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1. INTRODUCTION

1.1 Background

Fatigue 1life prediction methods have been refined over a period of
years to allow designers to better estimate the longevity of components.
Crack formation models (sometimes denoted 1n1tiation), commonly associated
with smooth specimen behavidr, and large crack propagation criterion (1,2)
employing fracture mechanics concepts, have been used to characterize a
material's cyclic behavior. These data are generally acquired on labora-
tory specimens, rather than the actual critical location of the component,
and methods to correlate these data to the actual member have been developed.

The concept of an eTastic stress concentration factor, Kt’ haé been
employed to correlate notch and smooth specimen behavior for long lives
(>10%8). Further investigation revealed that small notches do not have
their full theoretical effect in fatigue, and the concept of Kes the fatigue
notch factor was introduced (3,4). Topper et al. (5) extended this work to
include the finite Tife region by employing Neuber's rule {6}. The appro-
priate value of Kf was found to depend on the material, geometry, load level,
load history, and the definition of failure (specimen separation or some arbi-
trary crack size). Crack propagation 1ife is generally ignored in these anal-
yses, although this assumption is not always justified (7). Another approach
has been to assume some intrinsic flaw size, and employ fracture mechanics
concepts to calculate an expected life. No definite demarcation exists be-
tween these two methods, although attempts have been made to merge them (8,9).

The desire to analyze variable service histories necessitated the cate-
gorization of events, such that damage could be assigned from the constant
amplitude baseline data. Range crossing, range mean, range pair, and rain-
flow counting are common methods employed to reduce complex loading histories.
It has been shown that the rainflow method provides the best correlation with
smooth specimen data (10), and also for crack growth models (11). An effi-
cient computer algorithm for rainflow counting has been developed by Downing
and Socie (12).

Once these events have heen identified, and a "damage" assigned, the

problem of how to assemble these individual damages into a total life assessment



remains. Miner (13) proposed a Tinear damage summation,

ne—3=5

n,
i =1 [1]
3=1 7]

considering that each event induces damage in direct proportion to its
constant ampljtude life. A short overview of some other damage criteria
is given by Leve (14).

In many service situations the Targe strain excursion or major cycles
are few in number relative to the smaller events. The presence of the major
cycle constitutes an "overload" or "overstrain,” and the relationship between
the larger cycle(s) and smaller cycles produces what is frequently denoted as
sequence, interaction, or memory effects. Despite the great amount of work
that has been done in this area, no clear explanation has emerged to explain
the reduced fatigue Tives recorded due to these interactions. Brose et al.
{15), have chosen to modify the baseline data, rather than alter the damage
accumulation criterion, by performing overstrain fatigue tests. A modifica-
tion to the slope of the stress-1ife curve has been proposed by Haibach (16)
to account for overstress effects. These methods have enjoyed a measure of
success (17), because they tend to assign a greater amount ot damage to those
events in the long 1ife region.

Investigations by authors such as Dowling (10,17), Socie and Artwohl {18},
and Conle (19) have shown that in certain cases current 1ife prediction methods
consistently make nonconservative fatigue 1ife estimates (actual lives shorter
than predicted). For example, numerous subcycles in variable amplitude his-
tories cause shorter lives than estimated even if overstrain baseline data
are incorporated with a linear damage summation convention. Nonconservative
1ife predictions are reported in Refs. 20 and 21 even when the "double linear
damage rule" is used. These effects are noted for both smooth cylindrical
samples and notched members.

As previously mentioned, smooth specimen testing is often employed to
estimate crack formation 1ives. Hunter and Fricke (22), for an aluminum
alloy, and Dowling (23). for a steel, have shown that depending on the defi-
nition of an initiated crack, that a considerable portion of the fatigue 1ife
can be exhausted propagating a crack. From their data it can be inferred



that low cycle (high stress or strain ranges) fatigue tests spend a shorter
portion of their fatigue 1ives achieving this crack size. Takao (24,25) has
shown that a small notch with a low Kt can be employed to initiate a crack,
but depending on the stress level the crack may not propagate. Frost (26}
has reported similar results for notches with higher Kt. Also, it has been
shown that conventional crack growth models do not adequately describe short
crack behavior, even under constant amplitude 16ad1ng. E1-Haddad and Topper
{(27) have also observed this phenomenon in notched members .

Most of the aforementioned analyses assume a stable Masing (28} material
that the shape of the hysteresis loop shape is independent of its position in
stress-strain space, and that sequence effects are adequately accounted for

in the event counting algorithm in conjunction with a linear damage summation.
In this procedure certain transition and sequence effects are ighored or
assumed to be insignificant, although actual data show that the fatigue 1ife
can be significantly shorter than predicted (20).
Four explanations have been forwarded to explain these phenomena.
1) Large strain excursions initiate microcracks earlier in
I7fe that are then propagated by the small cycles, causing
them to do significantly more damage sooner than would be
anticipated in a constanl amplitude situation.
2} Cyclic plastic deformation due to the major cycle(s) cause
a roughening of the surface of the specimen (29), providing
more crack initiation sites for the smaller cycles.
3) Damage does not accumulate linearly (14,21.30).
4) The categorization of an "event" is incorrect, in other words
there can be significant interaction effects.
It is felt that before the simple 1inear damage rule is abandoned, a better
understanding of the basic mechanics of material behavior that induces these
sequence effects is desirable.

1.2 Scope

The present study will attempt to:
1) Reproduce the observed effects (fatigue lives shorter than

predicted) on smooth laboratory specimens.



2) Determine the characteristics of histories that cause the

detrimental effects.

3) Evaluate two alternate methods of fatigue 1ife prediction

and compare them to conventional linear damage, and the
experimental data.

Smooth specimens of an ASTM A-36 (1020} steel were used. Completely
reversed constant amplitude strain controlled tests on 20 specimens were
performed to characterize the strain-life fatigue properties. Five types
of variable amplitude strain histories were employed to'test 34 specimens.
The variable amplitude histories were designed to explore the effects of
mean stresses, overstrains, hardening and/or softening behavior, and sequence.

A plastic work interaction model and a smooth specimen AJ approach are
presented in the ensuing section.



2. ANALYSIS

2.7 Basic Concepts

Fatigue resistance of metals can be characterized by a cyclic strain-
Tife curve. Smooth specimens tested to failure under fully reversed constant
amplitude strain control provide the data for these curves. The relationship
between strain ampiitude and reversals to failure can be represented in the
following form:

g
b - en(an g + Haw)° 2]

To account for the presence of a mean stress, the strain 1ife equation
has been modified to the following form:

]
FO o \D 4
B8 = aN)® + ep (aN)© [3]

The coefficients, U%o and E%o’ are derived in Appendix I. For a given strain,

either of these equations can be solved for life, 2Nf, via iterative techniques.
For a generat 1ife estimation technique, it would be desirable to relate

cyclic stress and strain amplitudes. The cyclic slress=strain curves for most

metals can be modeled using a Ramberg-Osgood type formulation.
-l/nl . .
o} o
be o "8, [ 8
_2__ E + [Kl] [4]
An alternate model employs the crack behavior of the material to char-
acterize its resistance to damage, which is often formulated as a power law.

da _ ~, ,,m' :
W C' AK 5]
To account for large scale plastic deformation, Eq. 5 has been revised fo
the following form:

da _ m

= oAl [6]

In all analyses a linear damage rule, Eq. 1, is employed. The identi-

fication of a damaging event, and the damage criterion differs.



2.2 Linear Damage

This analysis implements Miner's original hypotheses (13). An event
is considered to be a cycle identified employing rainfiow counting. Constant
amplitude strain-life data were used to assign damage to each event. The
damage from the various cycles within a block were summed, with the inverse
being the estimated blocks to failure. Other than mean stress for a sub-
cycle, no interaction effects'are considered with this method. A desire to
have da "benchmark”" for comparison was the motivation behind these calcula-
tions in this study.

2.3 Plastic Work Approach

It has been hypothesized that it is plastic deformation that causes
fatigue damage (31), and that perhaps the plastic strains could be used to

formulate a &amage parameter. Employing plastic strain ranges, and stress
ranges obtained from baseline strain-life tests it is possible to assign a

plastic work expended during the completion of cycle. The area within a
hysteresis loop is considered to be representative of the plastic work per
cycle. This area may be approximated by the following equation (32).

_ [1-n'
Wp - (]+nI]AU AE

) (73

To assign the plastic work to fajlure for a given strain amplitude, it is
necessary to multiply by the number of cycles to failure.

Nf = Awp Ne [81

For the material considered in this investigation, it was possible to fit
the constant amplitude smooth specimen data to a power law.

M = H(aN )" [9]
If the exponent in Eq. 9 were equal to minus one (h=-1), it would imply
that the plastic work to failure is a constant. This is not the case for
any structural metals (33).

It is possibie to correlate the stress amplitude in terms of the work
to failure in a power law form.



o, = D'(H)" [10]
This formulation impiies that the plastic work to failure is a function of
stress amplitude. Considering a cyclically stabilized material represented
by a Ramberg-Osgood stress-strain formulation (Eq. 4), a stress amplitude
can be calculated for a given strain amplitude. It should be noted that
when using.a clip on axial extensometer to measure strain, that an average
deformation over the gage section is reccrded. For low cycle (high ampii-
tude) tests the plastic strain can be assumed to be uniform, whereas for
high cycle fatigue the plastic strains are more localized. For this reason,
Tow cycle fatigue data (<10% reversals) are fit to Eq. 10 and it is assumed
that the extrapolation to longer Tives at the critical location is adequate.
The exponent, d, in Eq. 10 is a negative number less than one implying the
work to failure increases as the stress amplitude decreases.

Service loading is generally random, and periodic overlocads may be
expected throughout the fatigque life. Failure may occur during one of the
overloads, but a considerable amount of fatigue damage may be done by the
smaller cycles. If one considers that the largest cycle dictates the plastic
work to failure, then the sﬁa]]er'cycles will be more damaging than antici-
pated from constant amplitude testing. The "damage” required to cause failure
at the highest stress level in the sequence, g1 is D]. The relative damage
required to cause fajlure at a lower stress level, Ty is:

o d
D, - {-&-ﬂ D, [11]

The exponent, d, can be interpreted as the material's sensitivity to
history of stressing. Expressing the damage due to the major cycie in Miner's
form,

2n
ey
Dy = (2N, | [12]

and considering the interaction effect presented in Eq. 11, one can identify
the damage for a block sequence in the following form (34):



d
2n n Zn. lo. _
- 1 J
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The inverse of the damage is taken toc be the blocks to failure
N, = o [14]
b AD

This is not unlike the procedure usually employed for block loading
histories, except that we have chosen a block to be an event rather than
the individual cycles, and employed plastic work to account for interaction
effects. The events in Eq. 13 are identified using rainflow counting.
Either conventional stra1n71ife data or a plastic work to failure criterion
may be employed to calculate (ZNf)j for a given strain amplitude.

2.4 J-Controlled Crack Growth Approach

An alternate approach to fatigue life estimates based on elastic-plastic
fracture mechanics concepts is presented below.

When the plastic zone associated with a crack is small (small scale
yielding) compared to the crack length and other geometric dimensions, the
stress intensity Faétor K characterizes the elastic stress-strain field sur-
rounding the crack tip. The small scale yﬁe1ding concept is the basis of
linear elastic fracture mechanics.. The resistance of materials to static
fracture (35) and fatigue crack growth (1,36) are widely characterized in
terms of the stress intensity factors.

Limitations exist when linear elastic fracture mechanics is applied to
engineering metals that are capable of large plastic deformation prior to
fracture. The K-characterization of crack-tip fields fails when the plastic
zone 1s not small compared to the crack length and other dimensions. There-
fore, the behavior of small cracks growing inside plastic zones of notches
as well as cracks in smooth specimens can not be characterized using Tinear
elastic fracture mechanics. A more general parameter is required to char-
acterize elastic-plastic crack-tip fields and crack growth.

The J-integral, as introduced by Rice (37), is a path independent line
integral and is analogous to strain energy release rate, G, but is based on
nonlinear rather than linear elasticity. For small scale yielding, J is



equivalent to G, which is simply related to K. In Targe scale yielding, J
characterizes the elastic-plastic strain fields at the crack tip for ductile
materials. This concept has been successfully used as a static fracture
criterion for elastic-plastic materials (38). Recently, several investigators
used the J-integral to characterize fatigue crack growth rate under elastic-
plastic cyclic loading. Cyclic J values were estimated for cracked (39),
smooth (23,40,41) and notched specimens (42,43). Some investigators have
attempted to combine low cycle fatigue and J-integral concepts (40.,41).

The application of the J-integral to the fatigue crack growth process
could be objectionable, since the J-integral in the mathematical sense is
valid only when the deformation theory of plasticity is valid, which does
not permit unloading. Dowliing and Begley (39) have interpreted the J-integral
in its physical sense rather than the mathematical sense as a measure of the
crack-tip elastic-plastic strain fields and épp11ed it to cyclic loading.

The cyclic interpretation of J is equivalent to the e]astic¥p1ast1c wWork
required to open crack surfaces. The good correlations obtained between da/dN,
crack growth rate, and AJ over a wide range of tests proved that the approach
taken was promising. A life prediction procedure that characterizes crack
growth as the dominant damage mechanism is presented in this section.

An exact J-solution for a smooth specimen is not presently available.
Therefore, an estimate will be made. For a material that obeys a Ramberg-
Osgood type relationship, Eq. 4 can be employed to represent the stress-
strain response of the material. The J-integral can bé estimated as a sum
of linear elastic and fully plastic contributions.

J = Je + Jp [15]

The elastic portion, Je’ can be obtained from linear elastic- fracture mechanics,

- K2

Jo = F¥ [16]

where E' = £ for plane stress and E' = Ef(1-v2) for plane strain. Ffor a
semi-~circular surface crack of depth a, K is given (44) below:

K=1.12%d/ﬂ—a [17]
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Here, 1.12 1is the free surface correction factor and 2/« is Lhe correction
factor for an embedded crack.
The plastic portion of J. J . can be estimated from Shih and Hutchinson's
(45) work where they analyzed an 1nf1n1te plate subjected to remote tension.
J = Fag f{n')a 3
D € (n*) [18]

Assuming that the correction factor for the linear elastic case applies to

the plastic case, we can write:

2 - [1.12 %]2 o e, f(n')a [19]

The complete J-integral estimate assuming p?ane stress when applied to
fatigue becomes:

Ad = 0.51(%9)2 7 a + 0.51 Ao Asp f{n')a [20]

An estimate similar to Eq. 20 is obtained by Mowbray (40,41) and Dowling
(23). These investigators expressed the elastic and plastic terms in Eq. 20
in terms of the remote strain energy density. Assuming that the tensile por-
tion of the cycle is effective in propagating the crack, ac = Orax (if Orin <
0) and Ao = %max = Omin (1T 05 2 0). A similar expression to Eg. 20 is
used in Ref. 43 to characterize crack growth in notched members. A power
law was used to characterize the ASTM A-36 steel tested under completely
reversed loading.

In smooth specimens, crack growth occurs under the application of remote
stresses and strains in the fully plastic regime. Therefore, the rate of
crack growth is controlled by the range in J given as Eq. 20. “Fatigue crack
growth rates for two cycles with the same AJ value are equal. Damage is
calculated only for those portions of the cycles above the crack opening load.
In this study the crack opening load is taken as zero. Therefore, all the
portions of the hysteresis loops that lie above the zero stress level are
taken as damaging. No distinction 1s made between Stage I and Stage II crack

orientations and both are assumed to be controlled by the AJ expression given
as Fq. 20.
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For constant amplitude Toading the crack growth rate per cycle can be
written as:

= ¢(ad)" 1]

{>|l>
=

Aa =

The crack growth rate for variable amplitude block Toading can be obtained
by adding the crack extension for each cycle within the block {11).

a2
AB

N1

(.’i\a)J [22]

J=1

Combining Eqs. 21 and 22, results in the following form:

ha _ n m
5 - C qu (AJ)J] [23]

Crack growth rate for the block loading depends on the number of cycles
per block and the stress and plastic strain ranges associated with these
cycles. When the maximum stress achieved in a block and in constant ampli-
tude cycles are equal the relative crack growth rate can be written as follows:

n m
C (Ad)
A3/AB _ 321[ 3:[
ha/AaN cradl™

[24]

In arriving at Eq. 24, it is also worth noting that the crack shape and
direction should be similar for the block and constant amplitude loading.

g ch)z m
Aa/AB j='| E T+ AUj(AEp)j f(n')
Aa/aN ~ [25]
AC)')Z t m
{f Tt Ao Aep f{n i]

The stress and plastic strain ranges in Fgq. 25 are determined using the cyclic
stress-strain curve. If small crack growth increments are considered, the
relative crack growth rate is independent of the crack length, the geometry
correction factor, and the material constant C. The summation in Eq. 25
employs rainflow counting to identify cycles for a given block.
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Inverting both sides of Eq. 25 and integrating both sides from an
initial to final crack size, we obtain:

m
a 4g)® 1+ A Ae. T(n') a
f E p f
A_B_ da = ‘A—N‘ da [26]
5, ba n Acrj)?- ]m a, b
' — 5 4+ Ac. . ' '
i jZT B AGJ(AEP)J f(n') i

In Eq. 26 the crack initiation length for a block loading and constant
amplitude loading is assumed to be equal. Then we have:

m
%§)2ﬂ + Ao Aap f(n'{]
N, = E 7 — N [27]
_J '
9| T+ ch(Aap)j f(n il

In Eq. 27,Nb denotes variable amplitude loading blocks to failure and NC
denctes constant amplitude cycles to failure. The value of NC was obtained
from the strain-life curve for the corresponding major cycle strain amplitude.
Alternatively, NC could be calculated using Eq. 6 by integrating from a; to

af‘ However, the choice of P and a, is somewhat arhitrary. The term on the

f
righthand side of Eq. 27 which is multiplied by NC is always less than or
equal to one for block Toading.

Equation 27 was employed for the "crack growth" Tife predictions made

for block loading histories examined in this study.
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3. EXPERIMENTAL PROGRAM

3.7 Baseline Data

The metal tested was ordered as 1020 hot rolled 2" x " x 20' strip
stock. Table 1 gives the chemical composition determined from a spectro-
meter analysis. Smooth specimens were machined from the strip stock to
the dimensions shown in Fig. 1. All tests were performed in laboratory
atmosphere on an electrohydraulic closed locp testing system under strain
control. >Strain was measured emplioying an axial clip on extensometer with
a 12.7 mm gage length, except for the high strain tests (Ae/2 = .013 and
.015} for which the gage length on both the specimen and extensometer was
reduced to 7.6 mm.

- Two specimens were used to determine the monotonic tensile properties
listed in Table 1 in accordance with ASTM A-370.

Constant amplitude strain controlled fatigue tests, employing a com-
pletely reversed triangular wave shape, were performed on 20 specimens. The
cyclic properties are summarized in Table 2. Failure was defined as a 50%
tensile load decrease from the average tensile peak achieved from cycle 16
thrdugh 25. This corresponded to the final crack having propagated approxi-
mately 50-60% through the cross section of the specimen. All vaiues for
stress and strain were taken from "stable" hysteresis loops (approximately
one-half Tife} (49). Othcer information on the definition of cyclic stress-
strain and strain-1ife properties can be obtained from Refs. 46 and 47.

Five of the constant amplitude tests were monitored for small crack forma-
tion employing acetate tape replication procedures (48). The replicas were
examined and photographed with an optical microscope, to detect microcracks.
Table 3 summarizes these results. A strain-life representation of "crack
initiation 1ife" is shown in Fig. 2, where crack initiation is arbitrarily
defined as an observable surface crack, with a Tength of ~.08 mm. A typical
set of replica photeographs is displayed in Fig. 3.

Overstraln tests as described in Ref. 1 were performed on eight smooth
specimens. In the "“initial overstrain" tests, ten cycles at +.01 strain
amplitude were applied followed by a ten-cycle incremental step down to zero

at the beginning of the test. The desired cyclic strain amplitude was then



14

appiied. The periodic overstrain tests included, in addition to that de-
scribed for initial overstrain, one cycle at +.01 (and a ten-cycle step
down to zero) every 10° cycles. The failure definition was the same as for
the constant amplitude tests.

3.2 Variable Amplitude Test Program

The first history to be investigated was one fin which a high frequency-
Tow amplitude triangular waveform is superimpased on a low frequency-large
amplitude triangular waveform. In stress-strain space this corresponds to
sybcycles being "hung" inside the major cycle. This is called the varying
mean stress history, and is schematically represented in Fig. 4. One block
of data was recorded at logarithmic (i.e.: 1,2,4,8,16,...) intervals.

The second history alternates sets of variable mean stress blocks and
plain cycies of equal maximum strain range. A set consisted of logarithmic
increments of blocks, and plain cycles (i.e.: 1 block, 1 plain cycle, 2
blocks, 2 plain cycles, 4 blocks, 4 plain cycles, ...) until the 1imit block/
loop sequence is achieved. The test is then continued to failure under the
alternating Timit block/loop sequence sets. The 1imit block/100p sequences
considered were 50,-100 or 500. It is denoted as the interspersed yﬁrying
mean stress history and schematically illustrated in Fig. 4. Data were re-

corded upon the completion of each set. Number of blocks and plain cycles
to failure were recorded.

As a comparison, a third type of variable strain history, called the
zero mean stress history, that contained the same number of cycles per block

with the same amplitude as used in the varying mean stress tests except that
the subcycles were applied at zero mean stress, is investigated (see Fig. 5).
The zero mean stress history somewhat resembles an overstrain test, but is not
exactly the same. These tests were performed with 100, 1000 and 10,000 sub-
cycles per block. Since no step down is employed, the subcycles are located
at a nonzero mean strain. For every block, three cycles were recorded, which
included the major cycle and the subcycles before and after the major cycle.
Several tests were performed using a variation of the zero mean stress
program for which all the subcycles were applied at the maximum mean stress
(positive or negative) as in Fig. 5. It was found that for the subcycle
strain amplitude and number of subcycles usced the mean stress did not relax
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completely. Max Mean Stress and Min Mean Stress were the names given to these
tests.

Finally, tests were performed with an initial number of plain major
amplitude cycles, followed by varying mean stress subcycle blocks to failure.
These are called ediled varying mean stress tests.

Experimental results for the variable amplitude test program are presented
in Tahles 6.-10.
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4. DISCUSSION

4.1 Deformation Characteristics

The stabilized major cycle and subcycie stress amplitudes in the varying
mean stress tests were Tower than those observed for the constant amplitude
tests at the same strain range. During the varying mean stress blocks of the
interspersed varying mean stress tests, the material achieved approximately
the same stress levels as observed for the simple varying mean stress Llestis
for both the major cycle and the subcycle. However, hardening occurred during
the plain cycles of the interspersed varying mean stress tests, and the stress
amplitudes stabilized at approximately the levels observed for constant ampli-
tude loading. This phenoménon was a result of less hardening occurring for a
given plastic strain excursion in a varying mean subcycle block rather than
being due to a lowering of the yield strength. Stress relaxation due to the
presence of mean stress in the subcycles or activation of different slip
systems by the subcycles are possible explanations for the observed reduction
in overall strain hardening.

The zero mean stress tests displayed minimal differences in stress ampli-
tude for the major éycTe when few subcycles (<102) were involved. With a
greater number of subcycies, the major cycle stress amplitude decreased.
Again, the subcycle stress amplitude was less than that observed for a similar
constant amplitude test, but the deviation was less than that for the varying
mean stress blocks. Notably, these conclusions are not evident from the
periodic and initial overstrain tests conducted.

The mean stress did not totally relax in the max mean stress and min
mean stress tests, although the subcycle stress amplitudes were smalier than
a constant amplitude test of comparable strain amplitude, as were the major
cycle stress amplitudes. Only four tests of this variety were conducted, so
the observations from these tests should be regarded as Tess decisive.

4.2 Crack Behavior

In the variable amplitude tests a tendency for multiple crack nuclea-
tion and propagation are observed. Several large cracks (3-4 mm) growing
simultaneously near the end of the fatigue 1ife were noted. This is in
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contrast to the behavior observed during constant amplitude tests at both
high and low strain amplitudes where one dominant crack tends to develop.
Muitiple crack nucleation is noted for high strain constant amplitude tests,
but most of the cracks do not appear to grow, except for the dominant crack.
In the varying mean stress, and the interspersed mean stress tests, multiple
crack formation and propagation were observed during the subcycle blocks.
If multiple cracks were formed during the subcyéle blocks of the interspersed
varying mean stress tests, they tended to form a single dominant crack when
plain cycles ensued. |

These observations tend to indicate that the large cycles nucleate
multiple cracks, that are propagated by the smaller cycles. Observations
by Hunter and Frickie (22), Dowling (23), Ewing and Humfrey (31) and Fig. 2
support the early crack formation postulate for higher amplitude cycles.
References 21 and 50 indicate that for variable amplitude loading with
larger strain excursions, crack growth may be the dominant damage mechanism.
This was the reason Lhe AJ type analysis was attempted, and deemed to be
appropriate.

4.3 Fatigue Life Predictions

Fatigue 1ife predictions for the variable amplitude histories employing
(1) linear damage, (2) plastic work interaction, and (3) J-integral crack
growth approach are presented in Tables 11-15. Life estimates were calcu-
lated for some cases where no tests were performed in order to observe trends
of the various prediction methods.

Lonventional linear damage predictions for the variable histories con-
sidered are always nonconservative. Figure 6 graphically displays the experi-
mental results. If a linear damage analysis were appropriate, the points
would Tie in the vicinity of the diagonal line. The use of initial or per-
indic overstrain data in conjunction with linear damage docs not account for
the reduced fatigue 1ives in the material tested. Figure 7 suggests that in
the finite fatigue life region that this material shows minimal sensitivity
to an initial or periodic overstrain. The overstrains may eliminate the
"endurance Timit", but extrapolation of the strain-life curve seems to be
an adequate representation for the baseline data.
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Figures 8 and 9 display the experimental results for the varying mean
stress and zero mean stress tests along with the trends of the three pre-
diction methods. These plots were deemed appropriate for the unaltered block
tests. The plastic work interaction and AJ crack growth predictions are more
conservative than linear damage. The plastic work interaction model achieved
better predictions for the varying mean stress than the zero mean stress tests,
though for both cases the estimates are generally conservative. For the
varying mean stress tests, the subcycles are "hung" within the major cycle,
in other words the subcycles occur before the major cycle is completed. On
the other hand. for the zero mean stress tests, the major cycle is completed
before the subcycles occur. This was taken to be the major difference between
these tests rather than the mean stresses not being identical.

Plastic work interaction assumes the plastic work to failure is dictated
by the stress amplitude of major cycle. This appears to be appropriate when
the subcycles are "hung" within the major cycle. That the periodic and initial
overstrain test results can be predicted reasonably well from a conventional
Tinear damage analysis indicates that the major cycles do not have the inter-
active effect predicted by plastic work. This indicates that a given number
of subcycles following a major event could have an interactive cffect. With
a large number of subcycles, this effect could decrease as the number of sub~-
cycles increases. The zero mean stress tests displayed this phenomenon.
Therefore, it seems important to identify exactly what is meant by a "dam-
aging event", which no present scheme adequately achieves.

It should be noted that for a higher strength material which displays
a sensitivity to initial or periodic overstrain (15) that the plastic work
interactive exponent (Eq. 10) is a larger negative number. This indicates
that a harder material may have a diminished interactive sensitivity, but an
increased memory of prior completed events. No methods are forwarded by the
authors to accomplish this definition of an event. The plastic work inter-
action and J-integral approach both result in a stress-strain product raised
to a power within a summation to incorporate an interactive effect, although
the basic assumptions for the two analyses differ.

Figure 10 displays the experimental trends of the edited varying mean
stress tests. It shows that the number of initial cycles does not have a
large effect on the total fatigue 1ives. Both the AJ crack growth, and plastic
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work interaction models predict these observed results well. In both of
these models the damage for the initial plain cycles is calculated using

Eq. 1, and in all cases this was less than one. The damage per block was

then calculated employing either AJ or AW techniques. It was assumed that,
when the damage due to the blocks in addition to the initial damage was equal
to one, failure would occur. A similar algorithm was employed for the inter-
spersed mean stress tests, identifying plain cycles and block cycles as separ-
ate events when assigning damage, and employing a linear damage summation
equal to one to predict fajlure.

The success of both plastic work interaction, and AJ crack growth models
in predicting these fatique lives lends further support that traditional iden-
tification of a damaging event is incorrect. Consideration of interaction
effects is vital. It should be noted that the experimental trends observed
for the edited varying mean stress tests (Fig. 9) were for a major cycle
amplitude of .005. Both AJ and Awp approaches do not predict similar results
for a major cycle amplitude of .01 {see Table 15).

The max and min mean stress tests show that a compressive mean stress
may be bencficial. It should be noted thal Lhe zero mean stress tests for
similar major cycle and subcycle strain amplitudes display shorter fatigue
Tives than the maximum mean stress. No reason for this behavior is evident.

Predicted versus actual fatigue lives for the three methods employed are
presented in Fig. 11. In general, plastic work interaction yields conserva-
tive Tife predictions, AJ crack growth estimates are slightly nonconservative,
and conventional Tinear damage predictions are highly nonconservative.
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5. CONCLUSIONS

(1) Using conventional methods of fatigue analysis, one will calculate
nonconservative fatigue 1ife predictions for histories containing
numerous subcycles and only a few Targe amplitude cycles.

(2) The degree of nonconservatism observed in this study is greater for
histories having:

(a) .005 strain amplitude major cycles rather than for those in
which the strain amplitude of major cycles is .010

(b} greater numbers of subcycies per block (up to 10* cycles in
this investigation)

(c) .001 subcycle strain amplitude rather than for those in which
the subcycle sirain amplitude 1s .002

{3) The difference between the outer envelope of the block and the plain
cyclte hysteresis Tnop in the varying mean stress test dnes not account
for the reduction in fatigue life.

(4) The existence of mean stresses also does not explain the difference in
fatigue Tife in the varying mean stress histories.

(5) There may be a "minimum damage" level that must be exceeded before sub-
cycles cause significant damage. Once this Tevel is exceeded, the sub-
cycles may cause a high percentage of the damage. Both segments of the
11fe, before and after the "minimum" is reached, must be taken into
account in proposing fatigue 1ife prediction models.

(6) Identification of an event for damage assessment needs to be redefined.

(7) Harder materials may display increased memory effects (i.e. sensitivity
to initial or periodic overstrains) but be less sensitive to subcycles
hung within a block (i.e. interactive effects).

(8) More conservative fatique 1ife predictions are achieved with plastic
work interaction, and AJ crack growth, than with conventional linear
damage.

(9) Plastic work interaction generally predicts conservative fatigue lives
whereas AJ crack growth estimates are slightiy noncenservative.

{10) Both plastic work interaction and AJ crack growth analyses employ the
summation of the product of a stress-strain quantity raised to a power
to achieve an interactive relation between major cycle and subcycle.
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APPENDIX

MEAN STRESS-STRAIN LIFE COEFFICIENTS

Life predictions for all histories that involved subcycles applied at
a non-zero mean stress were made using the well known Morrow mean stress
parameter (51):

Ao

b
5 )

(o% - 00)(2Nf

The derivation of a strain-Tife equation using this parameter from Ref. 5]
is presented below.

The strain-Tife relationship for cases which do not involve mean stresses
is
3

g
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The position of a subcycle hysteresis Toop within a major loop does not sig-
nificantly change the size or shape of the subcycle loop (the subcycle loop

size and shape is not dependent on mean stress). Therefore, as mean stress

changes, Aep and Ase must remain the same.-
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Rearranging Eq. A-2, we obtain
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and rearranging Eq. A-3, we obtain
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TABLE 1

MATERIAL PROPERTIES

Designation: ASTM A-36 Hot Rolled Strip

Chemistry (w/o}: (Average of several tests)

c Mn P N Si Ni Cr

.25 .83 .01 .025 .255 .10 .09

Hardness: 140 BHN (80 R

b)

Monotonic Properties: (Average of two tests)

Modulus of Elasticity, E
Yield Strength, .2% Sy
Ultimate Strength, Sy
Reduction in Area, %RA
True Fracture Strength, o

.F

True Fracture Ductility, Eg

Strain Hardening Exponent, n

Strength Coefficient, K

*Corrected for necking as proposed by Bridgman {52).

.01 016 ---

210,000 MPa
351 MPa
540 MPa

66.8%

{1,173 MPa
1,092 MPa*

1.10
.236

992 MPa

o
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TABLE 2

CYCLIC PROPERTIES

From Constant Amplitude Strain Controlled Tests:

Modulus of Elasticity, E
Yield Strength, .2% Sy
Strain Hardening Exponent, n'
Strength Coefficient, K'
Fatigue Strength Coefficient, ¢!

f
Fatigue Ductility Coefficient, e%
Fatigue Strength Exponent, b
Fatigue Ductility Exponent, ¢

Transition Fatique Life, ZNt

From Overstrain Tests:

Fatique Strength Coefficient, 0%

Fatigue Ductility Coefficient, a;
Fatique Strength Ekxponent, b

Fatigue Ductility Exponent, c

Plastic Work Coefficients:

Plastic Work Coefficient, D'

Plastic Work Exponent, d

AJ Crack Growth Coefficients:

Crack Growth Coefficient, C

Crack Growth Exponent, m

200,000 MPa
330 MPa
226

1,336 MPa

1,118 MPa
.338
L1710

-.480
80,000 rey

1,054 MPa
.487
.105

1

521

2,690

1.97 x 10°°

1.78
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TABLE 3

CONSTANT AMPLITUDE STRAIN CONTROLLED TESTS
(RAMP WAVEFORM)

Specimen Ae/2 2Nf‘ As /2 ZE5/2

No. . (MPa)

92 .00100 >10¢€ 206 <. 00001
48 .00180 >108 258 .00053
26 .00za? 359,700 261 .00079
84 .00202 416,700 261 .00074
35A% .00306 56,000 305 .00155
35 .00306 65,650 305 .00158
36 .00410 25,220 340 .00239
36A* .00420 - 27,160 343 .00245
38 .00510 15,890 372 .00323
76 .00509 11,870 363 .00324
80 .00510 15,950 369 .00322
38A* 00520 16,120 378 .00335
39 .00756 5,119 404 .00554
39A% .00770 4,475 417 .00565
414 .0102 2,671 438 ' .00783
82 .0102 2,952 440 .00784
40* .0103 2,981 450 .00794
94 .0131 1,175 440 .01070
97 0132 1,725 432 .0107G
96 .0151 989 444 .0125

*Denotes replicated sample
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TABLE 4

SMALL CRACK MEASUREMENTS FROM CONSTANT
AMPLITUDE SMOOTH SPECIMEN REPLICAS

Specimen Crack Length Reversals
No. a (mm) 2N
35A .075 8,216

.080 16,220

.103 24,220

.245 32,220

491 40,220

36A .084 11,650
125 14,410

151 16,450

.356 18,848

582 21,250

1.10 23,650

2.53 26,060

38A .028 8,448
.084 10,050

.245 13,250

2.47 14,850

39A .081 2,012
.089 2,512

134 3,012

.201 3.512

.220 4,012

40 .089 376
.134 1,216

.178 1,456

223 1,696

. 356 2,176
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TABLE 5

Spﬁﬁjmen Type Ae/2 2Nf Ao/2 EEﬁ/Z
344 B .00150 3.5 x 106 249 .00030
47 p .00150 2,634,000 248 .00029
49 I .00180 474,700 255 .00057
50 p .00180 576,700 252 .00058
44 I .00202 206,400 258 .00079
45 I .00306 49,830 293 00159
43 I .00410 21,990 331 00242
46 o 00508 15,520 368 .00322

Type abbreviations:

I = Initial overstrain

P = Periodic overstrain
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TABLE 11

VARIABLE MEAN STRESS SUBCYCLE PREDICTIONS

No. of Actual Plastic Work Crack Linear*
Amplitude Subcycles Life Interaction Growth Damage
Cyc/Subcyc Per Block (Blocks) (Blocks) (Blocks) (Blocks)
.005/.001 1,000 295 559 4,473
100 2,269 3,562 8,043
40 4,094 5,547 8,217
20 5,350 5,594 6,812 8,217
.005/.002 1,000 45 58 214
100 530 431 550 1,759
40 1,079 1,005 1,258 3,386
20 1,804 2,203 4,894
.01/.001 1,000 110 401 1,165
100 860 632 1.084 1.318
40 698 924 1,223 1,329
20 1,010 1,093 1,277 1,333
.01/.002 1,000 18 54 189
100 281 157 397 831
40 581 334 686 1,075
20 534 907 1,192

*With no mean stress effects
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TABLE 14

ZERQ MEAN STRESS SUBCYCLE PREDICTIONS

' No. of Actual Plastic Work Crack Linear
Amplitude Subcycles Life Interaction Growth Damage
Cyc/Subcyc Per Block (Blocks} (Blocks) (Blocks) (Blocks)
.00h/ 001 1,000 624 295 . 1,889 4,473

' 683
100 4,688 2,269 6,457 8,043
4,368
40 , 4,094 7,696 8,217
20 5,594 8,217 8,217
.005/.002 1,000 45 : 156 214
100 648 431 1,350 1,759
40 1,005 2,746 3,386
20 1,804 4,189 4,894
.01/.001 1,000 458 110 847 1,165
100 1,180 632 1,204 1,318
40 924 1,306 1,329
20 1,093 1,321 1,333
.01/.002 1,000 18 137 189
100 344 157 714 831
40 334 991 1,075

20 534 1,133 1,192
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TABLE 15 '
EDITED VARTABLE MEAN STRESS SUBCYCLE PREDICTIONS

No. of Actual Plastic Work Crack Linear*
Amplitude No. of Initial Life  Interaction  Growth Damage
.Cyc/Subcyc Subcycles Piain Cycles (Blocks) (Biocks) (Blocks) (Blocks)

.005/.001 100 512 - 2,043 2,138 3,521

7,577
1,024 2,023 2,006 3,148 - 7,11
2,048 1,955 1,742 2,735 6,178
40 512 3,856 5,225 8,003
1,024 3,619 4,903 7,510
2,048 3,144 4,260 6,525
20 512 5,269 6,417 8,156
1,024 4,945 6,022 7,653
2,048 4,296 5,232 6,649
.005/.002 100 512 406 518 1,656
- 1,024 381 486 1,555
2,048 331 422 1,351
40 512 946 1,185 3,189
1,024 888 1,112~ 2,993
2,048 172 966 2,600
20 512 _ 1,699 2,075 4,610
: 1,024 1,594 1,947 4,326
2,048 1,385 1,692 3,758
.01/.001 100 256 1,081 876 1,065
512 390 669 813
1,024 148 254 - 308
40 256 747 989 1,074
K12 5870 754 820
1,024 216 286 311
20 256 883 1,033 1,078
512 674 788 823
1,024 256 299 312
.01/.002 100 256 127 321 672
512 97 245 512
1,024 37 93 195
40 256 270 555 869
512 206 423 663
1,024 78 160 252
20 256 432 733 963
512 329 560 736
1,024 125 212 279

*ith no mean stress effects
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ROLLING
DIRECTION F el
DIMENSTIONS
GAGE OVERALL THREAD
LENGTH DIAMETER RADIUS LENGTH DIAMETER THICKNESS
A B C : D E F
13.0 mm 6 mm Z5 mm 102 mm 3/4"-16UNC i/4" NOM
7.6 mm & mm 25 mm 102 mm 3/4"-16UNC 1/4" NOM
PROCESSING:

1) Specimens cut from as rolled 1/4" x 2" nominal HR strip stock
with the rolling direction as shown.

2) Specimens machined, then polished with 1, 00, 000 emery paper
successively.

3) Machined specimens stored in test tubes containing desiccant
until used.

FIG. T  SPECIMEN DIMENSIONS AND PROCESSING
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b} 32,220 REVERSALS

a) 24,220 REVERSALS

c) 40.220 REVERSALS

FI6. 3

5A SHOWING FATIGUE CRACKS

]

PHOTOS OF ACETATE REPLICAS OF SPECIMEN
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FIG. 5 SCHEMATIC REPRESENTATION OF (a) MAX MEAN STRESS TEST,
(b) ZERO MEAN STRESS TEST, (c) MIN MEAN STRESS TEST
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£, c .01, Major Cycle

falel}

—— Plastic Work Interaction
————— Crack Growth
-—-—- Linear Damage

& .002 Subeycle

A&  .001 Subeycle

by " .095, Hajur cycle

0Ct~

Log N

1og fig

FIG. & PREDICTIONS AND EXPERIMENTAL RESULTS FOR
THE VARYING MEAN STRESS TESTS T
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N
N

0.00 i | l | | 1 | N
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NO. OF INITIAL LARGE PLAIN CYCLES E 83

FIG. 10 LIFE VS. INITIAL PLAIN CYCLES IN EDITED VARYING MEAN STRESS
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