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When is Multiaxial Fatigue Important ?

 Complex state of stress

 Complex out of phase loading
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Uniaxial Stress

one principal stress
one direction

X

Z

Y
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Proportional Biaxial

principal stresses vary 
proportionally 
but do not rotate

X

Z

Y
1 = 2 = 3
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Nonproportional Multiaxial

Principal stresses may 
vary nonproportionally 
and/or change direction

X

Z

Y
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3D stresses
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Notch Stresses

t x z x z

7 0.01 -0.005 63.5 0

15 0.01 -0.003 70.6 14.1

30 0.01 -0.002 73.0 21.8

50 0.01 -0.001 75.1 29.3

x

z

y

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 11 of 202

Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations



3

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 12 of 202

Book

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 13 of 202

Outline

 State of Stress

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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State of Stress

 Stress components

 Common states of stress

 Shear stresses
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Stress Components
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Six stresses and six strains
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Stresses Acting on a Plane
Z

Y
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Principal Stresses

3 - 2( X + Y + Z ) +  (XY + YZXZ -2
XY - 2

YZ -2
XZ )

- (XYZ + 2XYYZXZ - X2
YZ - Y2

ZX - Z2
XY ) = 0

1

3

2

13

12
23
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Stress and Strain Distributions
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Stresses are nearly the same over a 10° range of angles
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Tension
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Torsion
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Maximum and Octahedral Shear
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Shear Stress Influence
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State of Stress Summary

 Stresses acting on a plane

 Principal stress

Maximum shear stress

Octahedral shear stress
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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“About six months ago I wrote a paper, knowing that I 
should be very busy in the autumn and made a model 
to illustrate a point in it.  But as I played with the model 
to learn how to use it, it grew too strong for me and 
took command and for the last six months I have been 
its obedient slave --- for the model explained the whole 
of my subject Fatigue.”

Jenkin 1922

“Fatigue in Metals,” The Engineer, Dec. 8, 1922
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Elastic Stress Strain Relationships
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Equations
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 - planeyield cylinder axis

Mises Yield Surfaces
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



Initial yield surface

Yield surface after loading

Isotropic Hardening



3
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Cyclic Loading
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Kinematic Hardening
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Ratcheting





Cyclic torsion with a mean tension stress
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Cyclic Mean Stress Relaxation





Cyclic strain with mean stress
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Cyclic Creep





Cyclic stress with a mean stress
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Plasticity Models
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Why is modeling needed?


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Flow and Hardening Rules
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Multiaxial Example
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Multiaxial Example
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Summary

 Isotropic Hardening

 Kinematic Hardening

 Cyclic creep or ratcheting

Mean stress relaxation

 Nonproportional hardening
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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10-10 10-8 10-6 10-4 10-2 100 102

Specimens StructuresAtoms Dislocations Crystals

Size Scale for Studying Fatigue

Understand the physics on this scale

Model the physics on this scale

Use the models on this scale
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The Fatigue Process

 Crack nucleation

 Small crack growth in an elastic-plastic 
stress field

Macroscopic crack growth in a nominally 
elastic stress field

 Final fracture
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1903 - Ewing and Humfrey

Cyclic deformation leads 
to the development of slip 
bands and fatigue cracks

N = 1,000 N = 2,000

N = 10,000 N = 40,000 Nf = 170,000
Ewing, J.A. and Humfrey, J.C. “The fracture of metals under repeated alterations of stress”, 
Philosophical Transactions of the Royal Society, Vol. A200, 1903, 241-250
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Crack Nucleation
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Slip Band in Copper

Polak, J. Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
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Slip Band Formation

Loading Unloading

Extrusion

Undeformed
material

Intrusion
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Slip Bands

Ma, B-T and Laird C. “Overview of fatigue behavior in copper sinle crystals –II Population, size, distribution and growth
Kinetics of stage I cracks for tests at constant strain amplitude”, Acta Metallurgica, Vol 37, 1989, 337-348
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2124-T4 Cracking in Slip Bands

N = 60

N = 2000N = 1200

N = 300N = 240
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2219-T851 Cracked Particle

10
mJames & Morris, ASTM STP 811 Fatigue Mechanisms: Advances in Quantitative Measurement of Physical 

Damage, pp. 46-70, 1983.
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Initiation in Ti

Slip bands Hard alpha inclusion
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Crack Initiation at Inclusions

Langford and Kusenberger, “Initiation of Fatigue Cracks in 4340 Steel”, Metallurgical Transactions, Vol 4, 1977, 553-559
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Subsurface Crack Initiation

Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2002
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Fatigue Limit and Strength Correlation

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 58 of 202

Crack Nucleation Summary

 Highly localized plastic deformation

 Surface phenomena

 Stochastic process
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100 µm

bulksurface

10 µm

surface

20-25 austenitic steel in symmetrical push-pull fatigue 
(20°C, p/2= 0.4%) : short cracks on the surface and in the bulk

Surface Damage

From Jacques Stolarz, Ecole Nationale Superieure des Mines
Presented at LCF 5 in Berlin, 2003 
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Stage I Stage II

loading direction

free
surface

Stage I and Stage II
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Stage I Crack Growth

Single primary slip system

individual grain

near - tip plastic zone

S

S

Stage I crack is strongly affected by slip 
characteristics, microstructure 
dimensions, stress level, extent of near 
tip plasticity
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Small Cracks at Notches

D a
crack tip plastic zone

notch plastic zone

notch stress field

Crack growth controlled by the notch plastic strains
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Small Crack Growth

1.0 mm

N = 900

Inconel 718
 = 0.02
Nf = 936
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Crack - Microstructure Interactions

Akiniwa, Y., Tanaka, K., and Matsui, E.,”Statistical Characteristics of Propagation of Small Fatigue Cracks in Smooth 
Specimens of Aluminum Alloy 2024-T3, Materials Science and Engineering, Vol. A104, 1988, 105-115
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Strain-Life Data
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Most of the life is spent in microcrack growth in the 
plastic strain dominated region
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Stage II Crack Growth

Locally, the crack grows in shear 
Macroscopically it grows in tension
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Long Crack Growth

Plastic zone size is much larger than the material 
microstructure so that the microstructure does not 
play such an important role.
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Material strength does not play a major role in fatigue crack growth

Crack Growth Rates of Metals

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 70 of 202

Maximum Load

monotonic plastic zone



Stresses Around a Crack




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Stresses Around a Crack (continued)

Minimum Load 



cyclic plastic zone


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Crack Closure

S = 250

b

S = 175

c

S = 0

a
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Crack Opening Load
Damaging portion of loading history

Nondamaging portion of loading history

Opening load
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Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

Mode I, Mode II, and Mode III
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Mode I Growth
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crack growth direction
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shear stress

Mode II Growth
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Fatigue Life, 2Nf
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304 Stainless Steel - Tension
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Fatigue Analysis

Material
Data

Component
Geometry

Service
Loading

Analysis
Fatigue

Life Estimate

?
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The Similitude Concept

Why Fatigue Modeling Works !
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What is the Similitude Concept

The “Similitude Concept” allows engineers to
relate the behavior of small-scale cyclic
material test specimens, defined under
carefully controlled conditions, to the likely
performance of real structures subjected to
variable amplitude fatigue loads under either
simulated or actual service conditions.
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Fatigue Analysis Techniques

Stress - Life

BS 7608, Eurocode 3 

Strain - Life

Crack Growth
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Life Estimation

Method
Stress-Life
BS 7608

Strain-Life
Crack Growth

Physics
Crack Nucleation

Crack Growth
Microcrack Growth
Macrocrack Growth

Size
0.01 mm

1 - 10 mm
0.1 - 1 mm

> 1mm
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Stress-Life Fatigue Modeling

P

Fixed
End

The Similitude Concept states that if the
instantaneous loads applied to the ‘test’
structure (wing spar, say) and the test
specimen are the same, then the response
in each case will also be the same and can
be described by the material’s S-N curve.
Due account can also be made for stress
concentrations, variable amplitude loading
etc.
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Fatigue Analysis: Stress-Life
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Stress-Life

Major Assumptions:
Most of the life is consumed nucleating cracks

Elastic deformation

Nominal stresses and material strength control 
fatigue life

Accurate determination of Kf for each geometry 
and material
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Stress-Life

 Advantages:
Changes in material and geometry can easily be 

evaluated

 Large empirical database for steel with standard 
notch shapes
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Stress-Life

 Limitations:
Does not account for notch root plasticity

Mean stress effects are often in error

Requires empirical Kf for good results

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 94 of 202

BS 7608 Fatigue Modeling

The Similitude Concept states that if the
instantaneous loads applied to the ‘test’
structure (welded beam on a bulldozer, say)
and the test specimen (standard fillet weld)
are the same, then the response in each
case will also be the same and can be
described by one of the standard BS 7608
Weld Classification S-N curves.
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Weld Classifications
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Fatigue Analysis: BS 7608
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BS 7608

Major Assumptions:
Crack growth dominates fatigue life

Complex weld geometries can be described by a 
standard classification

Results independent of material and mean stress 
for structural steels
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BS 7608

 Advantages:
Manufacturing effects are directly included

 Large empirical database exists
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BS 7608

 Limitations:
Difficult to determine nominal stress and weld 

class for complex shapes

No benefit for improving manufacturing process
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Strain-Life Fatigue Modeling

The Similitude Concept states that if the
instantaneous strains applied to the ‘test’
structure (vehicle suspension, say) and the
test specimen are the same, then the
response in each case will also be the same
and can be described by the material’s e-N
curve. Due account can also be made for
stress concentrations, variable amplitude
loading etc.
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Fatigue Analysis: Strain-Life
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Strain-Life

Major Assumptions:
 Local stresses and strains control fatigue 

behavior

Plasticity around stress concentrations

Accurate determination of Kf
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Strain-Life

 Advantages:
Plasticity effects

Mean stress effects
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Strain-Life

 Limitations:
Requires empirical Kf

 Long life situations where surface finish and 
processing variables are important
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Crack Growth Fatigue Modeling

The Similitude Concept
states that if the stress
intensity (K) at the tip of a
crack in the ‘test’ structure
(welded connection on an oil
platform leg, say) and the
test specimen are the same,
then the crack growth
response in each case will
also be the same and can be
described by the Paris
relationship. Account can
also be made for local
chemical environment, if
necessary.
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Fatigue Analysis: Crack Growth

Material
Data

Component
Geometry

Service
Loading

Analysis
Fatigue

Life Estimate

da/dN curve

K

S , Sm

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 107 of 202

Crack Growth

Major Assumptions:
Nominal stress and crack size control fatigue life

Accurate determination of initial crack size
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Crack Growth

 Advantage:
Only method to directly deal with cracks
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Crack Growth

 Limitations:
Complex sequence effects

Accurate determination of initial crack size
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Choose the Right Model

 Similitude
 Failure mechanism

Size scale
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Design Philosophy

 Safe Life

 Damage Tolerant
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Safe Life
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Choose an appropriate risk and replace critical parts
after some specified interval 
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Damage Tolerant

Inspect for cracks larger than a1 and repair
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Safe Operating Life

Inspection
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Inspection

A Boeing 777 costs $250,000,000

A new car costs $25,000

For every $1 spent inspecting and maintaining a 
B 777 you can spend only 0.01¢ on a car
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Things Worth Remembering

Questions to ask
Will a crack nucleate ?

Will a crack grow ?

How fast will it grow ?

 Similitude
 Failure mechanism

Size Scale
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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Fatigue Mechanisms Summary

 Fatigue cracks nucleate in shear

 Fatigue cracks grow in either shear or tension 
depending on material and state of stress
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Stress Based Models

 Sines

 Findley

 Dang Van
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Test Results

 Cyclic tension with static tension

 Cyclic torsion with static torsion

 Cyclic tension with static torsion

 Cyclic torsion with static tension
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Conclusions

 Tension mean stress affects both tension 
and torsion

 Torsion mean stress does not affect tension 
or torsion
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Findley
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Bending Torsion Correlation
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Dang Van
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Isotropic Hardening
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Dang Van ( continued )
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Stress Based Models Summary

Sines:

Findley:
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Model Comparison R = -1
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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Strain Based Models

 Plastic Work

 Brown and Miller

 Fatemi and Socie

 Smith Watson and Topper

 Liu

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 137 of 202

10 10 2 103 104 105

0.001

0.01

0.1

Cycles to failure

P
la

st
ic

 o
ct

ah
ed

ra
l

sh
ea

r 
st

ra
in

 r
an

g
e Torsion

Tension

Octahedral Shear Strain



24

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 138 of 202

1

10

100

102 103 104

A

Fatigue Life, Nf

P
la

st
ic

 W
or

k 
pe

r 
C

yc
le

, 
M

J/
m

3

T Torsion
Axial
0

90

180

135

45

30

T

A T

T
T

T
T

T

A

A

A A

A

Plastic Work

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 139 of 202

0.005 0.010.0

102

2 x102

5 x102

103

2 x103

F
a

tig
u

e
 L

ife
, 

C
yc

le
s

Normal Strain Amplitude, n

 = 0.03

Brown and Miller

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 140 of 202

Case A and B

Growth along the surface Growth into the surface
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Uniaxial

Equibiaxial

Brown and Miller ( continued )
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Brown and Miller ( continued )
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Fatemi and Socie
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Fatemi and Socie
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Smith Watson Topper
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Cyclic Torsion

Cyclic Shear Strain Cyclic Tensile Strain

Shear Damage Tensile Damage

Cyclic Torsion
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Cyclic Torsion
Static Tension

Cyclic Shear Strain Cyclic Tensile Strain

Shear Damage Tensile Damage

Cyclic Torsion with Static Tension
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Cyclic Shear Strain Cyclic Tensile Strain

Tensile DamageShear DamageCyclic Torsion
Static Compression

Cyclic Torsion with Compression
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Test Results

 
Load Case /2 hoop MPa axial MPa Nf 

Torsion 0.0054 0 0 45,200 
with tension 0.0054 0 450 10,300 

with compression 0.0054 0 -500 50,000 
with tension and 

compression 
0.0054 450 -500 11,200 
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Conclusions

 All critical plane models correctly predict 
these results

 Hydrostatic stress models can not predict 
these results
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Model Comparison

                                      Summary of calculated fatigue lives 
 

Model Equation Life
Epsilon 6.5 14,060
Garud    6.7 5,210
Ellyin 6.17 4,450

Brown-Miller 6.22 3,980
SWT 6.24 9,930
Liu I 6.41 4,280
Liu II 6.42 5,420
Chu 6.37 3,040

Gamma  26,775
Fatemi-Socie 6.23 10,350

Glinka 6.39 33,220
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Strain Based Models Summary

 Two separate models are needed, one for 
tensile growth and one for shear growth

 Cyclic plasticity governs stress and strain 
ranges

Mean stress effects are a result of crack 
closure on the critical plane
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Separate Tensile and Shear Models
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Cyclic Plasticity
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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Fracture Mechanics Models

Mode I growth

 Torsion

Mode II growth

Mode III growth
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Mode I, Mode II, and Mode III

Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear
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Mode II

Mode III

Surface Cracks in Torsion
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Transverse Longitudinal Spiral

Failure Modes in Torsion
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Fracture Mechanics Models
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Fracture Surfaces

Bending Torsion
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Otsuka
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Strain Energy Density
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Strain energy density at the crack tip:

Necessary and sufficient conditions for crack growth:

Cyclic strain energy density:

Sih, G.C and Barthelemy, B.M. “Mixed Mode Fatigue Crack Growth Predictions” Engineering Fracture Mechanics, Vol. 13, 1980
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Fracture Mechanics Models Summary

Multiaxial loading has little effect in Mode I

 Crack closure makes Mode II and Mode III
calculations difficult

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 179 of 202

Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations



31

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 180 of 202

Nonproportional Loading

 In and Out-of-phase loading

 Nonproportional cyclic hardening

 Variable amplitude
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Findley Model Results
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Nonproportional Hardening
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Stress-Strain Response (continued)
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Nonproportional hardening results in lower fatigue lives

All tests have the same strain ranges
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Shear Stresses on Planes
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Shear Stresses on Planes
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Cycle Counting and Damage?
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Rainflow Cycle Counting

What could be more basic than 
learning to count correctly?

Matsuishi and Endo (1968) Fatigue of Metals Subjected to Varying Stress – Fatigue Lives Under 
Random Loading, Proceedings of the Kyushu District Meeting, JSME, 37-40
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Principal Stress Directions
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Signed Equivalent Stress
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Torsion Stresses
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Torsion Stresses
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Signed Equivalent Stress
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Stress-Strain on 120° and 150° Planes
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Fatigue Calculations

Load or strain history

Cyclic plasticity model

Stress and strain tensor

Search for critical plane
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 Analysis model 
Single event
16 input channels
2240 elements

An Example

From Khosrovaneh, Pattu and Schnaidt “Discussion of Fatigue Analysis Techniques for Automotive Applications”
Presented at SAE 2004. 
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Biaxial and Uniaxial Solution
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Nonproportional Loading Summary

 Nonproportional cyclic hardening increases 
stress levels

 Critical plane models are used to assess 
fatigue damage
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Outline

 State of Stress 

 Stress-Strain Relationships

 Fatigue Mechanisms

 Multiaxial Testing

 Stress Based Models 

 Strain Based Models

 Fracture Mechanics Models

 Nonproportional Loading

 Stress Concentrations
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Notches

 Stress and strain concentrations

 Nonproportional loading and stressing

 Fatigue notch factors

 Cracks at notches
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Torsion Experiments
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Multiaxial Loading

 Uniaxial loading that produces multiaxial 
stresses at notches

Multiaxial loading that produces uniaxial 
stresses at notches

Multiaxial loading that produces multiaxial 
stresses at notches
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Multiaxial Loading

 Uniaxial loading that produces multiaxial 
stresses at notches

Multiaxial loading that produces uniaxial 
stresses at notches

Multiaxial loading that produces multiaxial 
stresses at notches
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Bending Moments

M A B C D
2.82 1 1
2.00 3 2
1.41 2 1
1.00 2
0.71 2

 M M  55

A B C D

M 2.49 2.85 2.31 2.84
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Combined Loading
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Maximum Tensile Stress Location
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Kt = 3 Kt = 4

In and Out of Phase Loading

In-phase Out-of-phase

Damage location changes with load phasing
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Multiaxial Loading

 Uniaxial loading that produces multiaxial 
stresses at notches

Multiaxial loading that produces uniaxial 
stresses at notches

Multiaxial loading that produces multiaxial 
stresses at notches
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Out-of-phase shear loading is needed to produce 
nonproportional stressing
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Fracture Surfaces in Torsion

Circumferencial Notch

Shoulder Fillet
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Neuber’s Rule

S
tr

es
s 

(M
P

a)

Strain

KtS

Kte





eKSK tt

Stress calculated with 
elastic assumptions

Actual stress

 ES2e

For cyclic loading

eS ee

Multiaxial Fatigue © 2003-2008 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 242 of 202

Multiaxial Neuber’s Rule

 ES2e

Define Neuber’s rule in equivalent variables

Stress strain curve
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Five equations and six unknowns
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Ignore Plasticity Theory
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Hoffman and Seeger
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Glinka
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Koettgen-Barkey-Socie
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Notches Summary

 Uniaxial loading can produce multiaxial 
stresses at notches

Multiaxial loading can produce uniaxial 
stresses at notches

Multiaxial stresses are not very important in 
thin plate and shell structures

Multiaxial stresses are not very important in 
crack growth

Multiaxial Fatigue


