FCP Short Course Data Validation and Reduction for Fatigue

Stephen D. Downing Mechanical Science and Engineering

© 2001 - 2015 University of Illinois Board of Trustees, All Rights Reserved

Outline

- Test Planning
- Data Acquisition
- Data Validation
- Data Reduction Modes

Data Collection Exercise

Why Do We Collect Data?

- Assess product performance
- Estimate product durability
- Establish customer usage
- Model Verification
- Put Out Fires
- Other

Data Collection Equipment

- Analog Tape Recorders
- Digital Tape Recorders
- Solid State Digital Devices
 - Data Loggers
 - Time History Recorders
 - Field Computers

Data Collection Equipment

Field Data Collection

- Field tests are expensive
- Do it in one trip
 - Do I have the right data?
 - Do I have enough to be representative?
 - Is it of sufficient quality and accuracy?
- Good data acquisition equipment
 - Rugged
 - Easy to use
 - Flexible

Huge Investment

Durability Testing

What Is Data Validation?

- Process of verifying that the data collected meets the objectives set forth during test planning
- Data quality is sufficiently high
- Data quantity is enough to ensure statistical relevancy
- Data can sometimes be corrected

What Kind of Effort Is Validation?

- Most laborious, least interesting form of data analysis
- Time consuming 20% to 50% of total data analysis effort
- Critically important bad data begats bad analysis

Data Validation Steps

Outline

- Time History
- Time at Level Histograms
- Sequential Peak Valley
- Peak Valley Matrix (Markov)
- Rainflow Matrix
- **■** FFT

Relationship of Modes

Data Mode Uses

Time History - everything

Burst History - finding rare events

Sequential Peak Valley - durability analysis

Time @ Level Histogram - usage and performance determination

Peak Valley Matrix - statistical history characterization

Rainflow - durability analysis and statistical history characterization

FFT –everything like a time history but in the frequency domain

Time History

- Maintains amplitude
- Maintains sequence
- Maintains phase between multiple channels
- Maintains frequency content

Burst History (Triggered)

- Maintains amplitude
- Maintains sequence
- Maintains phase between multiple channels
- Maintains frequency content

Peak Valley Extraction

- Maintains amplitude
- Maintains sequence
- Destroys phase between multiple channels
- Destroys frequency content

Time At Level Histogram

- Maintains statistics
- Destroys sequence
- Destroys phase between multiple channels
- Destroys frequency content

Counts the total number of samples in each input signal category.

1D Time At Level

Counts the total number of samples in each input signal category.

2D Time At Level

Counts the total number of samples in each unique combination of input signal categories

2D Time At Level

Counts the total number of samples in each unique combination of input signal categories

Peak Valley Matrix

PEAK VALLEY PAIRS = AB, BC, CD, DE, EF, FG, GH, HI, IJ,

Peak Valley Matrix (Range Only)

400

- Maintains sequence
- Destroys phase between multiple channels
- Destroys frequency content

Peak Valley Matrix (Range-Mean)

- Maintains amplitudes
- Maintains sequence
- Destroys phase between multiple channels
- Destroys frequency content

				Range				
Mean	50	150	250	350	450	550	650	750
-350								
-250			1					
-150	1		1	1				
-50	5				1			
50	6	1						
150	6	3	1					
250								
350								

Peak Valley Matrix (To-From)

- Maintains amplitudes
- Maintains sequence
- Destroys phase between multiple channels
- Destroys frequency content

				FROM				
То	-350	-250	-150	-50	50	150	250	350
-350				1				
-250				1				
-150				1				
-50	1		1	4	1			
50					3	6	1	
150		1			5			
250					1			
350								

Rainflow Counting

- Maintains amplitudes
- Maintains sequence
- Destroys phase between multiple channels
- Destroys frequency content

Rainflow Counting

PEAK VALLEY PAIRS = AB, BC, CD, DE, EF, FG, GH, HI, IJ,

RAINFLOW PAIRS = AB, CD, EF, GH, IJ,

FFT (How's Fourier Work?)

Time Domain

Frequency Domain

How's Fourier Work?

FCP Short Course

Produced by the College of Engineering University of Illinois at Urbana-Champaign

© 2001 - 2015 University of Illinois Board of Trustees, All Rights Reserved