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Flow rule coefficient
Area of bar 1, area of bar 2
Back stress
Effective back stress or back stress
Saturated drag stress
Back stress hardening constants
Drag stress hardening rate coefficient
Thermal coefficient of expansion
Back stress recavery coefficient
Two bar model geometry term
Back stress recovery exponent
Kronecker deita

Elastic modulus

Elastic modulus of bar 2 in the two bar model

Total strain rate
Elastic strain rate

Inelastic strain rate

Effective inelastic strain, effective inelastic

strain rate

Mechanical strain rate
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Thermal strain rate
Strain amplitude
Minimum strain
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f or f{o/K) Flow function

Y Shear strain rate

ha Back stress hardening function

hy Drag stress hardening function

K,K Drag stress, drag stress rate

Ko Initial drag stress

Ksat Saturated drag stress

21,12 Length of bar 1, length of bar 2

ni»No Flow rule exponents

R Gas constant
51,32,33 Principal deviatoric stress components
Sij’éij Deviatoric stress, deviatoric stress rate
?j’.gj Deviatoric back stress, deviatoric back stress rate
cij’éij Stress, stress rate

- Effective stress

as/u Shear stress normalized by the shear modulus
r Back stress recovery function

L Drag stress recovery function
?,% Temperature, temperature rate

%heat Thermal heating rate

.coo1 Thermal cooling rate

min Minimum temperature
Tmax Maximum temperature

v Poisson's ratio

t Time

<] Drag stress temperature dependence term



1. INTRODUCTION
1.1 Background

Engineering components are subjected to a variety of temperature
and strain or stress histories in service. These histories may produce
material damage that could lead to component failure. The needs of the
nucltear, ground vehicle, and aerospace industries have stimulated
research work 1in developing constitutive models to predict material
stress-strain behavior under isothermal and non-isothermal TJoading
conditions [1-3]. A general constitutive model should accurately
predict observed isothermal material behavior phenamena such as cyclie
transient hardening or softening to a stable state, mean stress
relaxation under mean strain cycling, strain rate sensitivity, strain
ratchetting under mean stress cycling, stress relaxation under strain
holds, and creep behavior under stress holds [4]. The model should also
be able to simulate wmultiaxial material response and complex
temperature-strain histories.

Many constitutive models have been proposed that can predict a
number of the material response characteristics listed above [3,5-20].
Time independent models based on yield surface theory have been
introduced and utilized [5-10]. Accurate material response predictions
have been performed with a single and multiple yield surfaces for
proportional and non-proportional Toading. These models can predict
mean stress relaxation under mean strain cycling, ratchetting under mean
stress cycling, and transient cyclic material response. They can not
simulate stress relaxation under strain holds, creep straining for

stress holds, or strain rate sensitive material response.



The yield surface based models were modified by adding a time
dependent creep strain component to the time independent plastic strain
component. This improved slow strain rate predictions where creep
effects dominated [21]. Yet it could not provide accurate material
simulations when a wide range of strain rates were considered. The
separation of the strain rate components has also been found to be
unjustified on a microstructural basis. Since creep and plasticity both
result from dislocaticn generation, motion, and annihilation, the
inelastic strain compornents should interact. This interaction has been
found  experimentally [1.4.19]1., making a separate treatment
unjustified.

A more accurate time dependent constitutive model is needed for
high temperature material design. Unified theories have been proposed
that did not separate plastic and creep strain components, but treated
them in a unified manner as inelastic strain [3,11-20]. The unified
theories were based on a state representation that included hardening
and recovery functions consistent with the Bailey-Orowan theory
[22,23]. These theories have the potential to predict material response
for creep and cyclic plasticity subjected to isothermal and thermo-
mechanical loading once the constitutive equations and material
constants are established.

In early studies, a single state variable unified model had been
implemented for monotonic rate-dependent material response [11,13].. The
single state variable model utilized an fisotropic drag stress that
evolved throughout the defarmation history. The model had also been

modified to account for cyclic deformation with two disotropic state



variables [12] which produced accurate cyc1ﬁc predictions, but was
susceptible to instabilities, particularly at low temperatures [21].

Two state variable unified models were also introduced to account
for combined isotropic and kinematic hardening [3,14-20]. These models
are capable of predicting transient material response, mean stress
relaxation, strain hold stress relaxation, cyclic plasticity, and stress
hold creep. Thermo-mechanical simulations have alsu been performed
[3,18-21], but only for limited temperature-strain histories in many
cases.

A wide range of temperature-strain histories should be (but rarely
are) considered to identify model shortcomings and limitations., Many
unified models may be inaccurate for low Lemperature simulations where
many engineering materials exhibit rate insensitive material behavior
[3,14,18]. Low temperature rate insensitive material behavior may cccur
if a different mechanism is activated that is not present in the high
temperature experiments that are usually used to determine material
constants.  Different deformation mechanisms have been identified in
deformation mechanisms maps [24], but are rarely considered 1in
constitutive model development. A constitutive model is needed that can
account for relative rate insensitive material behavior obtained at low
temperatures, as well as highly rate sensitive material behavior
observed at high temperatures.

An experimentally based unified model will be presented .that
accounts for different deformation mechanisms. The constitutive
functions will not he chasen a priori, but will be derived directly from

experiments. The model capabiiities will be presented to produce



relative rate insensitive and rate sensitive material behavior obtained

at different temperatures. The model will then be checked with critical

thermo-mechanical experiments that are independent of those that provide

the material constants.

1.2 Purpose and Scope

In this study:

(1)

(2)

(@)

(3)

An experimentally based unified model will be presented for
isothermal and thermo-mechanical loading.

A consistent systematic method will be presented for determin-
ing the model constants.

The model will be capable of accounting for different deform-
ation mechanisms that may occur when a wide range of strain
rates and temperatures are considered.

The model will be checked with critical independent thermo-
mechanical experiments with different temperature ranges and

Lemperature-stralin histories.



2. EXPERIMENTAL PROCEDURE

The material examined was a 1070 stee] (Class U) typically used in
railroad wheels. Isothermal and thermo-mechanical computer controlied
tests have been performed on this material with smooth specimens, For
the isothermal tests, a three zone resistance furnace was used with a 20
kip MTS load frame. Stress, strain, and temperature were continuously
recorded and stored. For more details on the experimental techniques,
refer to Ref. [25-27].

For the thermo-mechanical tests, the two bar model was utilized.
Two bars 1in parallel are shown in rig. la. In this case, bar 2 is
assumed to remain isothermal and elastic while bar 1 is subjected to a
temperature history. Two bars in series are shown in Fig. 1b. 1In this
case, bar 2 is assumed to remain elastic while both bars undergo the
same temperature history. The governing axial strain rate equation for
bar 1 can then be derived from equilibrium and compatibility

requirements as

‘mech , -th _ -.-net -g
€ + ¢

= ¢ “tc (parallel bar model, Fig. la)
2
(1)
. )
cmech , cth _ gnet | %Ef - Eg st (series bar model, Fig. 1b)
2 1
where :™CN 15 the mechanical strain rate which is the sum of the

elastic strain rate and the inelastic strain rate, éth is the thermal

strain rate, net

is the net or total strain rate, o is the stress rate
on bar 1, Eo is the elastic modulus of bhar 2, Als Ay, T and 8, are

respective bar areas and lengths, and C = Azml/Algz and 22/11 are geom-



etry terms that provide different constraint cbnditions. Bar 1 in the
two bar model is heated with a 2.5 kW induction heater and is allowed to
cool in the laboratory air. The net strain was measured throughout the
tests with a high temperature 25.4 mm axial extensometer with quartz
rods. The test system schematic is shown in Fig. 2. A detailed

discussion of the two bar model can be found in Ref. 25,26.



3. TIME-DEPENDENT MATERIAL BEHAVIOR
2.1 The Unified Theory and the State Representation

The concept of a material state was presented in the development of
the unified theory [3,11-20]. Two state variables were found to be
sufficient in representing combined isotropic and kinematic hardening.
The two state variables possess the physical interpretation in
deviatoric stress space shown in Fig. 3. The drag stress state
variable, K, is related to the stress surface size. The deviatoric back
stress state variable, S?j’ represents the stress surface center in
deviatoric stress space. The effective stress o, is a measure of the
distance between the current stress Sij’ and the current deviatoric back
stress S?j'

In the unified theories, inelastic flow may occur inside the stress
surface, though it will be small. The stress state can alsoc move
outside the stress surface, where inelastic flow occurs readily. The
internal state will evolve throughout the deformation history in a

recovery-hardening formal ds,

C _ 2 -in C
5573 Mg 543 7 o 345 (2)
K= hk -t oT (3)

where ng is the deviatoric back stress rate, S$1 is the deviatoric .back

stress, é}g is the inelastic strain rate, K is the drag stress rate,

T is the temperature rate, o is the drag stress temperature dependence

term, haand hk are the hardening functions, and L and re are the



recovery functions. In general the hardening and recovery functions are
dependent on the temperature, the drag stress, Lhe effective back

stress, o, and the effective stress, o. The effective guantities are

— 3 .C C

a = /E S1J 513 (4)
7=, _ <€ .

g = '/2 (Sij Sij)(sij Sij) (9)

where the deviatoric stress is related to the stress, °1j’ as

!
Si57 93 7 7 45 %k (6)

where Gij is the Kronecker delta, and the deviatoric back stress is
related to the back stress, aij’ as

c . 1
S"lj = O'T'J' -3 61.‘]. akk (7)

The inelastic strain rate components are determined with the flow
rule that is a function of the internal state. The flow rule will be
taken as a function of the effective stress normalized by the drag

stress, or
si._s‘;.
oA (8)
a

where f(a/K) is the flow function and the 1last term in equation 8
produces the individual inelastic strain rate components for multiaxial

Toading.



The functions f, rys N, M vy, and o need to be determined from
experiments. A systematic method will be presenled for determining each

functional form and the model constants.

3.2 Strain Rate Sensitivity and Deformation Mechanisms

The unified constitutive model should be capable of producing com-
plex time dependent material response for & wide range of temperatures
and strain rates. Figure 4(a) shows constant strain rate material
response schematically. The strain rate is increasing by a factor of
10. For the slow strain rate regime (¢ < 102c), the material exhihits a
high degree of strain rate sensitivity. In this slow strain rate
regime, decreasing the strain rate by a factor of 10 will significantly
decrease the measured stress response. For the fast strain rate
regime (e > 103c), the material exhibits a Tlow degree of strain rate
sensitivity. Increasing the strain rate by a factor of 10 in this
regime does not significantly increase the measure stress response. The
different degrees of strain rate sensitivity can also be observed by
considering different temperatures. In Fig. 4(b) the material response
at two strain rates (¢ = ¢ and 10c) is shown at a low temperature
(T = Tiow) and at a high temperature (T = Thigh)‘ At the low
temperature, the material is rate insensitive, while the material is
rate sensitive at the higher temperature for the same strain rates.

The different strain rate sensitivity regimes at different strain
rates and temperatures are due fo different microstructurally activated
deformation mechanisms that have been identified by Irost and Ashby [24]

and should be included in constitutive models. A deformation mechanism
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map for 304 stainless steel is shown in Fig. 5 as an example. (A
similar map could also be constructed for 1070 steel). The shear strain
rate, y, is plotted versus the shear stress normalized by the shear
modulus, aS/u. Isotherms are shown by the thin solid Tines through the
diffusional flow, power law creep, and plasticity deformation mechanism
regimes.

The plasticity mechanism dominates for combinations of high
stresses and fast strain rates where the material exhibits rate
insensitive flow for constant strain rate experiments. Here, the
inelastic strain rate is exponentially related to the stress which
corresponds to the steep slopes of the isotherms on the deformation
map .

The power law creep mechanism dominates for combinations of inter-
mediate stresses and temperatures. The material exhibits a high degree
of strain rate sensitivity for constant strain rate cases. Far the
power law creep mechanism, the strain rate is proportional to the stress
raised to a constant expanent.

When diffusional flow s the operative mechanism, the inelastic
strain rate is proportional to the stress (stress exponent is unity).
Diffusional flow dominates for combinations of low strain rates, high
temperatures, and low stresses.

The different deformation mechanisms influence time dependent
material response significantly, and will be incorporated into. the

proposed constitutive model.
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4. THE EXPERIMENTALLY BASED UNIFIED CONSTITUTIVE MOBEL

4,1 The Flow Rule

The flow rule (Eq. 8) is used to calculate the inelastic strain
rate as a function of the material internal state. The flow rule should
account for different deformation mechanisms that lead to different
strain rate sensitivity regimes [28]. By considering a wide range of
testing conditions and three simplifying assumptions regarding the
material internal state, it is possible to determine the functional form

of the flow rule directly from experiments.

1} First, assume that a set of specimens exist that are identical

prior Lo testing.

This group of specimens that are identical should initially possess the

same internal state.

2) Secondly, assume that the internal state is known, or can be

measured either directly or indirectly from experiments.

The 1initial back stress can be measured from the material anisotropy.
If the material is isotropic in the virgin state, the back stress is
initially identically zero. The initial drag stress, Ko= is determined

from the material yield stress which can also be measured.

3) Finally, assume that the material state docs not evolve to some

new internal state until appreciable inelastic flow occurs.
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Nearly elastic flow will not change the material internal state as long
as very high temperatures are not considered where material annealing
(recovery) is significant.

With these three assumptions and a set of disothermal constant
strain rate, constant stress rate, and/or stress hold creep experiments,
the flow rule can be determined directly from experiments. A small
inelastic offset can be used to measure the stress and the inelastic
strain rate for these tests. If the offset is small, the material
internal state will not have evolved appreciably from the initial
conditions (assumptions 3) which are known (assumption 2). Inelastic
strain rate versus yield stress measurements for 1070 steel is shown in
Fig. 6.  For high temperatures (T 2 600°C for 1070 steel), a strong
strain rate dependence exists on the yield stress. This s
characteristic of the power law <creep mechanism. For Tower
temperatures, the material exhibits relative strain rate
insensitivity. This is characteristic of the plasticity deformation
mechanism.

The horizontal axis in Fig. 6 can be normalized for different
temperatures by taking K, as the yield stress at the plasticity-power
taw creep mechanism intersection. At 400°C, both mechanisms have been
observed experimentally for the strain rate considered, which allows for
the drag stress to be determined directly. For other temperatures where
extensive strain rate measurements are not available, it is possible to
get an approximate measure for the drag stress. Taking K,/E = constant,

where £ is the elastic modulus, KO is determined as a function of
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temperature. The elastic modulus temperature dependence is shown in
Fig. 7. With the 400°C measurements, Ky/E = 1.3 x 1073 for 1070 steel.

With this procedure, plasticity is the governing deformation
mechanism for stress states outside the stress surface, and power law
creep is the governing deformation mechanism for stress states on and
inside the stress surface. Diffusional flow has not been encountered
since low stress and low strain rate experiments have not been
performed.

The flow rule that fits the experimental measurements is

-in _ 3 A(E)nl Efii_:_fgil for 9 1 (9)
*ij T 7 " = K =
and
in _ 3 "2 (S5 - 553 -
ey =z Aexpl(p) -1 —— forZ>1 (10

c

where A, nis and ny are material constants. The flow rule for 20°C to
700°C is shown in Fig. 8 for 1070 steel. The effective inelastic
strain, ¢ , in Fig. 8 is

¢ 3 %95 %ij
The high slope in the plasticity mechanism regime corresponds to rate
insensitive material behavior as observed on the deformation mechanism
map. The lower slope (ny) of the power law creep deformation mechanism

corresponds to rate sensitive material behavior. The temperature de-
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pendence  of A = A(T) is shown in Fig. 9  where

A= A' expl-aH/R (T + 273)].

4.2 The Back Stress

The back stress Stéte variable 1is important for stress hardening
materials.  As suggested by Onat [16,29], it is possible to get a
measure of the internal state for uniaxial Tloading with a rapid
unioading-reloading cycle shown in Fig. 10. The material is taken to
start at zero stress and strain in some initial state. The material
state will then evolve throughout the defarmation history 0-A. At point
A it is possible to run a very fast cycle B-B' to get a measure of the
material state at A. The mean stress of cycle B-B' is a measure of the
material anisotropy and is equal to the back stress. The elastic range
will correspond to twice the drag stress 2K. If the cycle B-B' is very
fast and has a small inelastic strain range, it will not change the
internal state significantly, but will provide a measure of the internal
state at A, and allow the test to be continued (shown by the dashed
line}. However, at high temperatures it is very difficult to run the
cycle B-B' fast enough such that recovery and time dependent affects are
insignificant. This requires approximate state measurement techniques
to determine the evolution equations for high temperature rate sensitive
behavior.

The back stress can be measured approximately from the monotonic
reversal as the current stress subtracted from the material yield stress
shown schematically in Fig. 11. Ffor very Tow temperatures (T = 20°C for

1070 steel), the recovery term will be negligibly small (the stress will
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not saturate except at very large strains), and the stress hardening can
be measured to determine ha from the o - ;in plot (Fig. 12). For
reverse plasticity (“ij é:g < 0), the back stress will decrease in
maynitude rapidly. The evolutian of aij for reverse plasticity must be
established by considering the cyclic response and noting that ha is
continuous around.aij = 0.

The recaovery function r is determined with steady state material
response where M - constant and 5 = 0, so &ij - K = 0. Steady state
stress hold creep response or saturated constant strain rate monotonic
response can be used (Fig. 11). Equation (2) can be rearranged to
determine Ty for different vatues of %3 and temperature.
For r = c(|51)d, the exponent d s determined as shown in Fig. 13a.

The coefficient ¢ = c(T), is determined as shown in Fig. 13b, where

¢ = c'exp[-G/R(T+273)].

4.3 The Drag Stress

The initial drag stress Kg can been cstablished by examining the
inelastic strain rate-stress response. The evolution of the drag stress
can be determined by examining the cyclic material response. A small
inelastic offset can be used to measure the cyclic unloading-reloading
elastic range which 1is related to 2K, The drag stress hardening
function considered that can produce cyclic hardening or softening to
the stable state is
- JE (12)

h =8 [Ksat
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where K... and B are material constants, and éin is the effective in-
elastic strain rate. For Ksat > K, the material will cyclically harden,
ar k > 0. For Ksat < K, the material will soften, or k < 0. For
Ksat = K, the material is cyclically stable, or k = 0. The constant
Keat was determined from the saturated response in cyclic
tests (sa = 1.0%). The constants Ko and K. 4 versus temperature are
shown in Fiy. 14, The material cyclically hardens significantly at
intermediate temperatures (100°C < T < 400°C), and hardens a small
degree at low temperatures (T < 100°C) and at high temperatures (T >
500°C}. The hardening or softening rate to the saturated response is
controlled by the constant B. By rearranging Eq. (12) it is possible to
determine B directly from experiments (Fig. 15). Ihe hardening rate is
taken to be temperature insensitive.

The recovery term rk is important when material annealing becomes
significant. To determine ry, two specimens can be work hardened with a
cyclic history. After a set amount of work hardening has been
completed, both specimens can be subjected to an incremental strain step
down history shown schematically in Fig. 16(a). The step down will
reduce the back stress to approximately zero, while the material retains
its work hardened state (a + 0, K > Ko). The subsequent work hardened
stress-strain response after the step-down for specimen 1 is shown
schematically in Fig. 16(b) by the dashed line. The second specimen is
heated at zero stress to a temperature that will produce annealing.
Specimen 2 can then be cooled and the subsequent stress strain material

response {with the drag stress recovery) is shown in Fig. 16b by the

solid line. The changes in drag stress for each test can be measured
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and related to the drag stress recovery term r.. For the temperature
range of interest for 1070 steel (T < 700°C), annealing effects are
small and the recovery term ry will be neglected.

The thermally activated term o accounts for the temperature
dependence of the drag stress and any thermally activated mechanisms
that may not be present in isothermal loading. In this study the
temperature dependence of the dray siress is accounted for in a simple

way as @ = aKD/aT.
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5. MODEL PREDICTIONS AND EXPERIMENTAL RESULTS

5.1 Isothermal Loading

The constitutive model functions are given in Table 1. The
material constants for 1070 steel are given in Table 2. Model
capabitities to produce complex rate dependent material behavior at
different temperatures are shown in Figs. 17 through 19. At 20°C
(Fig. 17), the material response is relatively rate insensitive for ¢ =
10“10 sec'l to £ = 100 sec‘l. At 400°C (Fig. 18), the material response
is rate sensitive for strain rates slower than 1079 sec'l where power
law creep 1is the dominant deformation mechanism. For strain rates

faster than lO"4 sec"l

, the material response becomes rate jnsensitive
as the plasticity mechanism dominates. At 600°C (Fiy. 19), the material
exhibits a strong degree of rate sensitivity over the entire regime of
strain rates considered.

Cyclic model predictions are compared to experiments for 20°C to
700°C in Figs. 20 through 28. Cycles are plotted out logarithmically
(1,2,4,8,16,32,...) to capture the initial and the stable cyclic stress
strain response. Cycle numbers are given next to the hysteresis loops
at the maximum stress. The temperature and strain rate is shown on each
figure.

A mean strain simulation has been performed to check the model
capabilities to produce mean stress relaxation. In Fig. 29, a 20°C mean
stress relaxation prediction and the corresponding experimental material
response is shown. The predicted mean stress approached zero faster
than expected, but the overall material response characteristics is

captured.
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Stress hold relaxation predictions are shown in Figs. 30 and 31 for
400°C and 600°C, respeclively. The predicted stress strain response
and also the stress-time response is given. The stress relaxed during
the strain hold for both cases considered. No experimental results
were available for comparison.

The back stress-strain evolution for cyclic
tests (e = 0.002 sec'l) at 20"C, 300°C, and 600°C, are shown in Fig.
32. For 20°C and 400°C, the recovery term (ra) is small, and during
elastic wunloading the back stress remains approximately constant
(Figs. 32a and 32b). During reverse plastic Toading the back stress
decreases in magnitude rapidly to zero before increasing in magnitude
gradually, capturing the stress hardening behavior. At 600°C, the
recovery term 1is significant, and the back stress decreases during
elastic unloading.  The back stress then decreases to zero during
reverse loading before saturating to a constant value (Fig. 32¢).

The drag stress evolution for the same cyclic tests is shown in
Fig. 33. The initial drag stress (K = Ko @t t = 0) decreases with
increasing temperature. At 20°C and 600°C the drag stress remains
nearly constant which corresponds to the stable fully reversed cyclic
response observed. At 300°C, the drag stress increases significantly.
This increase corresponds to a large degree of cyclic hardening. The
model is capable of producing different transient response

characteristics at different temperatures.
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5.2 Thermo-Mechanical Loading

The constitutive model has also been checked with fndependent
thermo-mechanical loading experiments. Various temperature ranges and
different temperature-net strain histories have been performed utilizing
the two bar structure (Fig. 1). The specimen simulating bar 1 s
heated, and is forced into compression due to the constraint of bar 2.
If bar 1 is heated far enough, 1t may yield in compression. The
stresses in compression may then start to drop off if the material
strength decreases with temperature. As the bar is cooled, the stress
direction reverses and tensile yielding may occur.

Experimental and predicted thermo-mechanical material response for
bar 1 in the two bar model is shown in Figs. 34-37 for different con-
straint conditions. The parallel bar model (Fig. la) is used for total
constraint material response shown in Fig., 34 (C » =, et 0) and for
partial constraint material response shown in
Fig. 35 (C = 1, M€t -&/EZ). The series bar model (Fig. lb) is used
to identify the over constraint condition shown in
Figs. 36-37 (C » = and s,/2,= 1, "% = -¢™). The mechanical, thermal,
and net strain versus stress response is given in Figs. 34-37.

The temperature rates for each thermo-mechanical experiment is
given in Table 3. The temperature rates can be used to calculate the
mechanical strain rate of the thermo-mechanical histories. In general,
the heating rate was faster than the cooling rate, but the average
mechanical strain rate is approximately 0.00015 sec‘l for the partial
and total constraint histories, and the rate is on the order of 0.0007

sec'l for the over constraint histories.
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Total constraint (én8t= 0, cmech. -éth) has also been examined
in depth for different temperature ranges. Figures 38 Lhrough 41 show
various mechanical strain-stress plots for different total constraint

conditions. Predictions compare favorably with the experiments.
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6. DISCUSSION

An experimentally based unified creep-plasticity constitutive model
has been developed for isothermal and thermo-mechanical Joading. The
functional forms were not chosen a priori, but established directly from
the experiments. A systematic non-iterative method is presented for
determining the material constants from standard isothermal creep and
constant strain ratec tests. Deformation mechanisms were fincorporated
into the constitutive model to produce complex time dependent material
response for temperatures ranging from 20°C to 700°C. At 20°C, the
material model simulated material behavior that was relatively rate
insensitive (Fig. 17). At higher temperatures (T > 400°C for 1070
steel), the model simulated material behavior that was highly rate
sensitive (Fig. 19). The model was also able to produce different rate
sensitivity regimes at the intermediate temperatures (Fig. 18).

Thermo-mechanical predictions independent of the thermo-mechanical
experiments provide a critical check on the material model. For the
Lhermu-mechanical experiments, different deformalion mechanisms are
activated throughout the temperature-strain history. At the low
temperature end, the material may be rate insensitive where plasticity
is the governing deformation mechanism. At the high temperature end,
the material may be highly rate sensitive if power law creep is the
governing deformation mechanism. Since the model accounts for both
mechanisms and the complex time dependent response that result from
them, the predictions match the experimental response for the thermo-

mechanical cases considered.



23

It would also be dinstructive to check the model with non-
proportional loading histories. Additional hardening observed in non-
proportional Toading [10,11] may be vreadily incorporated into the

consiitutive model.



1)

2)

3)

4)
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7. CONCLUSIONS
Defarmation mechanisms influence material behavior and should be
incorporated into unified creep-plasticity constitutive models to

provide accurate temperature and strain rate effects.

Material behavior over a wide range of temperatures and strain rates

should be studied in constitutive model development and evalualion.

Loading histories independent of the experiments required to derive
the material constants should be considered in constitutive model
development. In this study critical independent thermo-mechanical

historics were considered for constitutive model evaluation.

The choice of hardening and recovery functions and the flow rule a
priori places an undesirable and misleading constraint on the
constitutive equations. The functions may be readily established

from experiments as illustraled in this study.
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Table 1 Constitutive Functions for 1070 Steel

Strain Components

th < gt
— 1 -
A(c/K) for o/K < 1
f(a/K) = {
n

A expl(5/K) 2-11  for a/K > 1
€. = (1) 6, - vo 6. .1/E = [(1=v)a,, = vo, 6. -&%/EZ
i ij kk®1j ij kkSig! 3T

Back Stress Evolution

-in
<C

ha = { _
c -in
- d

= *

ry = cla/a*)

Drag Stress Evolution

_ —in

hk = B(KSat - K) ¢

r‘k:O



where

e
[

=in
€
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Table 1 (continued)
v 3(s., - SS(s,. - 5SS
Z2 \“Wij 13/\43 ij
3 € cC
v 5 Sij Sij
_ 2 -in .in
= /3 Eij Eij

Alexp[-aH/R(T + 273)]

c'exp[-G/R(T + 273)]

e

1~ T

hy = hoT

2

=h, + h,T + h.T

3 4 5

2
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Table 2 Material Constants for 1070 Steel

8 = 1.7 x 107%/°C
At = 4,0 x 109 sec:'1
aH = 210.6 Kd/mole
nl = 5.4
ny = 8.3
v = 0.3

= 48,000 MPa
b = 100
o = 100 MPa
¢! =6.0x 1014 sec'1
G = 249.0 Kd/mole
d = 3.3
B = 5.0

For T < 440°C

e; = 202250 MPa, e, = 31.0 MPa/°C

=
—
!

= 262.7 MPa, h, = 0.04 MPa/°C

For T > 440°C

= 309990 MPa, e, = 275.7 MPa/°C

m
Pt
i

0.36 MPa/°C

1l

jun 20
—
I

= 403.0 MPa, h,

For T < 304°C

hy = 256.0 MPa, h, = 0 MPa/°C, hg - 1.4 x 1073 MPa/°C2

For T > 304°C

hy = 568.0 MPa, hy = -0.6 MPa/°C, hg = O MPa/°C?
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Table 3 Thermo-Mechanical Test Summary

Figure Trin(°C) Tnax(°C) Theat {°C/sec) Tco01(°C/sec)

No.

34 150 600 12.0 -3.5
35 150 600 12.0 ~-3.5
36 150 450 10.0 -5.0
37 150 400 10.0 -5.0
38 400 700 11.5 -8.0
39 400 600 9.0 -7.0
40 500 700 11.5 -7.5
41 500 600 11.5 -7.0



29

L L L L 2L LLLL L LEL T

A Bar |

L / N\

 J

"

(a) Total and Partial Constraint

T
s /\/\
i
AI{I -

TN A A A

(b) Over Constraint

Figure 1 Two Bar Model Schematic
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Figure 3 State Representation in Deviatoric Stress Space
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Figure 8 Experimental Determination of the Flow Rule
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Figure 10 Internal State Measurement Technique with a Rapid
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€ = constant

~a(t) C—!S(]f

Stress

At Saturation:

& = O = hC! é‘m' ra asm
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Figure 11 Measurement Technique for the Evolution of the Back Stress
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Figure 15 Determination of the Drag Stress Hardening Rate, B8



45

Stress

Saturated Respense

/

Strain

N

Step Down
Response

Specimens # 1 and #2

(a) Incremental Stepdown Test Stress-Strain Behavior

Work Hardened (Specimen #1)

Stress
)

Drog Stress Recovery
(Specimen #2)

Zero Stress Recovery
Temperature Hold (Specimen #2)

—

Strain

(b) Stress-Strain Behavior After Work Hardening (Specimen# 1)

and after a Temperature Hold (Specimen# 2)

Figure 16 Determination of the Drag Stress Recovery Function, "
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Figure 17 Strain Rate Sensitivity at 20°C
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K, Drag Stress (MPa)
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Figure 33 Predicted Drag Stress Evolution
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