FCP Short Course Ductile and Brittle Fracture

Stephen D. Downing Mechanical Science and Engineering

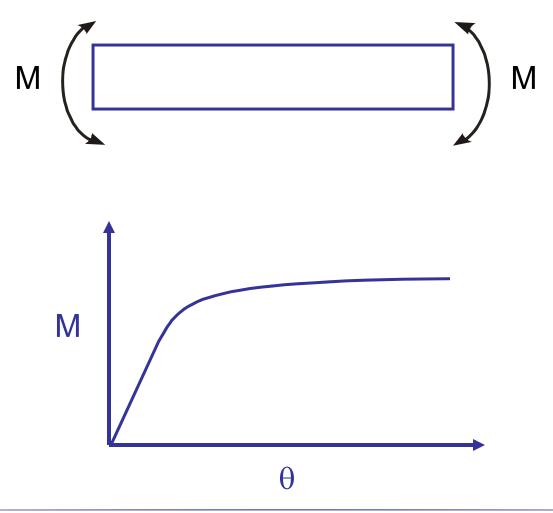
© 2001 - 2015 University of Illinois Board of Trustees, All Rights Reserved

Agenda

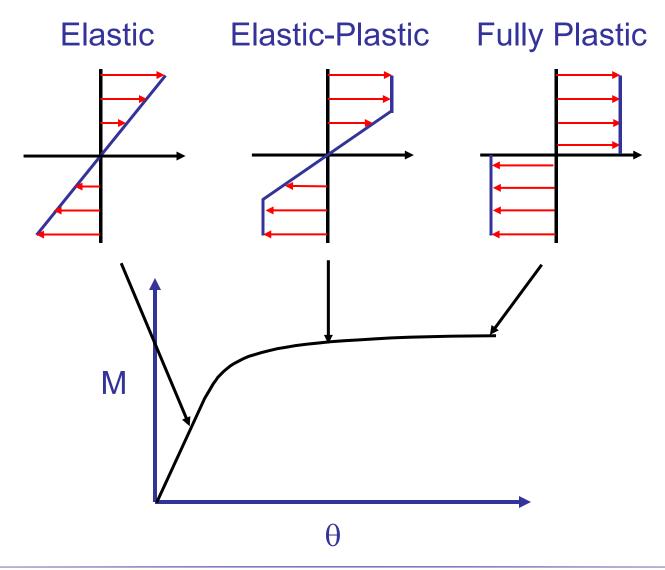
Limit theorems

- Plane Stress Plane Strain
- Notched plates
- Notched bars
- Brittle Faracture

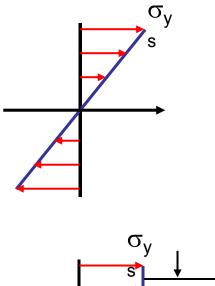
Beam in Bending

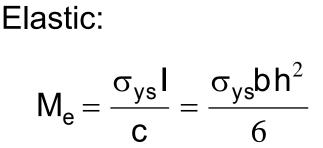


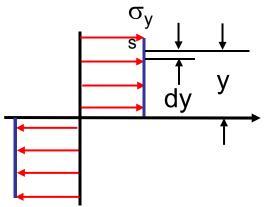
Stress Distribution

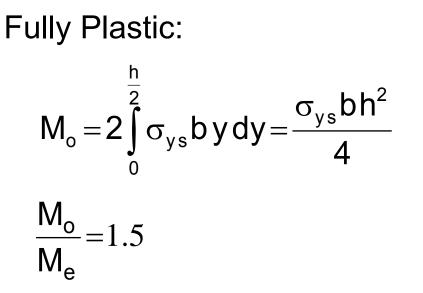


Plastic Moment

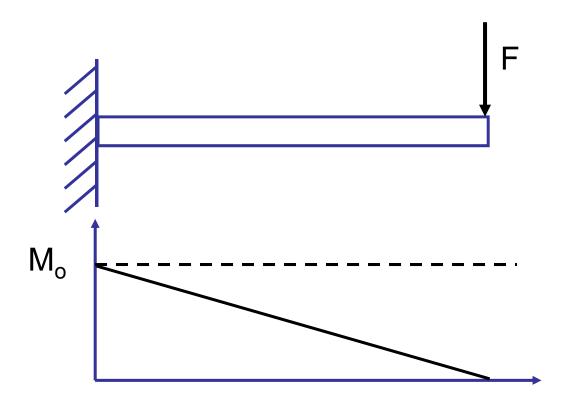






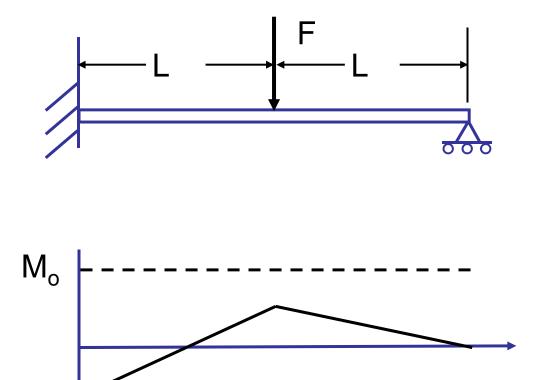


Fully Plastic Moment

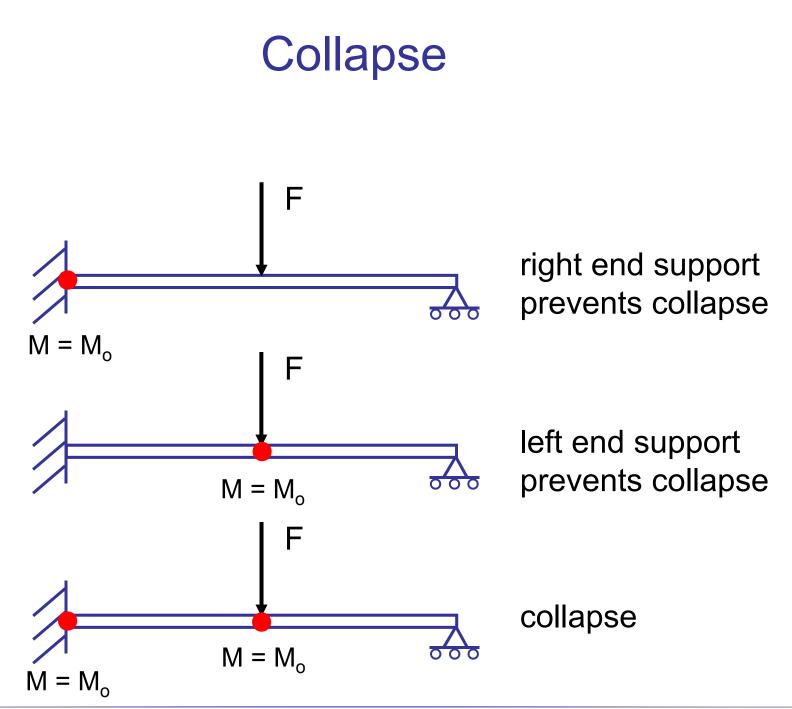


Beam can be loaded until M_o is reached after which a plastic hinge is formed and the beam is free to rotate.

Beam With a Support



Mo



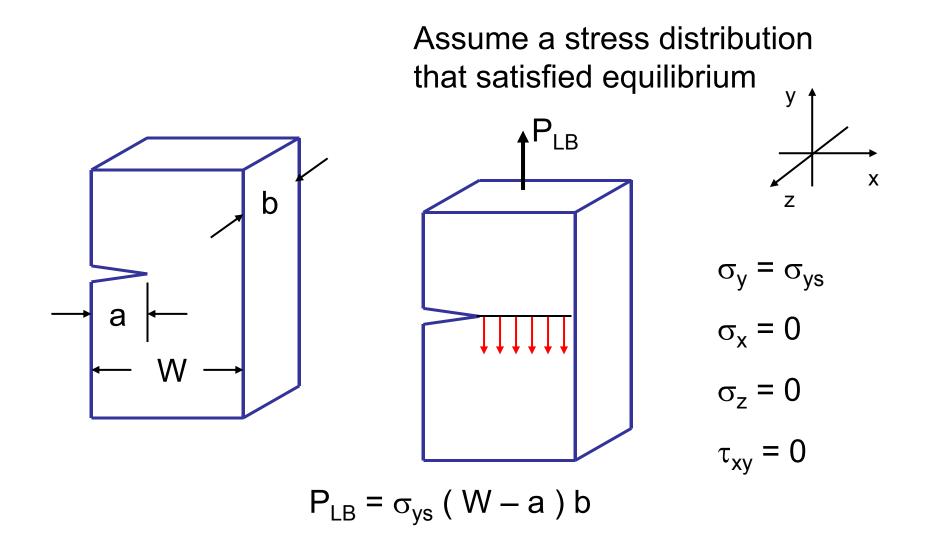
Lower Bound Theorem

- If an equilibrium distribution of stress can be found which balances the applied load and is everywhere below or at yield, the structure will not collapse or just be at the point of collapse.
- Guaranteed load capacity where system will not have large deformations

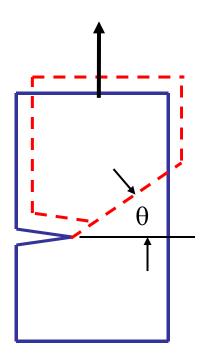
Upper Bound Theorem

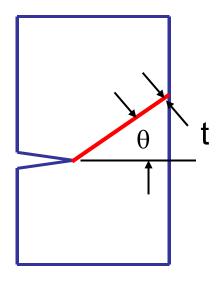
- The structure must collapse if there is any compatible pattern of plastic deformation for which the rate at which external work is equal to or greater than the rate of internal dissipation.
- Guaranteed load capacity where the system will have large deformations.

Application to a Cracked Plate



Upper Bound Solution

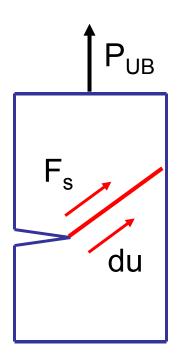




Rigid blocks allowed to slide

Shear band of thickness t

Upper Bound Solution (continued)



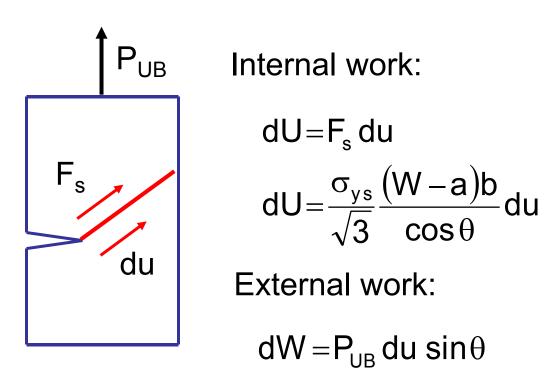
Slip plane area:

$$A_s = \frac{(W-a)b}{\cos\theta}$$

Force on shear plane:

$$F_{s} = \frac{\sigma_{ys}}{\sqrt{3}} \frac{(W-a)b}{\cos\theta}$$

Upper Bound Solution (continued)



Upper Bound Solution (continued)

Upper Bound Theorem: dU = dW

$$\frac{\sigma_{ys}}{\sqrt{3}} \frac{(W-a)b}{\cos\theta} du = P_{UB} du \sin\theta$$
$$P_{UB} = \frac{\sigma_{ys}}{\sqrt{3}} \frac{(W-a)b}{\sin\theta\cos\theta} = \frac{2\sigma_{ys}}{\sqrt{3}} \frac{(W-a)b}{\sin 2\theta}$$

Lowest upper bound for sin $2\theta = 1$ or $\theta = 45^{\circ}$

$$P_{UB} = 1.15 \sigma_{ys} (W - a) b$$
$$P_{LB} = \sigma_{ys} (W - a) b$$

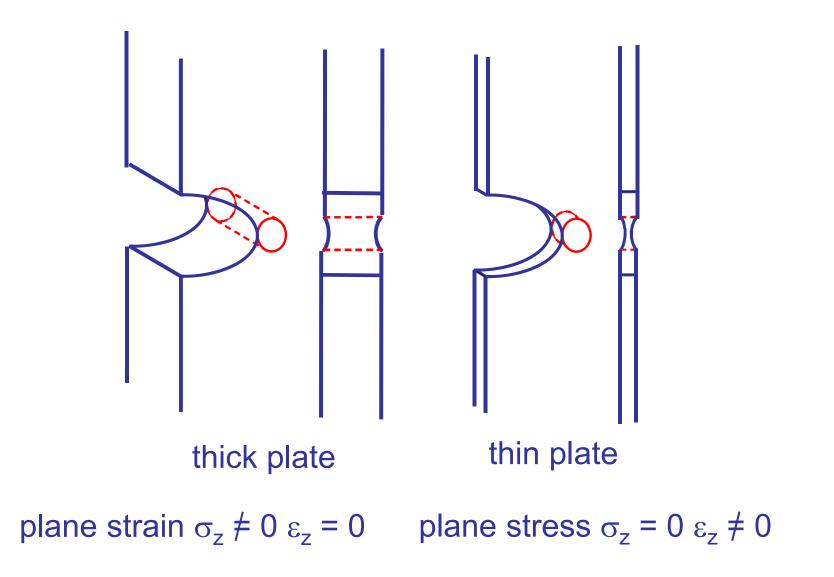
Agenda

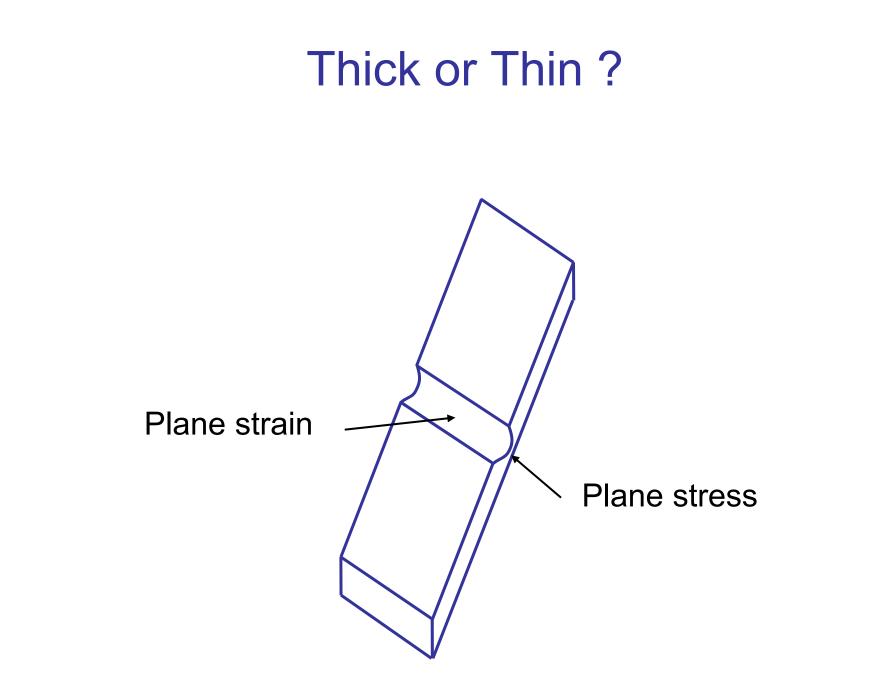
Limit theorems

Plane Stress – Plane Strain

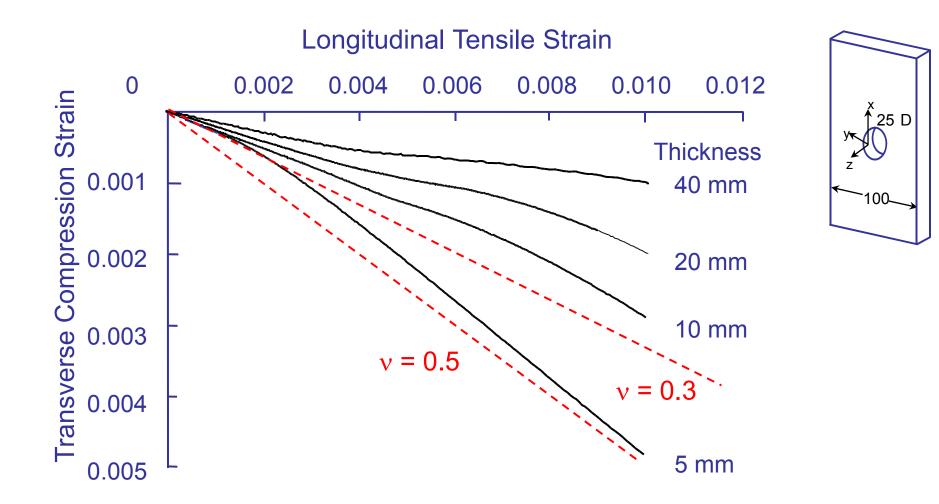
- Notched plates
- Notched bars
- Brittle Faracture

Plane Stress – Plane Strain

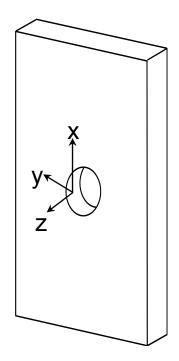




Transverse Strains



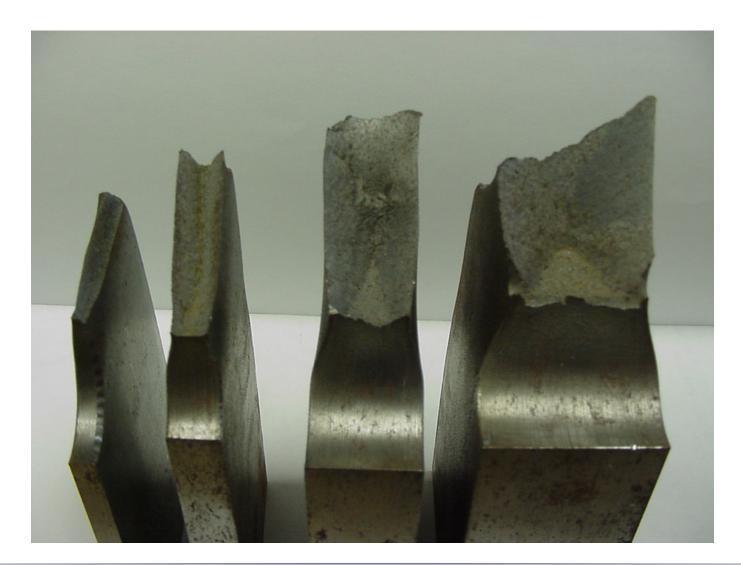
Notch Stresses



t	ε _x	ε _z	σ_{x}	σ _z
7	0.01	-0.005	63.5	0
15	0.01	-0.003	70.6	14.1
30	0.01	-0.002	73.0	21.8
50	0.01	-0.001	75.1	29.3

Fracture Surfaces

Fracture Surfaces



Yielding

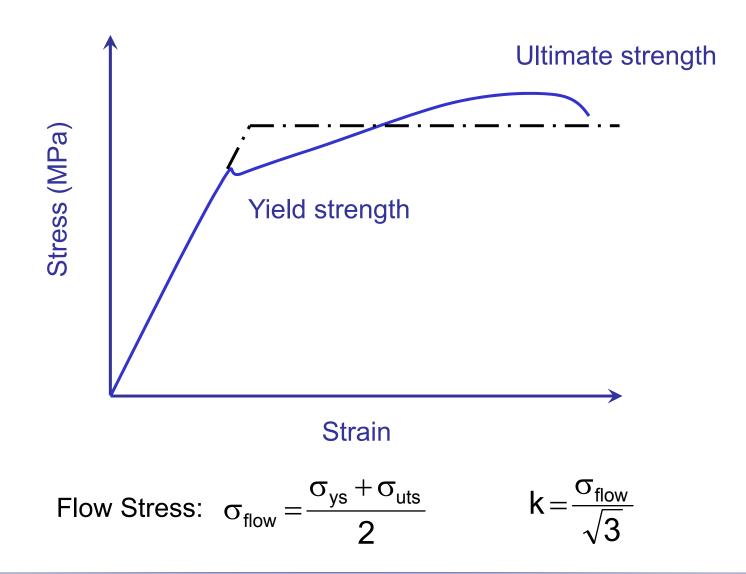
plane stress $\sigma_z = 0 \epsilon_z \neq 0$

$$\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2 = 3k^2$$

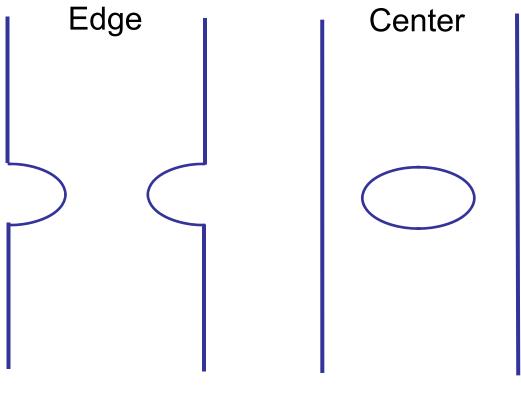
plane strain $\sigma_z \neq 0 \epsilon_z = 0$

$$\frac{1}{4} \left(\sigma_x - \sigma_y \right)^2 + \tau^2 = k^2$$

Flow Stress

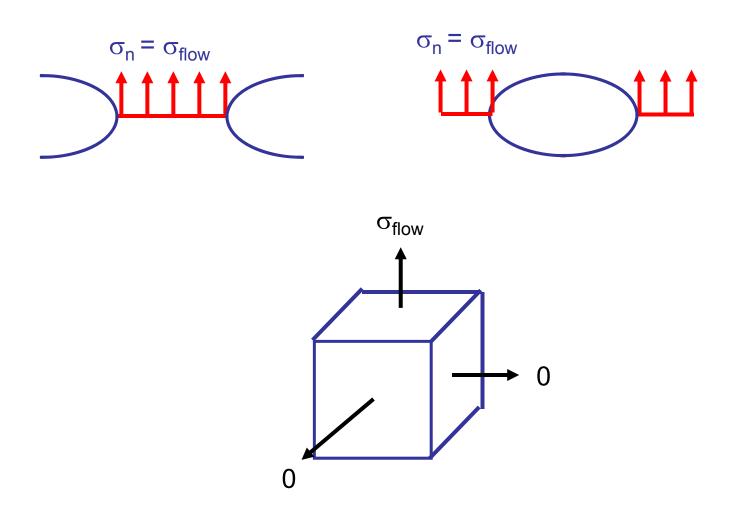


2 Notches

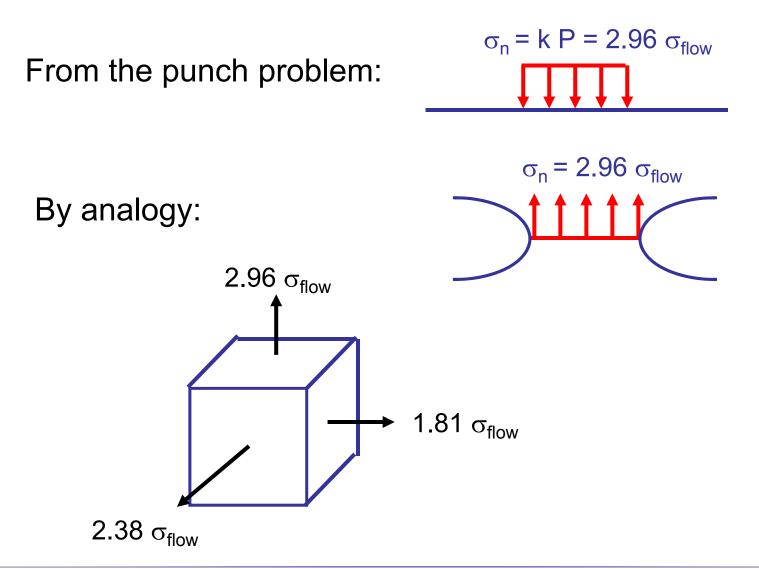


Same net section, same K_T

Plane Stress

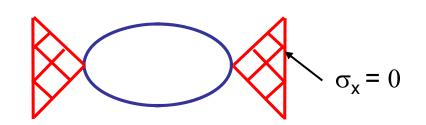


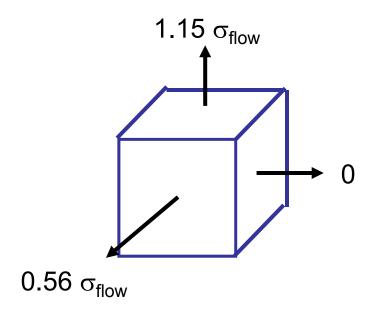
Edge Notch – Plane Strain



Center Notch – Plane Strain

Slip Line Field





Agenda

Limit theorems

Plane Stress – Plane Strain

Notched plates

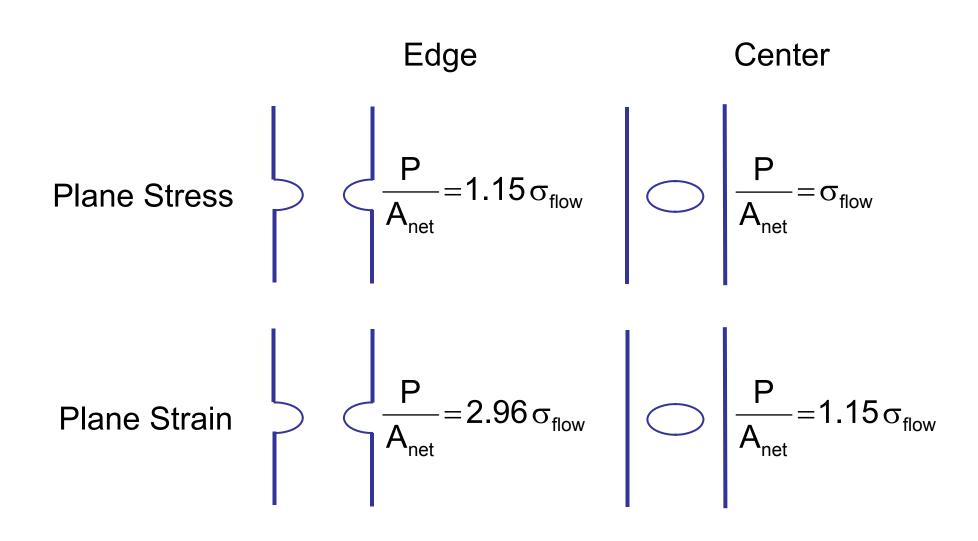
- Notched bars
- Brittle Faracture

What does all this tell us?

Lower Bound Theorem: $P_A = P_B = P_C = P_D$ Upper Bound Theorem: $P_A = P_B = P_C < P_D$ Slip Line Theory: $P_A = P_B = P_C < P_D$

No effect of stress concentration on static strength ! Some stress concentrations can increase the strength !

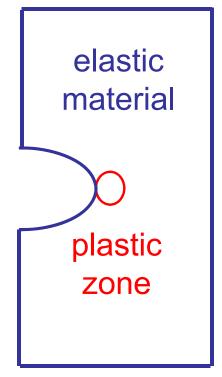
Failure Loads



Conclusion

Net section area, state of stress and material strength control the failure load in a structure.

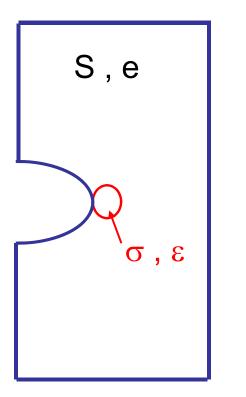
Stress or Strain Control?



Elastic material surrounding the plastic zone forces the displacements to be compatible, I.e. no gaps form in the structure.

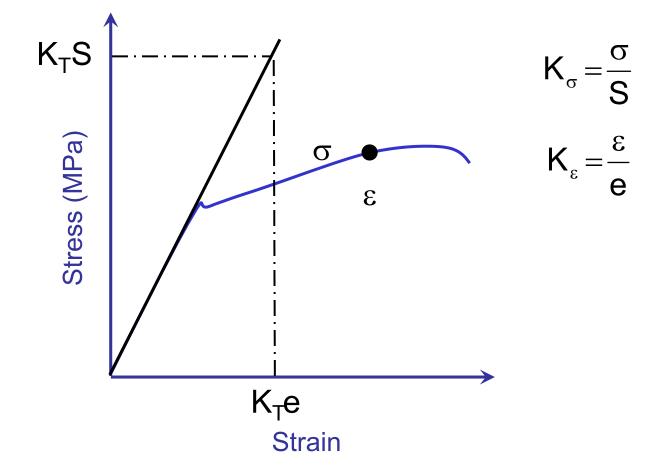
Boundary conditions acting on the plastic zone boundary are displacements. Strains are the first derivative of displacement

Define $K_{\!\sigma}$ and $K_{\!\epsilon}$

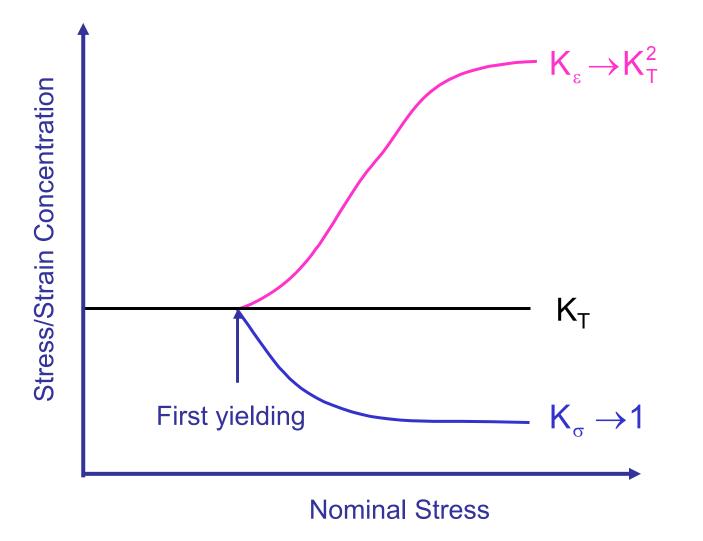


Define: nominal stress, S nominal strain, e notch stress, σ notch strain, ε

Stress concentration $K_{\sigma} = \frac{\sigma}{S}$ Strain concentration $K_{\varepsilon} = \frac{\varepsilon}{e}$

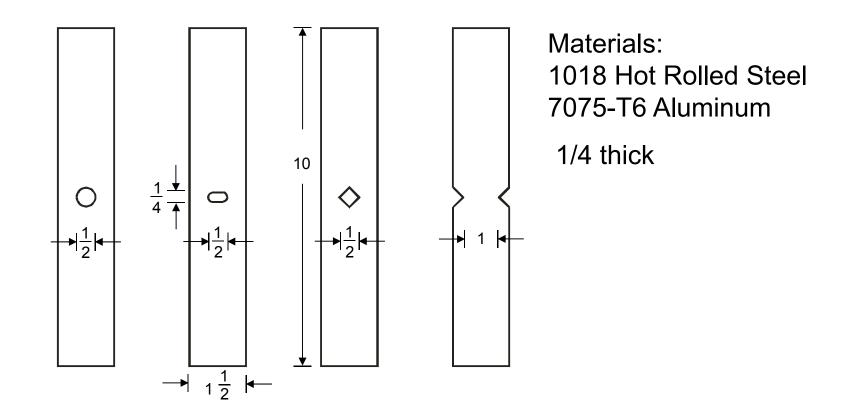


Stress and Strain Concentration

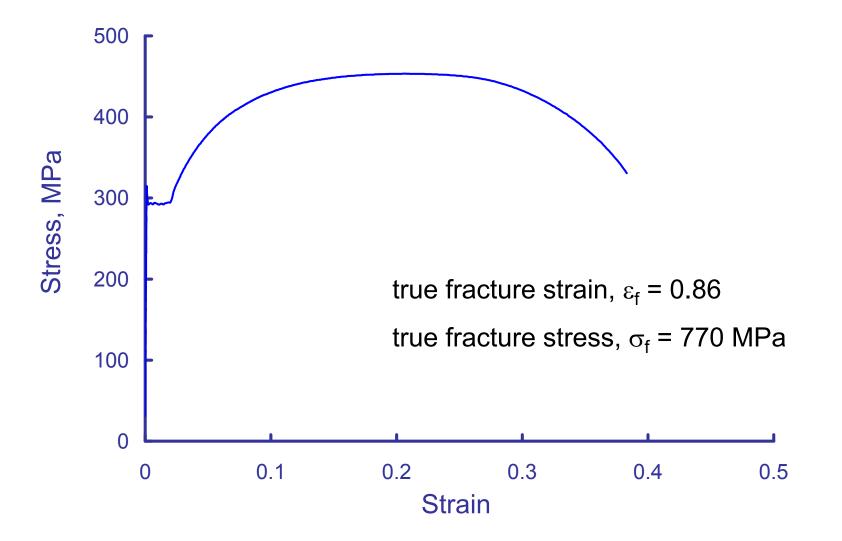


Failure of a Notched Plate

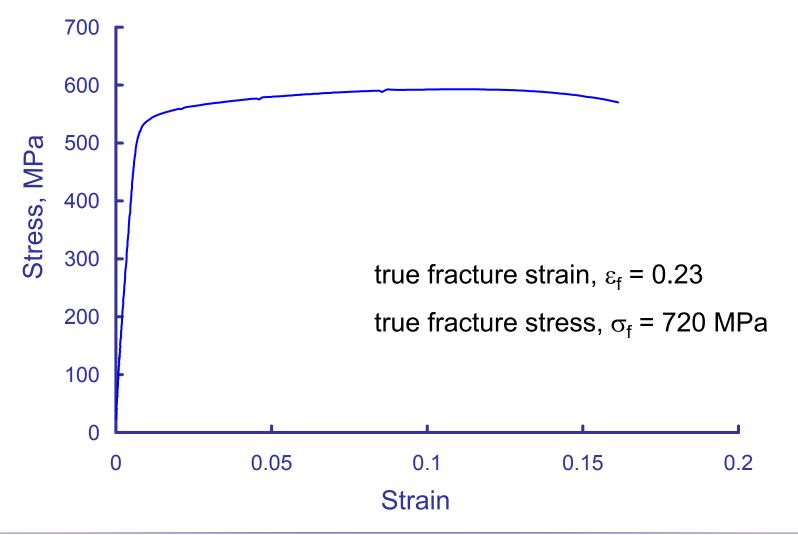
Real Data



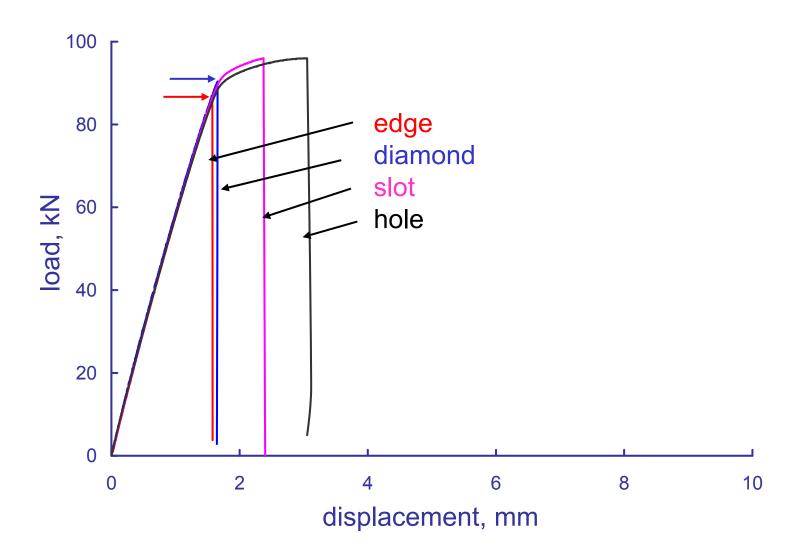
1018 Stress-Strain Curve



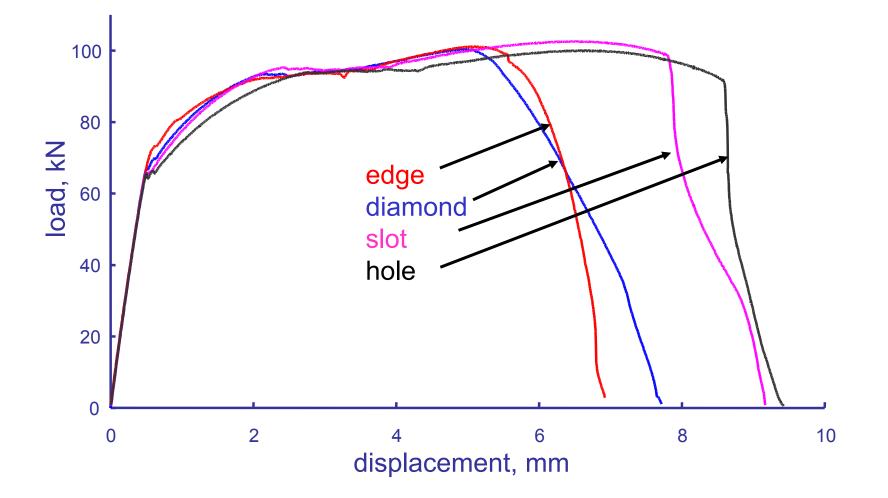
7075-T6 Stress-Strain Curve



7075-T6 Test Data



1018 Steel Test Data

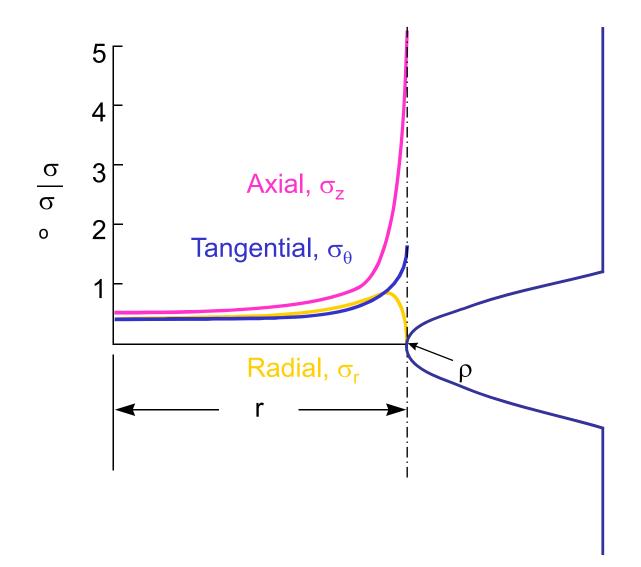


Agenda

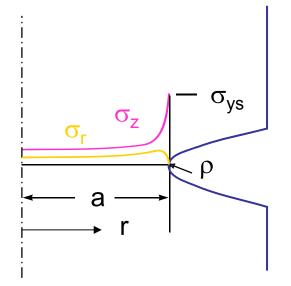
Limit theorems

- Plane Stress Plane Strain
- Notched plates
- Notched bars
- Brittle Faracture

Stress Concentration



Bridgeman Analysis (1943)





Elastic stress distribution

Plastic stress distribution

$$\tau = \frac{\sigma_z - \sigma_r}{2} = \text{constant}$$

Stresses

$$\sigma_{z} = \sigma_{o} \left[1 + ln \left(\frac{a^{2} + 2a\rho - r^{2}}{2a\rho} \right) \right]$$

$$P_z = \int_0^a 2\pi r \sigma_z dr$$

$$P_{max} = \pi a^2 \sigma_{flow} \left(1 + \frac{2\rho}{a} \right) ln \left(1 + \frac{a}{2\rho} \right)$$

$$P_{max} = A_{net} \sigma_{flow} CF$$

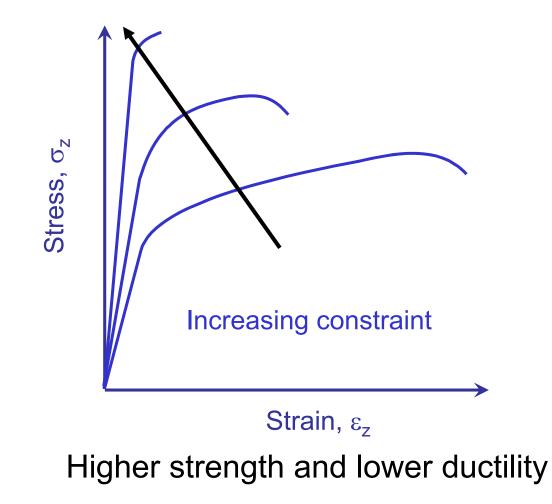
CF constraint factor

Constraint Factors

a /ρ	CF
0	1
1	1.21
2	1.38
4	1.64
8	1.73
20	2.63
∞	2.96

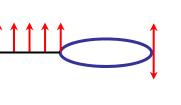
$$P_{max} = A_{net} \sigma_{flow} CF$$

Effect of Constraint



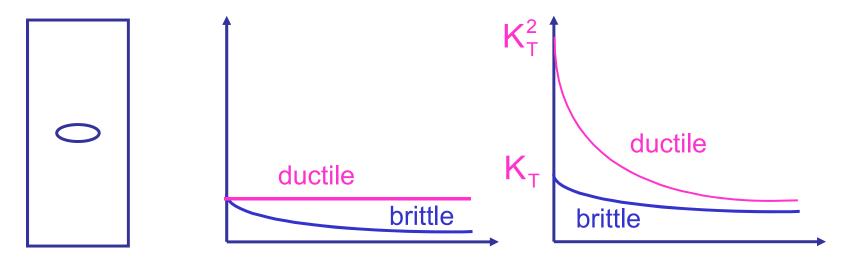
Failures from Stress Concentrations

Net section stresses must be below the flow stress



Notch strains must be below the fracture strain

Typical Stress Concentration



Stress distribution St

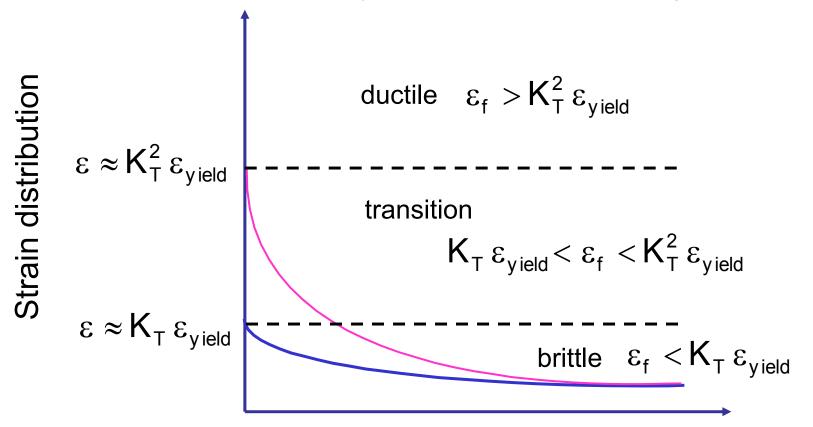
Strain distribution

A ductile material has the capacity for very large strains and it reaches the strength limit first

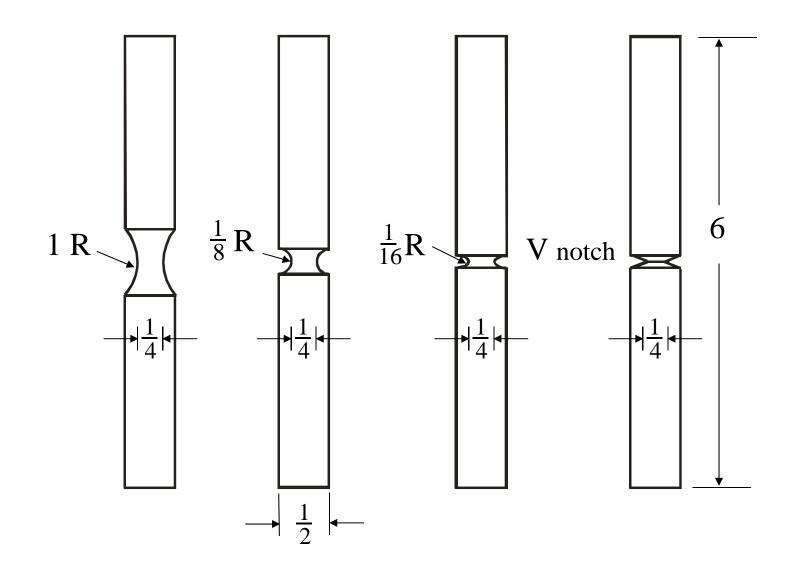
A brittle material reaches the strain limit first

Strain Distribution

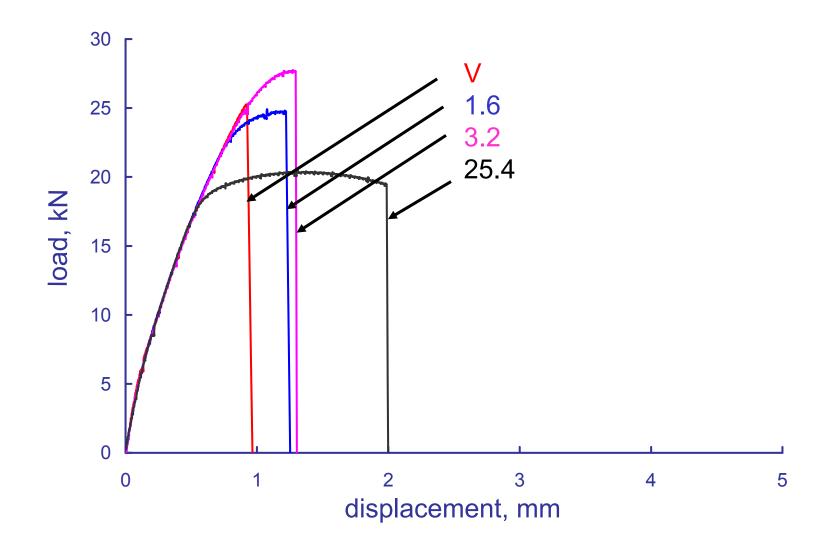
Nominal strain will reach the yield strain when the strength limit is reached



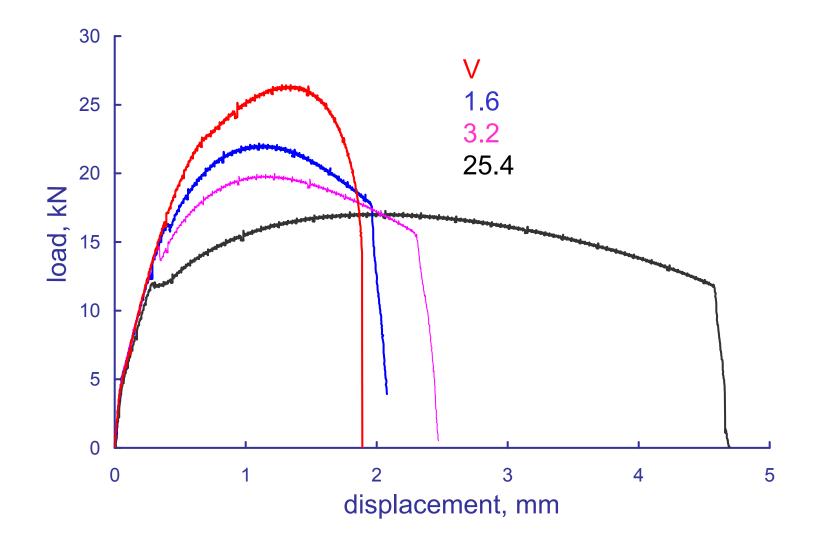
Notched Bars



7075-T6 Test Data



1018 Steel Test Data



Conclusion

Net section area, state of stress and material strength control the failure load in a structure only in ductile materials. In brittle materials, cracks will form before the maximum load capacity of the structure is reached.

Agenda

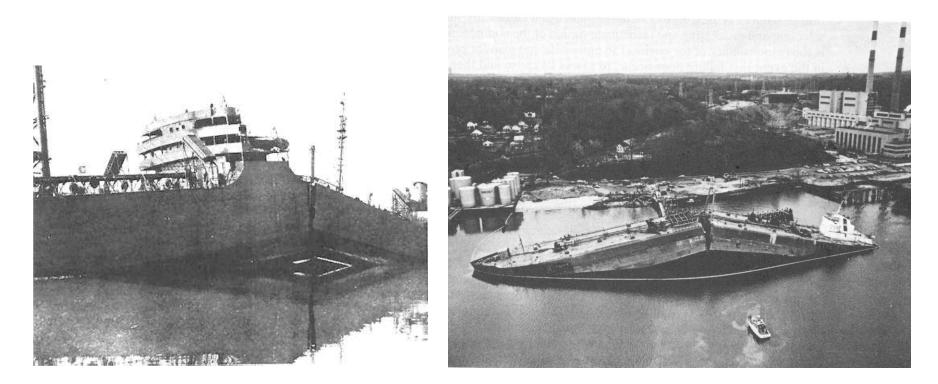
Limit theorems

- Plane Stress Plane Strain
- Notched plates
- Notched bars
- Brittle Fracture

Brittle Fracture

Failure of structures by the rapid growth of cracks (or crack-like defects) until loss of structural integrity.

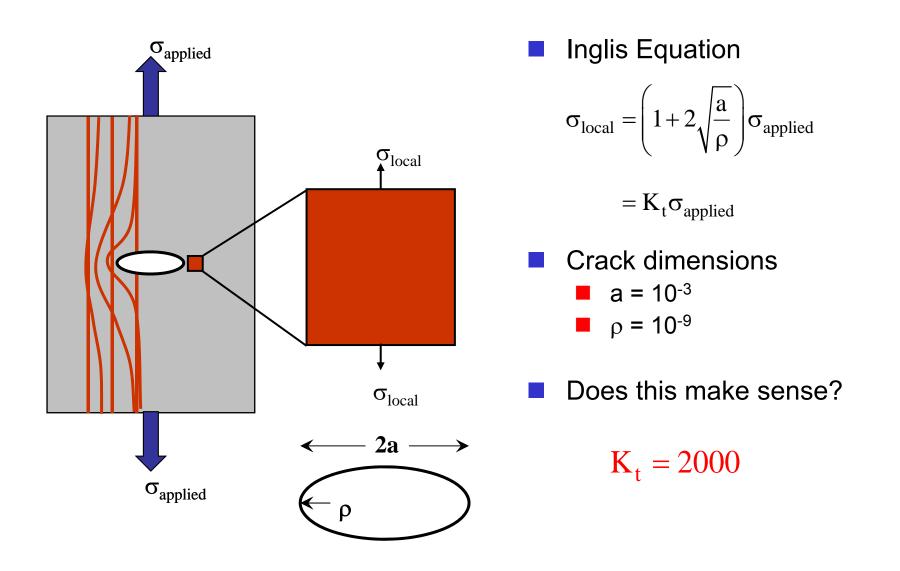
Fracture



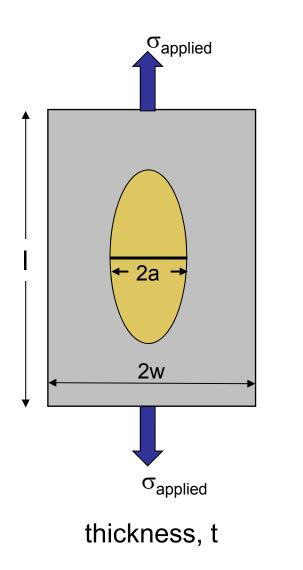
1943

1972

Stress Concentration



Griffith Approach



Uncracked plate elastic energy

$$U_{e} = \frac{1}{2}\sigma\varepsilon(2w*1*t) = \frac{\sigma^{2}}{2E}(2w*1*t)$$

- Introduce a crack which
 - Reduces elastic energy by:

$$U_e^{2a} = \frac{\sigma}{2E} \left(2\pi a^2 * t \right)$$

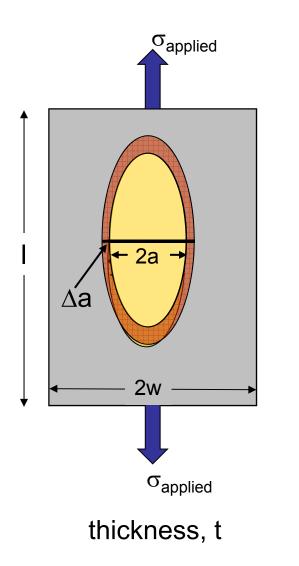
Increases total surface energy by:

$$\Gamma = 2\gamma_{s} \bullet 2at$$

For a crack to grow, the energy provided by new surfaces must equal that lost by elastic relief

$$\Delta U_e^{2a} = \Delta \Gamma$$

Griffith Approach



- Minimum criterion for stable crack growth:
- Strain energy goes into surface energy

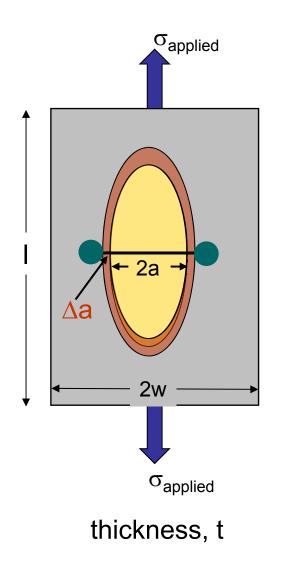
$$\frac{\partial \mathsf{U}}{\partial \mathsf{a}} = \frac{\partial \Gamma}{\partial \mathsf{a}}$$

$$\frac{\partial}{\partial a} \left(\frac{\sigma^2}{2E} \pi 2 a^2 t \right) = \frac{\partial}{\partial a} (\gamma_s 4 a t)$$

$$\sigma^2 \pi a = 2 E \gamma_s$$

$$\sigma = \sqrt{\frac{2 E \gamma_s}{\pi a}}$$

Plastic Energy Term



- Previous derivation is for purely elastic material
- Most metals and polymers experience some plastic deformation
- Strain energy (U) goes into surface energy (Γ)
 & plastic energy (P)

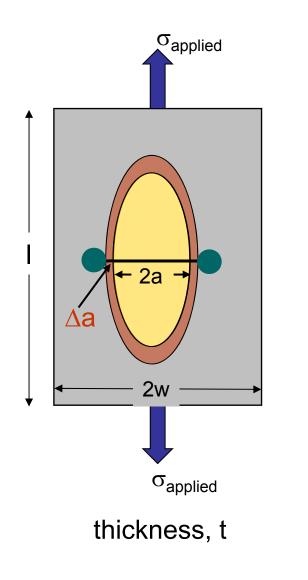
$$\frac{\partial U}{\partial a} = \frac{\partial \Gamma}{\partial a} + \frac{\partial P}{\partial a}$$

Orowan introduced plastic deformation energy,
 Y_p

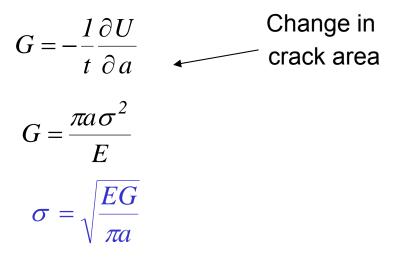
$$\sigma = \sqrt{\frac{2 E(\gamma_s + \gamma_p)}{\pi a}} \quad \gamma_p >> \gamma_s$$

Materials which exhibit plastic deformation absorb much more energy, removing it from the crack tip

Energy Release Rate, G



Irwin chose to define a term, G, that characterizes the energy per unit crack area required to extend the crack:

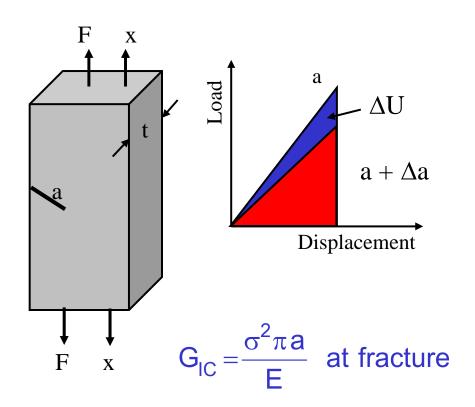


Comparing to the previous expression, we see that:

$$G = 2(\gamma_s + \gamma_p)$$

Works well when plastic zone is small ("fraction of crack dimensions")

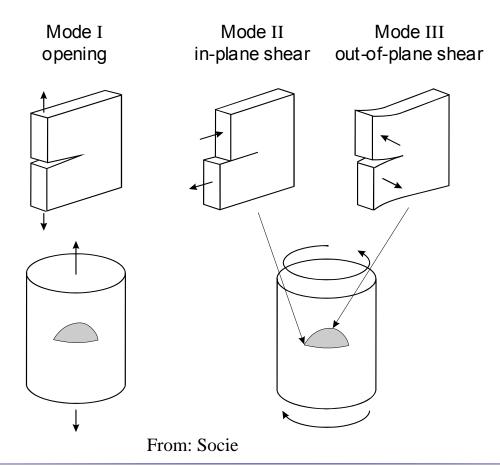
Experimentally Measuring G



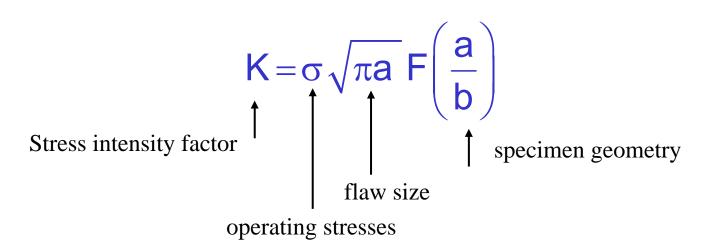
- Load cracked sample in elastic range
- Fix grips at given displacement
- Allow crack to grow length Δa
- Unload sample
- Compare energy under the curves
- G is the energy per unit crack area needed to extend a crack
- Experimentally measure combinations of stress and crack size at fracture to determine G_{IC}

Stress Based Crack Analysis

- Westergaard, Irwin analyzed fracture of cracked components using elastic-based stress theory
 - Three modes for crack loading

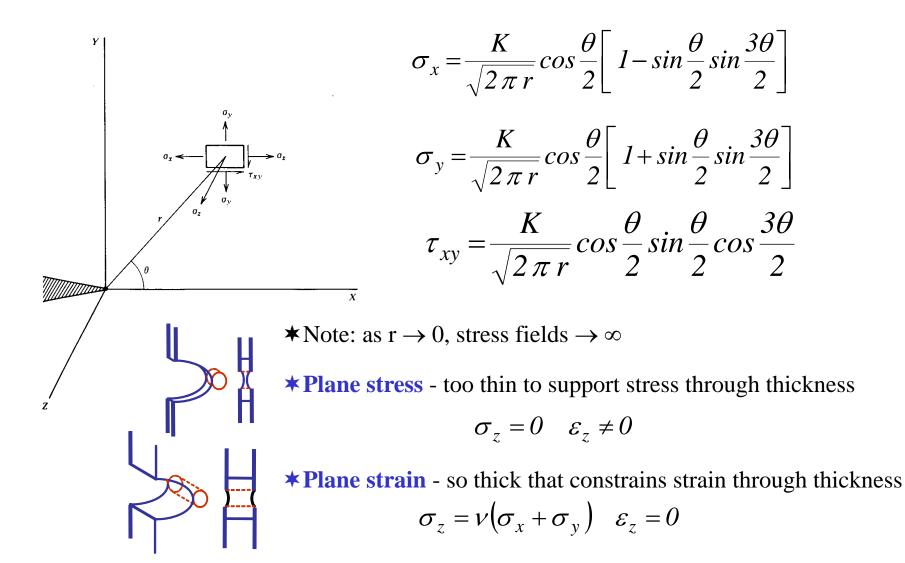


Stress Intensity Factor, K

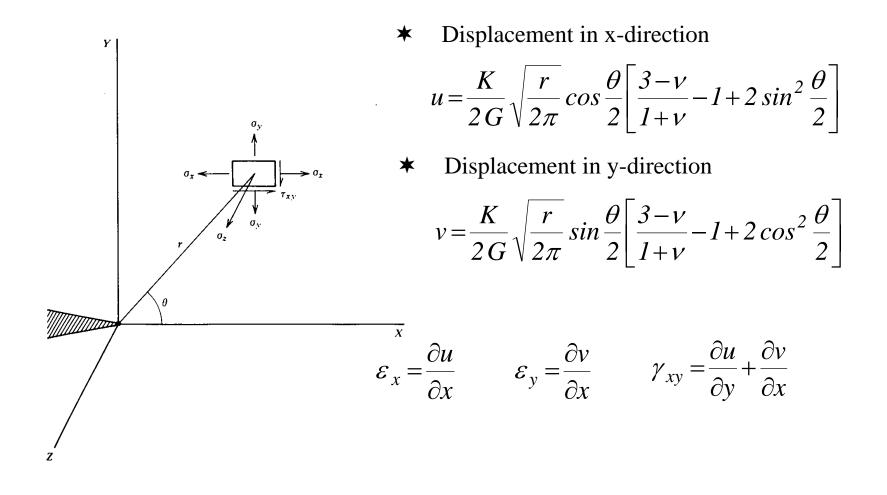


- Critical parameter is now based on:
 - Stress
 - Flaw Size
- Specimen geometry included using "correction factor"
 - crack shape
 - specimen size and shape
 - type of loading (i.e. tensile, bending, etc)

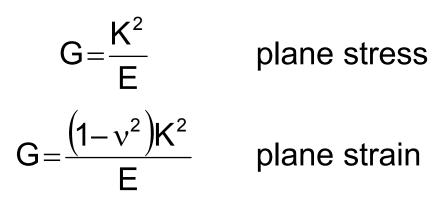
Stress Fields (near crack tip)



Stress Intensity Factor, K Displacement Fields

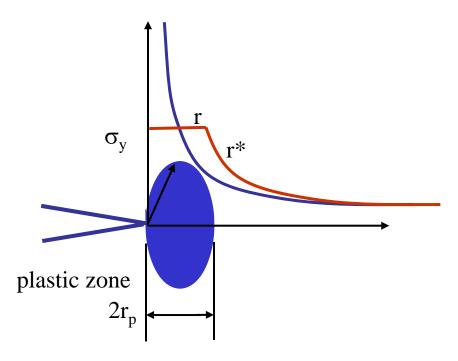


K and G



Linear Elastic Fracture Mechanics

- How can we use an elastic concept (K) when there is plastic deformation?
 - Small scale yielding
 - "Blunts" the crack tip



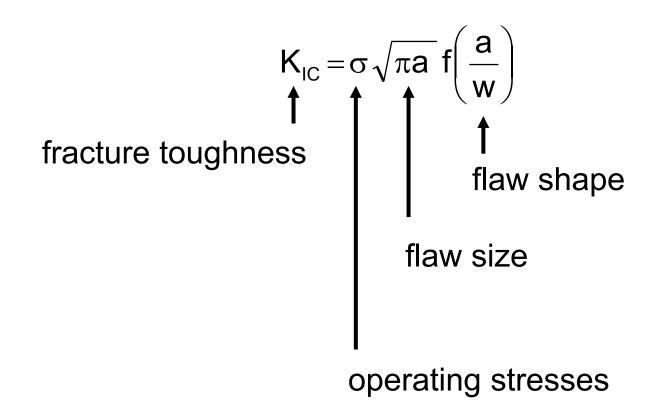
★ At elastic-plastic boundary,

$$\sigma_{y} = \frac{K}{\sqrt{2\pi r^{*}}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]$$

- * Note: zone of yielding will vary with θ
- **★** Consider stress at $\theta = 0$

$$\sigma_y = \frac{K}{\sqrt{2\pi r^*}}$$

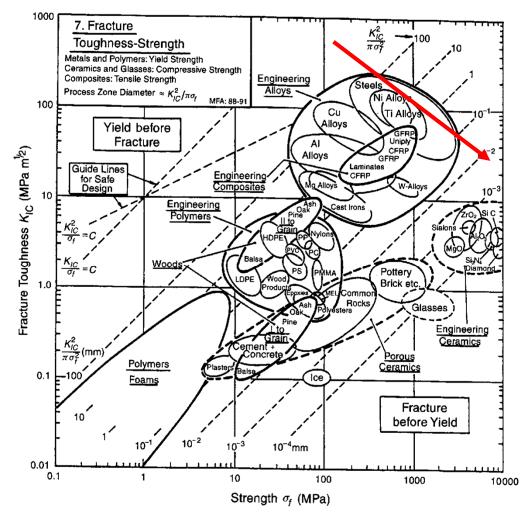
Design Philosophy



Critical Crack Sizes

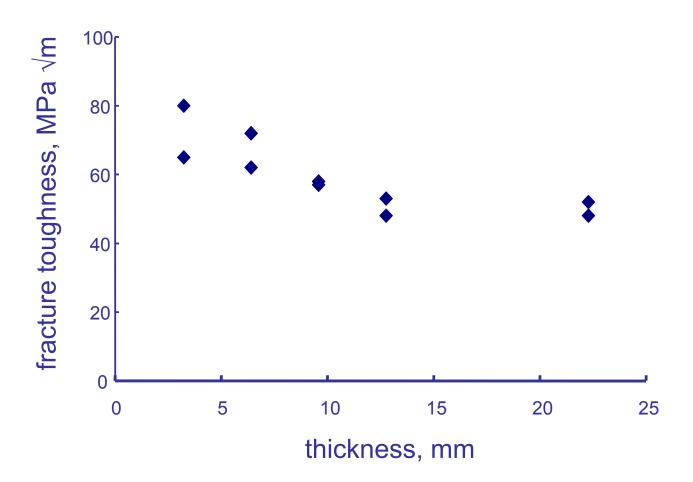
$$a_{critical} = \frac{1}{\pi} \left(\frac{K_{IC}}{\sigma_f} \right)^2$$

Fracture Toughness

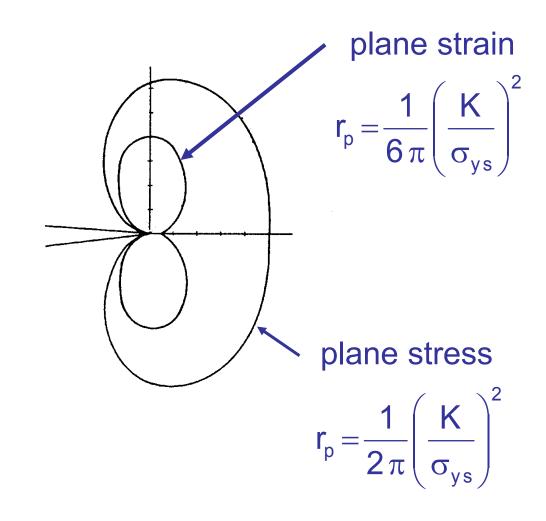


From M F Ashby, Materials Selection in Mechanical Design, 1999, pg 431

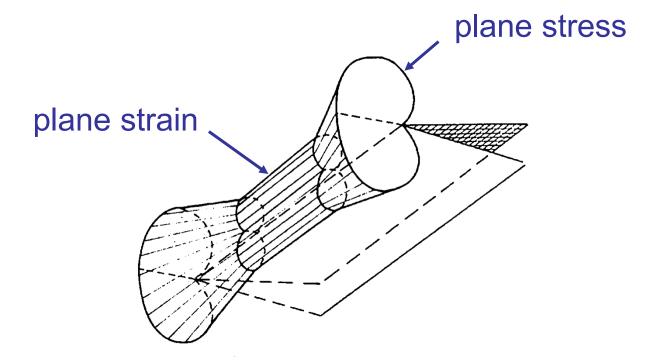
Thickness Effects



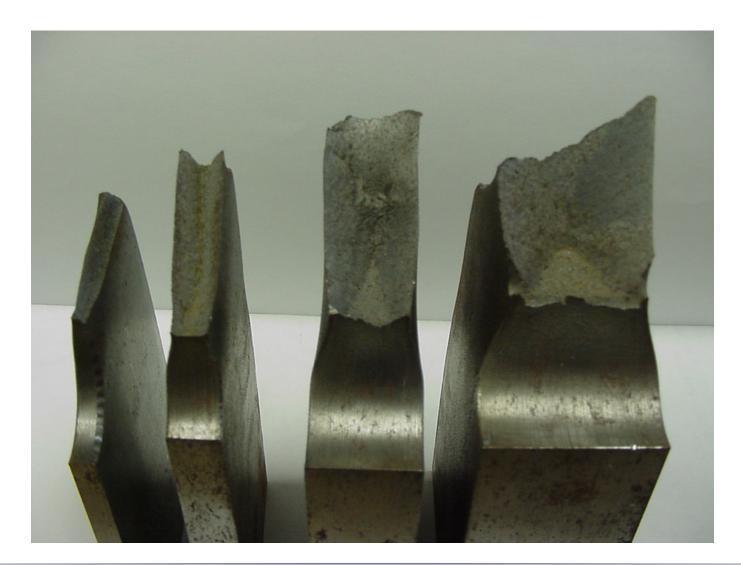
Plastic Zone Size



3D Plastic Zone



Fracture Surfaces



Size Requirements

$$\begin{split} t, W-a, a \geq 2.5 \left(\frac{\mathsf{K}}{\sigma_{\mathsf{ys}}}\right)^2 &\approx 50\,\mathsf{r_p} \\ & & & \\ 50\,\mathsf{r_ys} & \mathsf{K_{\mathsf{lc}}} & t, \,\mathsf{mm} \\ 2024-\,\mathsf{T3} & 345 & 44 & 40.7 \\ 7075\,\mathsf{-}\mathsf{T6} & 495 & 25 & 6.4 \\ \mathsf{Ti}\mathsf{-}\mathsf{6}\mathsf{A}\mathsf{I}\mathsf{-}\mathsf{4}\mathsf{V} & 910 & 105 & 33.3 \\ \mathsf{Ti}\mathsf{-}\mathsf{6}\mathsf{A}\mathsf{I}\mathsf{-}\mathsf{4}\mathsf{V} & 910 & 105 & 33.3 \\ \mathsf{Ti}\mathsf{-}\mathsf{6}\mathsf{A}\mathsf{I}\mathsf{-}\mathsf{4}\mathsf{V} & 1035 & 55 & 7.1 \\ 4340 & 860 & 99 & 33.1 \\ 4340 & 1510 & 60 & 3.9 \\ 17\mathsf{-}\mathsf{7}\,\mathsf{PH} & 1435 & 7\mathsf{7} & \mathsf{7.2} \\ 52100 & 2070 & 14 & 0.1 \\ \end{split}$$

T

T