks under loading which is proportional, either
fully in-phase (e.g., » = +1) or 180° out-of-phase (1 = -1).

Several explanations have been proposed for these effects.
Kitawaga, et al. [125] claimed that the effect was only apparent, and
could be rationalized with an exact calculation of K which accounted for
load biaxiality. In general, however, they found relatively 1ittle
change 1in crack growth rates with i, and so the required corrections

were minor.*

*At higher stresses, higher R-ratios, and shorter cracks, Kitawaga, et
al. [126] found larger biaxiality effects which were not similarly ex-
plained. In those tests the effect was actually reversed: slower crack
growth with decreasing x. Hoshide, et al., [124] found a similar ano-
malous behavior for R = 0, » = -1, and they explained it in terms of a
pre-strain effect. These two results are exceptions to the genera)
trend.
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A number of investigators have suspected that changes in crack-tip
plasticity, perhaps characterized by the plastic zone size and shape,
are a crucial factor infiuencing biaxial crack growth rates. Brown and
Miller (80,117,118,128], in particular, have attempted to explain and
correlate fatigue crack growth data with simple estimates of forward or
reversed plastic zone sizes or "severe-strain" zone sizes for various
locading conditions. As engineering estimates, these have been
moderately successful.

The possible role of crack closure has received some attention.
Tanaka, et al. [123], and Hoshide, et al. [124], attempted Lo determine
opening stresses experimentally from crack opening displacement
measurements taken either along the crack centerline or 250 um behind
the crack tip. They found U, in general, to be largest for x = -1 and
smallest for » = +1, although the difference was sometimes small and U
values were all quite large, ranging from 0.52 to 0.87. Kitawaga, et
al. [126] reported essentially no change in crack opening stresses with
biaxiality from their experimental measurements. Brown, et al. [80],
developed a simple analytical model for plane strain closure, based on
the Dugdale crack, which considered biaxial stressing. They predicted U
values from 0.61 to 0.67 for R = -1 with a moderate dependence on both
biaxiality ratio and maximum stress.

Ogura, et al. [7] applied their early finite element simulation of
fatigue crack closure to the problem of biaxial stressing. For a plane
stress crack growing from a sharp notch at Smax/oo = 0.40, they reported
no effect of biaxlality on crack opening levels at R = 0. At R = -1,

they showed Towest opening Tlevels for » = -1 cycling, while » = 0
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and x» = +1 levels were similar. Their results may be suspect, however,
because of several possible problems with the model which have been
discussed in detail in Chapter 2. First of all, their mesh refinement
for these stresses and crack lengths may have been insufficient.
Second, the cracks were initiated at the notch root and apparently grown
only to a length five percent of the notch depth. At this location
there will still be a significant notch effect on opening behavior, and
in fact the opening stresses shown in Fig. 2-3 of Ref.[7] do not appear

to have reached stable levels,

4,2 Finite Element Analysis of Closure

The present finite element model, described in detail in previous
chapters, was used to study crack closure under biaxial stressing.
Stresses parallel to the crack were applied simply by specifying
additional traction lcading of appropriate magnitude and sign along the
right boundary of the mesh. The results for R = -1 cycling of H/E =
0.07 plane stress material at x = -1, 0, and 1 are summarized in

Fig., 4.2. In general, stabilized S /S

open values are highest for

max
equibiaxial loading and Towest for shear loading, with uniaxial loading
an intermediate case. Below Smaxldo = 0.4, opening levels may be
roughly the same for all three biaxiality ratios, although this stress
amplitude represents the 1imit of relfable results for the present
formulation and particular mesh used, and so no solid conclusions can be
reached. Above Smax/Go = 0.4, equibiaxial opening stresses are higher
than uniaxial opening stresses by a constant fraction of the maximum

stress, while opening stresses for 2 = -1 drop off more sharply with
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increasing Smax' Note that no values of Sopen/smax were ohtained for
A = -1 above Spax = Y.5/7/, because of previously discussed limitations
of the current formulation associated with general yielding.

More insight into this closure behavior can be obtained from
Fig. 4.3, which shows crack opening displacements at maximum load for
both stationary and fatigue cracks at the three biaxiality ratios. As
discussed earlier, the difference between stationary and fatigue €OD
values s a first approximation to the residual displacements which
cause closure. Note that these estimates of residual displacement
magnitudes are relatively similar for all three » values. The primary
reason for the differences in closure behavior, then, seems to be the
differences in total COD. Crack opening displacements are clearly
Targest for » = -1, and slightly lower for i = +1 in comparison to ) =
0, as has been observed previously for stationary cracks [132]. The
residual displacement as a fraction of the total COD., which is a
predictor of closure behavior, is smallest for » = -1 and largest
for a = 11,

Plastic zone size and shape information is also available from the
finite element model and is worthy of note. Active plastic zones at
maximum load for the three biaxiality ratios are shown in Fig. 4.4.
Plastic zones for » = 0 and x» = +1 are similar, of equal width along the
crack line. The uniaxial plastic zone, 1 = 0,is slightly larger along a
45° ray from the crack tip. The plastic zone for a = -1, while actually
narrower along the crack 1line, is much, much larger overall. Reversed
plastic zones, or active plastic zones at minimum load, are shown in

comparison to forward plastic zones in Fig. 4.5. Note that reversed
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plastic zones for » = 0 and » = +1 are essentially identical, but still
much ldarger for a = -1, Similar trends have been shown by other

researchers [9,132].

4.3 Crack Growth Data and Correlations

Several reliable sets of fatigue crack growth data for biaxial
stressing are available 1in the open literature, each presented
graphically in terms of aK. It is interesting to use the finite element
model to predict crack opening levels for each set of test conditions,
make a first-order modification of aK to AKErr based only on U, and

replot the data.

4.3.1 Brown and Miller (1985)

Brown and Miller [128] tested cruciform specimens of an AISI
316 austenitic stainless steel at three biaxial stress ratios and two
temperatures. Here for simplicity we consider only the room temperature
data, which include three maximum stress levels and Lwo stress ratios.
The monotonic 0.2 percent yield stress for this material is given as 395
MPa. At the stress levels encountered in testing, however, the cyclic
(rather than wmonotonic) stress-strain properties are probably more
appropriate. These were determined from information graciously supplied
by Or. Brown* to be an 0.2 percent offset yield stress of 315 MPa and a

cyclic strain hardening exponent about n' = 0.25 (for Aep/? > 0.0015).

* Private communication, September 1987,
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The data for R = -1 cycling are reproduced in Fig. 4.6 (top) as a

function of the original aK, where

AK = Aoy /{na) sec(wa/W*) (4.1)

Here Aoy is the stress normal to the crack, including the compressive
portion, and W* is the equivalent width of the cruciform specimen. Data
for cracks very close to the original notch roct have been removed for
clarity. Two different types of noncorrelation are observed in the
data; not only is there a biaxial effect, but there is also an apparent
layering of the data due to maximum stress.

Crack opening stresses were estimated from the finite element
results of Fig. 4.2. The modulus ratio H/E = 0.07 was judged to be an
adequate description of the appreciable hardening observed in the 316
stainless steel, Changes 1in the oO/E ratio have been shown to be
insignificant for the finite element modeling. The model parameter o
was interpreted as the 0.2 percent offset yield stress for normalization
purpcses. When test conditions fell just outside the range of finite
element resutts, simple linear extrapolations were used to estimate the
opening stress. A first-order correction to aK was carried out
as AKeff = UsK, and the data were replotted in Fig. 4.6 (bottom). The

improvement in the correlation is obvious.

4.3.2 Hoshide, Tanaka, and Yamada (1981)
Hoshide, et al. [124], have published crack growth data from

cruciform specimens of a structural low-carbon steel. Three biaxiality
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ratios (» = -1, 0, +1) were considered at both R = 0 and R = -1. In all
tests the maximum stress was 67.1 percent of the yield stress (uys = 228
MPa). The original data are shown in Fig. 4.7 (top) in terms of the
elastic aK determined analytically by the original authors for the
particular specimen geometry. Omitted from consideration here are the
data for » = -1, R = 0, which were noted by the original authors to be
unduly influenced by pre-strain effects.

Again, crack opening stresses for this high hardening material were
estimated from finite element results for H/E = 0.07. Trends in crack
opening levels with biaxiality for R = 0, not shown here, were quali-
tatively similar to Fig. 4.2. A first estimate of the effective stress
intensity factor range was taken as AKeff = UsK. The resulting correla-
tion of da/dN values is given in Fig. 4.7 (bottom). The scatterband is
wider than for the Brown and Miller data, but some of the scatter is due
to variations in the original data. For example, the Paris exponent
(slope) changes from data set to data set, and this could not be ex-

plained by a simple closure argument.

4.3.3 Smith and Pascoe (1985)

Smith and Pascoe [127] have reported biaxial fatigue crack
growth data obtained under slightly different test conditions. They
conducted three tests on cruciform specimens of an HY100 high yield-
strength weldable steel which resulted in Mode I crack growth. A1l
tests maintained about the same positive mean stress, but normal and
transverse stress ratios and maximum stresses were different in each

case. Loads were chosen in order to maintain the same strain range and
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mean strain across the working section. A brief summary of test
conditions 1is given in Fig. 4.8, adapted from the original references
[127,133]. Note that Smith and Pascoe defined a new i for their
purposes as i = ASX/ASy. A positive x» denotes in-phase cycling, a
negative x 180° out-of-phase cycling. The original crack growth data
appear in Fig. 4.9 (top) as a function of akK.

New finite element analyses of closure were conducted in order to
model these tests as nearly as possible. A power-law constitutive model
was chosen in order to include the effects of possible mean stress
relaxation, which may be significant at these positive stress ralios.
Model constants corresponded to material properties of 0.2 percent
offset yield stress L = /33 MPa, strain hardening exponent* n = 0.05,
and strength coefficient* K = 1000 MPa, as determined from stress-strain
information 1in reference [133]. Maximum and mean stresses matched
cxperimental conditions closely. The following effective stress range
ratios were determined: U = 1.0 for » = -1, U = 0.55 for » = +v, and U
= 0.39 for » = +1. The resulting correlation of da/dN values by AKEff
is shown in Fig. 4.9 (bottom). The quality of this closure-modified

corretation is again much improved.

4.4 Discussion
4.4.1 Limitations and Purpose of this Analysis
It is important to point out immediately that we have been

stretching aK beyond its 1imits of strict validity. When maximum

n

* as defined by the stress-plastic strain relationship o = Ksp
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stresses are two-thirds of the yield under a» = -1 configurations, for
example, significant plastic deformation will be occurring. MHNeverthe-
Tess, it is convenient to use aK, much as did Brown and Mitler [128], as
a simple parameter rwhich provides suitable correction factors for
specimen geometry effects and as a useful framework to compare relative
crack growth rates under different conditions.

A second important confession is that, clearly, the issue of bi-
axial crack growth effects is more complicated than closure-modified aK
values based only on stresses normal to the crack. An exact analysis
would Tikely require consideration of near-tip stress and strain rieids
as well as microstructural issues such as crack path bifurcation or
cleavage contributions to crack advance.

The point of the present chapter is that changes in crack closure
behavior with biaxiality may be the single most significant reason for
changes in crack growth rates. Furthermore, first-order currections to
simple crack growth parameters considering only changes in crack opening
stresses may be entirely sufficient for many engineering design
purposes. Descriptions of crack closure behavior provide a convenient
way of simultaneously considering not only biaxial effects but also the

effect of maximum stress, stress ratio, etc.

4.4.2 The Issue of Qut-of-Plane Constraint
One modeling decision which was quietly made at the beginning
of this analysis was the specification of out-of-plane constraint.
Simple two-dimensional finite element analyses can be plane stress or

plane strain, and in this chapter only plane stress results have been
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used to correlate experimental data. Is this an accurate representation
of actual experimental conditions?

The question of stress state near the tips of three-dimensional
fatigue cracks is a complex one. Clearly there will always be some
ptane strain constraint at the crack tip in the midsection of a thick
component. That constraint will gradually decrease with increasing
distance from the crack tip or with proximity to the specimen surface.
The ideas of plane stress or plane strain are actually only limiting
extremes of constraint between which most of reality actually occurs.

In practice, however, it is often convenient to chouse one or the
other of these two extremes as a simple description of stress state.
For crack problems, it has been common to make this choice on the basis
of a comparison between specimen thickness and estimates of the crack
tip plastic zone size. Full plane strain constraint is frequently
assumed to exist [134-136] whenever a crilerion similar to that

specified in ASTM Standard E399-83 is satisfied,

K
Bz 2.5 (%) (4.2)

where B is specimen thickness.
Full plane stress conditions are typically assumed when the crack
tip plastic zone width is on the order of one-half the specimen thick-

ness [136-138], or

[Kmax)
¥s

(4.3)

RN
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When neither of these criteria is satisfied, partial constraint is
assumed.

Application of these criteria to the three sets of data considered
earlier in this chapter results in the conclusion that "fuli® plane
strain constraint is almost never achieved, since maximum stresses are
generally high and specimen thicknesses are usually small. A portion of
the data falls into the "partial" constraint region, while a majority of
the data satisfies the "full" plane stress criterion. In reality, of
course, all of the cracks are under partial constraint, but a plane
stress representation was judged to be a better choice than pldane

strain.

4.4.3 When are Biaxial Closure Effects Significant?
The present finite element analysis suggests that above
Smax/“o = 0.4 for R = -1 and above SmaX/oO = 0,5 fur R = 0 there will be
a clear effect of biaxiality on crack opening stresses. This appears to
be confirmed by the experimental crack growth data presented in 4.3. At
Tower maximum stresses the finite element results are not conclusive,
since we are at the limits of acceptable mesh refinement, but it appears
that closure behavior does not differ significantly with biaxiality.
This absence of an effect alsoc seems to be confirmed by the
available data. Miller [118], for example, reported results for biaxial

stressing of a high-strength aluminum alloy at § values in the

max/ %o
vicinity of 0.2 or 0.3 for R = 0 and above. His data showed a definite
preference for faster growth at x = -1 and slower growth at a» = +1, but

the total variation in crack growth rates was always less than a factor
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of two. Liu, et al. [129], conducted a wide range of tests on cruciform
specimens of 7075-T7351 and 2024-T351 aluminum alloys, varying both the
biaxial stress ratio and the maximum stress. They concluded that the
effect of biaxiality on propagation rates was negligible. A majority of
their tests were conducted at Smax/oo values less than 0.3. The few
tests that were carried out at Smax/”o values around 0.5 anly saw
biaxiality ratios of x» = #0.5. Kitawaga, et al. [125], conducted tests
on a weldabie structural steel at Smax/ao = 0.165 and R = 0.1 and found
very little variation with x. The stainless steel data of Brown and
Miller [128]} at R = O, Smax/“’o = 0.2 and R = -1, Smax/o0 = 0.3 also show
little effect.

A good rule of thumb, then, seems to be that if maximum stresses
are on the order of oyg/B {such that small scale yielding criteria are
met rigorously), biaxial stressing will have no significant effect on
crack growth rates (changes in da/dN less than 2X). As Smax/ 9y values
approach 0.5 and higher, however, significant changes in crack growth
rates (perhaps 5X - 10X) can occur between » = -1 and » = +1. These

observed trends can be explained by crack closure behavior.

4.4.4 Alternative Explanations
As mentioned previously, other factors have been suggested as
explanations for biaxial effects and other factors, no doubt, are
active. Of particular interest are changes in plastic 7one sizes, which
have been frequently discussed in the Jiterature and which have been
shown Dy the present finite element analysis (Figs. 4.4 and 4.5). There

appear to be some difficuities, however, with correlations based on
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forward or reversed plastic zone sizes. First of all, these plastic
zone sizes are typically estimated from simple idealized models such as
the elastic near-tip stress fields or a Dugdale crack. While these
estimates are useful and easily accessible engineering tools, they may
bear 1ittle resemblance to actual plastic zone shapes and sizes, as
depicted more accurately by a finite element analysis. Second, as has
been suggested for uniaxial loading in an earlier chapter, the actual
size of a forward or reversed plastic zone may itself be influenced by
crack closure behavior. Obtaining accurate estimates of Arp/rp values
without some closure information may bLe difficult. Third, the plastic
zone information obtained from finite element analysis is not entirely
consistent with observed crack growth rates. At R = -1, for example,
forward and reversed plastic zone sizes and shapes for A = +1 and » = O
are nearly identical, while sizes and shapes for » = -1 are much larger
(e.g., Figs. 4.4 and 4.5; this was also observed to be true at other
Smax values). Correlations based on rp and Arp, then, would predict
crack growth rates to be quite similar at x» = +1 and » = 0 but much
faster at x = -1. In practice, however, the difference between i = +1
and » = 0 is on the same order as the difference between » = 0 and ) =
-1, perhaps slightly 1less, and this is more in keeping with crack
closure behavior.

Another attractive feature of closure-based correlations is that
the single parameter U is capable of simultaneously describing not only
biaxial effects but also the effects of maximum stress, stress ratio,
out-of-plane constraint, notches, and so on. The stress-ratio effect in

the data of Smith and Pascce may be greater than the biaxiality effect,
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for example. The Brown and Miller data contains a significant maximum

stress effect as well as a A effect. Yet all of these data were

cerrelated reasonably well by a first approximation of closure levels.

A similar robustness does not seem to have been demonstrated for other

crack growth parameters.

4.5 Conclusions

1.

Biaxial stressing can have a significant impact on crack
closure behavior. In general, opening stresses are highest for
equibiaxial Toading and TJTowest f(or pure shear loading
(considering only mode [ cracks).

Experimental crack growth data for biaxial cycling is quantita-
tively consistent with these trends in crack opening Tevels.
Correlations of the experimental data with simple closure-
modified ﬂKeff were  successful as  first-order engineering
estimates.

Changes in forward and reversed plastic zone sizes with
biaxiality are not entirely consistent with trends in crack
growth rates.

These changes in closure levels with biaxiality are apparently
significant only for intermediate and large scale yielding. At
low stresses, closure levels and crack propagation rates do not
seem to change appreciably as bhiaxial stress contributions

change.
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5. CLOSURE AND GROWTH OF CRACKS AT NOTCHES
5.1 Background
5.1.1 The "Short Crack" Effect

A common site for the initiation and subsequent propagation
of fatigue cracks in an cngineering component is a local stress cuncen-
tration, such as a hole or the root of a sharp notch. When the crack
has grown sufficiently far beyond its initiation site, its growth may be
easily modeled by traditional concepts of fatigue crack propagation,
neglecting the hole or notch altogether except as a contributor to the
total crack Tlength. When the crack is still very short relative to
characteristic notch dimensions, however, the problem is more complex.
Broek [139] was one of the first to point out clearly the anomalous
behavior of these small cracks at notch roots. Others [41.64.93,140-
149] have since confirmed that such a crack will tend to grow more
quickly than would be expected from Lhe usual aK-based analysis.

At first glance this behavior should not be surprising. The
constitutive response at the notch root of the uncracked body is 1ikely
to include some significant plastic strains. and these will both
accelerate crack growth rates and invalidate K-based parameters. Even
in the absence of large plastic deformations, other factors are involved
which include microstructurally-based short crack effects and the
nonlinear form of the exact K-solution for short cracks near notches.
A1l of these issues will tend to he most significant when crack lengths
are extremely short relative to notch dimensions. And yet anomalous
behavior has also been reported for cracks which are somewhat longer

relative to notech sizes [41,93].
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The total picture may be better organized in terms of Fig. 5.1, a
schematic which is adapted from the ideas of Leis [44] and Hammouda, et
al. [150,151]. Cracks growing from notches can be classified into three
groups as a loose function of the crack tip location with respect to the
original notch stress.strain fields in an uncracked body. Very long
cracks fall in region (1}, in which case the original notch has no
influence on the local stress-strain fields and hence can be neglected
except as a component of total crack length. Very short cracks fall
into region (3}, where the crack tip 1ies within material which experi-
cnced plastic strains prier to the formation of any significant crack.
Cracks of intermediate length are in region (2). Here there is no
inelastic deformation which can be attributed to the notch alone, but
the notch does cause perturbations in the elastic stress-strain field
within which the crack tip and associated near-tip plastic zones are
contained.

Many investigators have assumed that only two regions exist, a
notch field and a region beyond the notch field. Smith and Miller,
[152], for example, considered analytical K solutions and experimental
crack growth data for cracks near notches. They suggested that the
notch field was of approximate length 0.13 /cp, where 2c s the total
width of a center notch and ¢ is the root radius. Beyond this distance,
K was assumed to be independent of the notch, while within this dis-
tance, K was estimated as a simple function of /c/s. Dowling [153]
separated the crack growth problem into two smaller problems: first, an
edge crack growing totally in the notch field, and second, a center

crack growing independent of the notch. By setting K solutions for the
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two problems equal to each other, he derived a transition crack length

as
b = o/1(1.12 K )2 + 1] (5.1)

where Ki is the stress concentration factor for a center notch in a wide
plate*. Values for e generally range from p/20 to p/4 for moderate to
sharp notches. Note that neither the Smith and Miller nor the Dowling
model considers plastic deformation or any stress amplitude effects.
Hammouda and Miller [150,151] analyzed the inelastic defurmalion in both
cracked and uncracked notch roots. They concluded that cracks would
grow at abnormally high rates within the notch plastic zone, but that
this effect would die away (and crack growth rates perhaps decrease)
until the crack reached the elastic-plastic boundary. Beyond this
distance, normal Tinear elastic fracture mechanics would be sufficient
to characterize crack growth., Leis [144] has also concluded from an
analysis of his experimental data that the transition to normal long
crack behavior from anomalous short crack behavior occurs when the
length of the crack approaches or equals the length of the inelastic
notch field.

Other data is available, however, which demonstrates accelerated
crack growth rates at crack lengths well beyond the original notch
plastic zone. Sehitoglu (93] has presented such data far cracks growing

from a center slot notch in a low-carbon structural steel. Some of the

*For different geometries, more general forms of Eq. (5.1) can be
developed.
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data of E1 Haddad, et al. [64], exhibit a similar behavior. In both
cases, cracks are also long with respect to the microstructure.

Clearly, some effect other than notch plasticity is also significant,

5.1.2 The Role of Crack Closure
Another possible contributor to this "short crack effect" ig
crack ctosure. <Closure {(or, more properly, the absence of closure) has
been frequently suggested as a reason for the accelerated growth of very
short cracks in unnotched members [154]. Since closure is primarily a
wake effect, a microcrack which has not yet developed a significanl wake
may, in theory, open at the minimum load in the cycle. Leis [144]

assumed that S was equal to S,

open at the notch root, and he then

n
allowed SDpen to increase Tinearly up to the far-field value {dependent
only on R) over a distance equal to the width of the inelastic notch
field. Tanaka and Nakai [147], Sehitoglu [41], Ogura, el al. [145], and
Shih and Smith [148] a1l made some experimental determination of crack
opening levels for cracks growing out of notches. A1l determined that
SOpen did change significantly with crack length, and all were able to
relate this change to perturbations in crack growth rates. While the
greatest changes in SOpen occurred within the inelastic notch zone, some
further variations occurred beyond this region. Ogura, et al. [8], in
early work, and Lalor, et al. [27-29], in recent research related to the
present thesis, have employed elastic-plastic finite element analyses to
show that crack opening levels change as cracks grow away from the notch

roct. Similar results were obtained by Newman [38] and Sehitoglu [40]

using simpler analytical models based on a Dugdale crack.
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5.2 Finite tlement Analysis of Closure

The finite element simulation of fatigue crack growth and closure
presented previously in this thesis was specifically applied to the
prohlem of cracks growing from notches. The notched meshes used
throughout the thesis were appropriate geometries for detailed study
here. The transient crack opening behavior which was viewed largely as
an inconvenience in Chapter 2 now becomes the focus of attention.

The basic results are reviewed in Fig. 5.2 (bottom). Normalized
opening stressec are low for very short cracks and then rise to slLable
levels as the crack extends. The rate of increase of SOpen and the
final stable vatue are both lower at higher remote maximum stresses.

It is particularly interesting to compare these opening curves with
stress distributions in an uncracked body at corresponding maximum
stresses (see top figure). Since a bilinear stress-strdin curve is
being used, the boundaries of the notch plastic zones are clearly
indicated by the sharp corners in the stress distributions. As the
maximum stress increases, of course, the width of the plastic zone
increases. Note, however, that the crack opening levels have not yet
stabilized when the crack tip reaches the original inelastic notch field
boundary. Further changes in Sopen occur in the elastic field of the
notch.

Why does SOpen change as the crack grows away from the notch
root? One factor is crack length. A freshly initiated crack has no
previous history and no wake, and therefore has no residual

displacements which induce closure. As the crack moves beyond the notch
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field {(as defined by Dowling [153], for example), the crack tip sees a
stress intensity at maximum toad which is nearly identical to a notch-
free center crack. Upon unloading, however, all of the reversed
deformation is concentrated in a very small distance between notch root
and crack tip, instead of being distributed over the full crack length
Za. Sehitoglu's simple analytical model based on the Dugdale crack
captures some of these effects.

Another factor is stress magnitude. A crack tip near the notch
effectively sees a "remote" stress which is larger than the true far-
field stress, magnified by the notch stress concentration. Even though
the crack tip significantly perturbs the exact form of the stress and
strain distributions around the notch, the notch is still a facter in
the total stress redistribution problem. The previous finite element
results, {e.g., Fig. 2.11) clearly showed that opening stresses were
Tower when far-field stresses were higher. This logic is consistent
with Tower opening levels closer to the notch root.

It is interesting and relatively easy to explore some of the
implications of this second factor. A simple model is constructed as

follows. Each point along the crack Tline corresponds to a local

max

Yy
Tocal stress o??x, interpreted as a remote stress Syax, corresponds to a

stress o in a corresponding uncracked body (Fig. 5.2, top). This
stable crack opening stress, SOpen {Fig. 2.11), Therefore for each
point along the crack line, we can "predict" a corresponding opening
stress.  The results of this simple model are given in Fig. 5.3, in
comparison to the crack opening curves obtained from a full finite

element simulation. The match is reasonably good. There is a general
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tendency to estimate crack opening levels toc high, especially at very
short crack lengths. This may be consistent with the fact that we are
not considering crack Tlength effects, It may also reflect some
limitations of the finite element simulation associated with mesh
discretization: residual deformations associated with a given crack tip
location will not become effective until the crack has grown at least a
full aa jump. At the highest stress level, the quality of the
correlation suffers at least in part because reliable finite element
closure information is not available near or above general yield.

These figures represent a circular notch (Ky = 3). The same simple
model was applied to an elliptical notch (Kt = 7}, and the results are
summarized in Fig. 5.4. The correlation is again strong. While the
difference 1in opening behavior between the circular and. elliptical
notches 1is not great (compare Fig. 2.6), the simple model correctly
describes the Tlower opening stresses at very short crack lengths and

more rapid stabilization associated with the sharper notch.

5.3 Crack Growth Data and Correlations

This information about closure is useful only if it can be related
to changes in observed crack growth rates. Since it is not practical to
conduct a full finite element simulation of every exact problem we wish
to solve, we consider instead the application of our simple model to
correlate experimental data. In order to do this, we must {1) estimate
AK for a given notch and crack Tlength; (2) estimate the local stresses
for a given crack tip location in the corresponding uncracked body: and

(3) estimate the opening stresses corresponding to a given maximum
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stress. Task (3) was solved in the preceding paragraphs, and is based
on information such as Fig. Z.1l. We turn our attention briefly now to
the first two tasks.

Determination of the pure elastic K for an arbitrary notch gecmetry
and crack length is not a trivial task. Newman [155] has pubTished K
solutions for a limited number of notch shapes based on a boundary
collocation technique. No general closed-form solution is available,
however,

An empirical formula which provides a good fit to Newman's results

was found by trial-and-error to be given by

(x) dx} /72 (5.2)

%
K=1.12 [0.77 oyy(ﬁ) + (0.23/4) fo Ty

where ¢ describes the current crack tip location, oyy(z) is the stress
at that position in an uncracked clastic body, and the integral term
describes the average stress (also in an uncracked body} behind the
crack tip Tlocation. These quantities are further i1lustrated in
Fig. 5.5.

The simple model of Eq. (5.2) is compared with Newman's results for
a circular notch and on elliptical notch in Fig. 5.6. The match is good
within a few percent out to o/c values of 0.5 and greater. At large
8/c, Eq. (5.2) tends to overestimate K (ultimately by 1.12X).  The
advantage of the simple equation, of course, is that K can he quickly
determined for any notch geometry for which an elastic stress dis-

tribution is calculable (preferably 1n closed form).
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The second task, that of determining the elastic-plastic stress-
strain distribution 1n an uncracked, notched body, can be easily solved

by employing the well-known Neuber relationship,
K, = [KUKEJO-5 (5.3)

where Ky 1s the theoretical elastic stress concentration factor at a
given Tlocation, and K° and X are the corresponding concentration
factors for local stress and strain, respectively. While this is onty
an approximate method and does not consider. for example, stress
redistribution due to yielding, its accuracy was Judged to be sufficient
for present purposes.

Original experimental data for crack growth from notches was
available for the same hot-rolled 1026 steel considered in previous
chapters. Specimens with a rectangular cross-section of 0.1" x 1.5"
(2.54 mm x 38.1 mm} and a length (between the grips) of 4" (101.6 mm)
were cycled in Tead control. Central circular and slot-notched holes of
varying size and shape were machined in different specimens. All tests
were conducted at Smax/oo = 0.54 and R = -1. Crack Tlengths were
measured by a replica technigue.

The nomenclature associated with the slot notches is illustrated in
Fig. 5.7. The stress distribution for the notch is essentially
identical to that of its "equivalent ellipse" [156], an imaginary
ellipse with corresponding total width 2c and root radius p. The
elastic stress distribution for the ellipse (also required in order to
calculate K from Eq. (5.2)) was determined from the original equations

of Ingtis [157].
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Crack growth data from four specimens are shown in Fig. 5.8. The
solid 1ine represents the predictions of the simple model. Crack growth

rates were obtained from

da _ m
aN = CleK .0) (5.4)

where the empirical constants C and m were determined from a fit of long
crack data, independent of notch effects. The dashed line represents a
crack growth rate prediction based on a "long crack" model [153}, which
includes the notch only as a length contribution to a center crack and
neglects any Tocal stress concentration: Mogr = (Ugyop1e)dSym(are).

The currelation of the simple model with the data is, in general,
quite good, considering the simplicity of the model. There is g general
tendency to underestimate crack growth at the shortest crack lengths,
but this should not be surprising. The simple model does not explticitly
consider any effects of yielding, since linear-elastic aK is used. At
the shortest crack Tengths, the crack tip 1s still embedded in the
original notch plastic zore. It is important to point out, however,
that accelerated crack growth is taking place far beyond the original
notch plastic zone, For these stress Tlevels and notch shapes, the
boundary of the inelastic notch field, determined from finite element
analyses which account for stress redistribution, generally falls
between ¢/c = 0.1 and a/c = 0.25. The correlation appears to be poorest
for the circular notch (lower right), but this is influenced by con-
siderably greater scatter in the data. The increased scatter is due to
nonsymmetric growth of very short cracks, including the development of

corner cracks at the notch root.
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5.4 Discussion
5.4.1 Stress Ratio Effects

A1l of the analyses and data discussed so far have corres-
ponded to a remote stress ratio of R = -1. A key factor in the simple
model has been the strong dependence of Sopen/smax on Smax for R = -1.
What happens when the remole stress ratio 1s R = 07 In that case the
Sopen/smax values change only slightly with Smax’ and therefore if the
simple model is accurate, the short crack effect will be much less
pronounced at R = 0.

In fact, this is apparently true. Finite element simulations of
closure for cracks growing out of notches at R = 0, Fig. 2.7, show much
less change in Sopen with changes in crack length. Experimental data is
also consistent with this trend. Broek [139], who considered only
R=10.1 cycling, found only a slight short crack effect at notches.
Usami [146] observed a strong short crack effect at R = -1 but much less
effect at R = 0. Some of the clearest data is that of Truyens [149],
who conducted four-point bend tests on rectangular beams 75 mm deep with
a saw-cut edge notch 10 mm deep. Data from his unpublished Ph.D. Thesis
are reproduced here as Fig. 5.9.* Calculated Kmax Or 4K values were
based entirely on long crack relationships, ignoring any short crack
effects. For various stress ratios all greater than or equal to zero,
top figure, no accelerated short crack growth is observed. Very short

cracks grow at rates slower than long crack trends, as expected from

*By written permission of Dr. Truyens, November 1987.
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Fig. 5.6.  For R = -1 cycling, bottom figure, a strong acceleration

effect appears at a wide range of maximum stresses.

5.4.2 Influence of the Notch Plastic Zone
The simple models developed in this chapter have essentiaily
fgnored any influence of the notch plastic zone. Clearly, however, the
inelastic deformalion will have some impact on crack growth behavior.
It is worthwhile to briefly consider these contributions.

First of all, when a crack is growing in an inelastic field, a
1inear elastic parameter will obviously not be an accurate representa-
tion of the crack tip fields. An elastic-plastic crack growth parameter
similar to ad or aKE should be employed instead.

On the other hand, it should be realized that notch plastic zones
are typically very small. Even when remote stresses are half of the
yield stress, the plastic zone at the root of a circular hole will have
a width typically less than 0.125 of the hole diameter. At lower
stresses and for smaller holes, the notch plastic zune width may be on
the order of the microstructure. Cracks that are this short will be
influenced not only by notch plasticity but also by microstructural
short crack effects. Often crack lengths in this range are simply
assumed to be included in a crack "initiation" portion of the life,
where crack growth is not tracked at all.

Furthermore, even when crack tips are contained within the original
notch plastic zone, this does not mean that the notch zone dominates or
engulfs the crack tip events, as might be suggested by Fig. 3 of Ref.

[150]. Figure 5.10 shows finite element results for ptastic zones
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corresponding to an uncracked body and very short cracks at a notch
root. By the time the crack has grown only halfway through the original
inelastic notch field, the crack tip plastic zone at maximum load takes
a form which is relatively independent of the notch. The shape of the
crack tip plastic zone is typical of a crack in an unnotched body, and
the crack tip zone extends far beyond the original notch plastic zone.
Certainly the notch still has some effect on the size and shape of the
crack tip plastic zone, but the effect is not a dominating one.

The short crack effect at notches can not be explained entirely in
terms of notch root plasticity, or region (3) behavior as illustrated in
Fig. 5.1. Finite element analyses and experimental data both show that
under certain conditions, crack opening levels and crack growth rates
exhibit a short crack effect in the notch elastic field, region (2) in

Fig. 5.1.

5.4.3 Significance of the Short Crack Effect
Demonstrating cleverness in modeling unusual crack growth
behaviors may be great fun for the researcher, but the designer has a
different perspective. His primary concern here is probably Tlife
prediction, and his question is whether this effect is really
significant for total Tlife.

Socie, et al. [158] have shown that for a number of design problems
involving the initiation and propagation of fatigue cracks at notches,
it is possible to totally ignore any sort of short crack behavior, go
directly from initiation to a long crack model, and still make good life

predictions. This will especially be the case, for example, when
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notches are small and total component sizes large. On the other hand,
if notches are larye and component sizes smaller, a much larger percent-
age of the total 1ife may be spent in the short crack stage. In this
case, an acceleration in da/dN of 4X may be a very damaging event.
Furthermore, this closure behavior may also be significant at Tower
stresses, when fatigue thresholds and nonpropagating cracks become
issues.

In a larger perspective, the analysis presented in this chapter may
have significance beyond the notch 1ife prediction problem. The prin-
ciples involved in the simple model, relating crack opening levels to
local stresses in corresponding uncracked bodies, may have application
to a broader class of problems involving crack prupagation in nonuniform
stress fields. MWhile these simple models do not consider all effects,

their very simplicity makes them attractive to the engineering analyst.

5.5 Conclusions

1. Crack opening Tlevels change significantly as small cracks yrow
from notches. Opening levels are low at first and then
gradually rise to steady-state values as the crack tip moves
away from the notch field.

2. Transient changes in crack opening levels are not limited to
the region of the original inelastic notch field. Further
changes occur in the elastic notch field.

3. The rate of change of opening Tlevels with increasing crack
length is a function of both far-field maximum stress and far-
field stress ratio. Steady-state levels are reached more

qguickly at higher stress ratios and lower maximum stresses.
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These transient changes in Sopen can be emulated with a simple

model which considers only changes in S due to changes in

open
the Tocal stress field.

These transient changes in Sopen are quantitatively consistent
with observed trends in experimental crack growth data.
Numerical crack closure studies and experimenta) propagation
data both sugyest <that the “short crack effect" (i.e.,
accelerated crack growth) for cracks at notches will be much
less pronounced at higher stress ratios, such as R = 0, than at
lower ratios, such at R = -1,

The '"short crack effect" can occur beyond the original

inelastic notch field boundary.
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6. SUMMARY

There s 1little purpose dl this point in simply repeating the
detailed technical conclusions that have emerged in the previous four
chapters. There is value, however, in pausing for a moment to reflect
on the underlying themes and concepts which connect and motivate the
diverse findings and applications. A few words on the engineering
significance of these results are alsc in order,

A first basic concept is that nearly any phenomenon which brings
about significant changes in crack tip plasticity will bring about
changes in closure behavior. These phenomena include, for example, the
basic constitutive response of the material, large changes in far-field
stress, out of plane constraint, biaxial loading, and variations 1n
local stress fields. As these phenomena induce changes in crack opening
displacements, crack tip plastic zones, etc., they also influence
closure.

A second basic concept is the converse of the first: changes in
closure behavior can be thought of as Tlcading to changes 1in other
behaviors. Closure levels, for example, were associated with changes in
the size of the reversed plastic zones. Closure clearly leads to
changes in crack opening displacements. Accurate estimates of these
other quantities will depend on some knowledge of the closure event.

A third basic concept is the sum of the first two. Closure
behavior can be thought of, along with plastic zone sizes and crack
opening displacements, as simply another evidence of more fundamental
changes in crack tip plasticity. This thesis, as well as much other

previous and current research in fatigue crack growth, has sometimes
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seemed to treat closure as the "Answer," the once hidden and now
revealed key to the mystery of why fatigue cracks grow at certain
rates. Rather than being the end of the search for answers, however,
closure may provide instead a clearer road map to more fundamental
answers. The real mechanisms of crack advance probably have 1ittle to
do with the precise moment at which a crack tip first becomes fully
open. But those mechanisms may be clesely relaled to the cyclic plastic
strains at the crack tip, and closure may need to be considered in order
to accurately characterize or predict those strains.

So if closure is not really the fundamental issue, why give it so
much attention? One answer to that question, and the fourth basic
concept in our list, is that closure is one of the simplest and most
accessible factors in fatigue crack growth. Closure information can be
conveyed with a single scalar value and can be easily combined with
simple field parameters such as aAK or one of the several similar
elastic-plastic parameters. This is much easier, at the present time,
than attempting to directly describe the crack tip plastic strain range,
and also easier than characterizing the size and shape of the crack
opening displacement or crack tip plastic zone. This is particularly
important for engineering applications.

A fifth basic concept is also related to engineering applica-
tions. Crack closure is an attractive framework within which to con-
sider many different effects simultanecusly. FEach of the individual
problems which has been addressed in this thesis has certainly been
addressed before, and in many cases successful engineering solutions

have been proposed. There are parameters to handle mean stress effects,



109

parameters for high strain effects, parameters for short crack effects,
parameters for biaxial effects, parameters for variable amplitude
effects, and so on. In most cases these are different parameters for
different effects. And on occasion a parameter which is entirely
successful in characterizing one effect will give precisely the wrong
indication for ancther effect. For example, plastic zone sizes are a
generally good predictor of biaxial crack growth rates (the two increase
together), but 1in thicker sections, when plane strain constraint
decreases the size of the plastic zone, crack growth rates generally
increase. And what happens when two or more effects occur simul-
taneously? Current elastic-plastic parameters do not accommodate mean
stress effects, for example. But crack closure provides a unified
approach, a single parameter which can account for a wide range of
effects.

A sixth basic concept is that crack closure information need not
always be considered. This is evidenced, of course, by the many years
of successful fatigue research and design conducted 1in ignorance of
closure behavior. Fatigue crack closure always occurs, but it must be
considered explicitly only when there is a significant change in closure
levels from case to case. Closure levels tend to change relatively
1ittle at higher stress ratios, lower maximum stresses, and greater out-
of-plane constraint, and so in these cases can often be ignored without
consequence. With Tlower stress ratios, higher maximum stresses, and
lesser out-of-plane constraint, however, crack opening stresses can vary
widely, and typically must be considered to correlate data success-

fully. Another way of saying this is that crack closure is particularly
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an issue in problems which involve intermediate and large scale
yielding. In some (but not all) problems 1in small scale yielding,
closure is not a significant issue.

An obvious limitation of detailed closure analysis is the computa-
tional expense and difficulty involved. The average engineering analyst
will neither have access to a CRAY nor the time for detailed modeling
studies. But (this is the seventh basic concept) the basic results of a
closure anglysis are very accessible. The majority of the applications
to experimental data reported in this thesis were based on a single line
in a single figure, Fig. 2.1l. While a great many parameters do have
some bearing on closure levels, the changes 1in SOpen are generally
smooth and continuous. It weuld be possible, for example, to develop a
set of master curves for SOpen as a function of basic parameters at
chosen values of the parameters. Intermediate values could be easily
interpolated. A similar scheme has been developed by Newman [39] for
his modified Dugdale closure model; he has developed a single empirical

formula which gives an estimate of S as a function of S R, and

open max?®
constraint level. These simple analytical models also remain a powerfu’l
tool for the engineer. They are generally much simpler numerically,
much less expensive computationally, and, with calibration by a more
sophisticated analysis, can provide reliable results.

In conclusion, the study of crack closure by the finite element
method has provided a great many insights into the phenomenon of fatigue

crack growth. Further studies in the area appear to hold great promise

for even more significant progress,
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Figure 2.17 Active plastic zone shapes al maximum load for
different maximum stresses.
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Figure 2.19 Active plastic zone shapes at minimum load for
different maximum stresses and stress ratios.
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Figure 3.4 Schematic representation of hysteresis loop
showing alternate scheme for ecstimating
effective stress and strain ranges, as
proposed by Dowling [110].
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Figure 3.7 Growth rates for small cracks during
low cycle fatigue in a 1026 steel.
(top) correlated with aJ
(bottom) correlated with ad £ based on
experimentaliy medggred opening stresses



da/dN (mrﬁ/cyc!e)

146

10-2 T T T T T T T T T T TT1]

L 1026 Steel i

" R=- .

i center crack, 2a > 12 mm _
102 | ° =

- o .
10—% | -
10Q-5 ] 1 111

1071 101

Figure 3.8 Growth rates for moderately long cracks during
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correlated with AJeff.
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cylindrical specimens of a 1026 steel,
as correlated by Adeff'
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Figure 3.11 Crack growth rates for different maximum stresses

(R = -1), crack lengths, and specimen geometries
in a 1026 steel, as correlated by Aaeff‘



150

A=S,/S,

A | Stress State

-1 Shear
0 Uniaxial
+1 | Equibiaxial

Figure 4.1 Schematic representation of a cruciform

specimen for biaxial fatigue testing with
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Figure 5.5 Nomenclature for the empirical expression for K at a notch.
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present empirical equation for the stress
intensity factor of a crack growing from a notch.
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