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Agenda

 Limit theorems
 Plane Stress – Plane Strain
Notched plates
Notched bars
 Brittle Faracture
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Stress Distribution
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Fully Plastic Moment

F

Mo

Beam can be loaded until Mo is reached 
after which a plastic hinge is formed and 
the beam is free to rotate.



FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 6 of 24

Beam With a Support
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Collapse
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Lower Bound Theorem

 If an equilibrium distribution of stress can be 
found which balances the applied load and is 
everywhere below or at yield, the structure 
will not collapse or just be at the point of 
collapse.

Guaranteed load capacity where system will 
not have large deformations
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Upper Bound Theorem

 The structure must collapse if there is any 
compatible pattern of plastic deformation for 
which the rate at which external work is 
equal to or greater than the rate of internal 
dissipation.

Guaranteed load capacity where the system 
will have large deformations.
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Application to a Cracked Plate

W
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Assume a stress distribution 
that satisfied equilibrium
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x = 0
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Upper Bound Solution

Rigid blocks 
allowed to slide



Shear band of 
thickness t

 t
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Upper Bound Solution (continued)
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Upper Bound Solution (continued)
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Upper Bound Solution (continued)

Upper Bound Theorem:    dU = dW
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PLB = ys ( W – a ) b

PUB = 1.15 ys ( W – a ) b
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Agenda

 Limit theorems
 Plane Stress – Plane Strain
Notched plates
Notched bars
 Brittle Faracture
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Plane Stress – Plane Strain

thick plate thin plate

plane stress z = 0 z = 0plane strain z = 0 z = 0
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Thick or Thin ?

Plane strain

Plane stress
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Transverse Strains

Longitudinal Tensile Strain
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Notch Stresses

t x z x z

7 0.01 -0.005 63.5 0
15 0.01 -0.003 70.6 14.1
30 0.01 -0.002 73.0 21.8
50 0.01 -0.001 75.1 29.3

x

z

y
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Fracture Surfaces
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Fracture Surfaces
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Yielding

plane stress z = 0 z = 0

plane strain z = 0 z = 0
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Flow Stress
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2 Notches

Same net section, same KT

Edge Center
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Plane Stress

n = flow

0

0

flow

n = flow
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Edge Notch – Plane Strain

From the punch problem:
n = k P = 2.96 flow

n = 2.96 flow

By analogy:

2.38 flow

1.81 flow

2.96 flow
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Center Notch – Plane Strain

x = 

Slip Line Field

0.56 flow

0

1.15 flow
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Agenda

 Limit theorems
 Plane Stress – Plane Strain
Notched plates
Notched bars
 Brittle Faracture



FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 29 of 24

What does all this tell us?

A B C D

Lower Bound Theorem:   PA = PB = PC = PD

Upper Bound Theorem:   PA = PB = PC < PD

Slip Line Theory:   PA = PB = PC < PD

No effect of stress concentration on static strength !
Some stress concentrations can increase the strength !
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Failure Loads
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Conclusion

Net section area, state of stress and material strength 
control the failure load in a structure.  
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Stress or Strain Control?

elastic
material

plastic
zone

Elastic material surrounding 
the plastic zone forces the 
displacements to be compatible, 
I.e. no gaps form in the structure.

Boundary conditions acting on the 
plastic zone boundary are 
displacements.  Strains are the 
first derivative of displacement



FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 33 of 24

Define K and K
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K and K
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Stress and Strain Concentration
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Failure of a Notched Plate
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Real Data
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Materials:
1018 Hot Rolled Steel
7075-T6 Aluminum

1/4 thick
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1018 Stress-Strain Curve
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7075-T6 Stress-Strain Curve
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1018 Steel Test Data
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Agenda

 Limit theorems
 Plane Stress – Plane Strain
Notched plates
Notched bars
 Brittle Faracture
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Stress Concentration
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Bridgeman Analysis (1943)
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Stresses
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Constraint Factors

0 1
1 1.21
2 1.38
4 1.64
8 1.73
20 2.63

2.96

CFa /

Pmax = Anet flow CF
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Effect of Constraint
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Failures from Stress Concentrations

Net section stresses
must be below the 
flow stress

Notch strains must be 
below the fracture strain
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Typical Stress Concentration

2
TK

TK

Stress distribution Strain distribution

brittle

ductile
ductile

brittle

A ductile material has the capacity for very large strains and
it reaches the strength limit first

A brittle material reaches the strain limit first
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Strain Distribution
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transition

Nominal strain will reach the yield strain when the strength limit is reached
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7075-T6 Test Data
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Conclusion

Net section area, state of stress and material strength 
control the failure load in a structure only in ductile 
materials.   In brittle materials, cracks will form before the 
maximum load capacity of the structure is reached.
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Agenda

 Limit theorems
 Plane Stress – Plane Strain
Notched plates
Notched bars
Brittle Fracture
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Brittle Fracture

Failure of structures by the rapid growth of  
cracks (or crack-like defects) until loss of 
structural integrity.
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Fracture

1943 1972
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 Inglis Equation

 Crack dimensions
 a = 10-3

  = 10-9

 Does this make sense?

Stress Concentration

applied

applied

local applied

t applied
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Griffith Approach

 Uncracked plate elastic energy

 Introduce a crack which
 Reduces elastic energy by:

 Increases total surface energy by:

 For a crack to grow, the energy provided 
by new surfaces must equal that lost by 
elastic reliefapplied

applied
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Griffith Approach

 Minimum criterion for stable crack growth:
 Strain energy goes into surface energy
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applied

applied

2w

l

thickness, t

2a

Plastic Energy Term

 Previous derivation is for purely elastic material
 Most metals and polymers experience some 

plastic deformation
 Strain energy  (U) goes into surface energy () 

& plastic energy (P)

 Orowan introduced plastic deformation energy, 
γp

 Materials which exhibit plastic deformation 
absorb much more energy, removing it from the 
crack tip
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Energy Release Rate, G

 Irwin chose to define a term, G,  that 
characterizes the energy per unit crack 
area required to extend the crack:

 Comparing to the previous expression, we 
see that:

 Works well when plastic zone is small 
(“fraction of crack dimensions”)
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Experimentally Measuring G

 Load cracked sample in elastic 
range

 Fix grips at given displacement
 Allow crack to grow length ∆a
 Unload sample
 Compare energy under the 

curves
 G is the energy per unit crack 

area needed to extend a crack
 Experimentally measure 

combinations of stress and 
crack size at fracture to 
determine GIC

t

a
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ad

Displacement

a

F x

F x

a + a

U

 
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2

IC
aG at fracture

E
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Stress Based Crack Analysis

 Westergaard, Irwin analyzed fracture of cracked components using 
elastic-based stress theory
 Three modes for crack loading

Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

From: Socie
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Stress Intensity Factor, K

Stress intensity factor

operating stresses
flaw size

specimen geometry 

 
   

 

aK a F
b

 Critical parameter is now based on:
 Stress
 Flaw Size

 Specimen geometry included using “correction factor”
 crack shape
 specimen size and shape
 type of loading (i.e. tensile, bending, etc)
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Stress Intensity Factor, K
Stress Fields (near crack tip)
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Stress Intensity Factor, K
Displacement Fields













2

sin21
1
3

2
cos

2
r

G2
Ku 2 


















2

cos21
1
3

2
sin

2
r

G2
Kv 2 






x
u

x 



x
v

y 



x
v

y
u

xy 








 Displacement in x-direction

 Displacement in y-direction



FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 68 of 24

K and G
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plastic zone
2rp

Linear Elastic Fracture Mechanics

 How can we use an elastic concept (K) when there is plastic 
deformation?
 Small scale yielding
 “Blunts” the crack tip

r

 Consider stress at  = 0

*r2
K

y 
 

r*y




 

2
3sin

2
sin1

2
cos

*r2
K

y





 At elastic-plastic boundary, 

 Note: zone of yielding will vary with 
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Design Philosophy
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flaw size
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Critical Crack Sizes
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Fracture Toughness

From M F Ashby, Materials Selection in Mechanical Design, 1999, pg 431
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Thickness Effects
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Plastic Zone Size

plane stress

plane strain
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3D Plastic Zone

plane stress

plane strain
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Fracture Surfaces
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Size Requirements

p

2

ys

r50K5.2a,aW,t 













ys KIc t, mm
2024- T3 345 44 40.7
7075 -T6 495 25 6.4
Ti-6Al-4V 910 105 33.3
Ti-6Al-4V 1035 55 7.1

4340 860 99 33.1
4340 1510 60 3.9

17-7 PH 1435 77 7.2
52100 2070 14 0.1


