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Beam in Bending

0
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Stress Distribution
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Plastic Moment
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Fully Plastic Moment

Beam can be loaded until M, is reached
after which a plastic hinge is formed and
the beam is free to rotate.
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Beam With a Support
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Collapse

right end support
Géc prevents collapse
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I
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left end support
aés prevents collapse

lF
collapse
F—r—

M=M
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Lower Bound Theorem

B If an equilibrium distribution of stress can be
found which balances the applied load and is
everywhere below or at yield, the structure
will not collapse or just be at the point of
collapse.

B Guaranteed load capacity where system will
not have large deformations
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Upper Bound Theorem

B The structure must collapse if there is any
compatible pattern of plastic deformation for
which the rate at which external work is
equal to or greater than the rate of internal
dissipation.

B Guaranteed load capacity where the system
will have large deformations.
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Application to a Cracked Plate

FCP Fall 2015

Assume a stress distribution
that satisfied equilibrium

TPLB

_—

— 11T

PLB=GyS(W_a)b

ylk
X
Z
Oy ~ Oys
c,=0
c,=0
Ty = 0
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Upper Bound Solution
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Rigid blocks Shear band of
allowed to slide thickness t
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Upper Bound Solution (continued)

I Pus Slip plane area:
A (W-a)b
>Fs// ®  cosH
/dIJ Force on shear plane:
F — Oys (W_a)b
° J3 cosO
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Upper Bound Solution (continued)

I Pue  Internal work:

dU=F. du

F. _

e dU:GyS (W a)bdu
o J3 cosO

du External work:

dW =P ;du sin6
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Upper Bound Solution (continued)

Upper Bound Theorem: dU =dW

c,s (W-a)b

J3 cos0
5 _Oys (W-a)b _ 20y (W-a)b
B /3sin0cosd 43 sin 20

du = Pz dusinf

Lowest upper bound for sin 20 = 1 or 6 = 45°

PLB=GyS(W_a)b
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B Limit theorems

B Plane Stress — Plane Strain
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B Notched bars

B Brittle Faracture
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Plane Stress — Plane Strain

~
~
S
~
~
~

thick plate

plane strainc, #0 ¢, =0
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0|

thin plate

plane stresso,=0¢,# 0
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Thick or Thin ?

Plane strain

Plane stress
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Transverse Strains

Longitudinal Tensile Strain —
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§ \ | | | I | | %5 D
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Notch Stresses
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Fracture Surfaces

R R - PINRRS
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Fracture Surfaces
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Yielding

plane stress6,=0¢,# 0

2 2
G, —0,0,+0, +31° =3k*

plane strainc, #0¢,=0

%(GX —Gy)2 +1°=k?
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Flow Stress

Ultimate strength

Yield strength

Stress (MPa)

Strain

cSys + Guts k — cSﬂow

2 V3
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D

Edge

2 Notches

C

Center

O

Same net section, same K;
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Plane Stress

Gflow

Gﬂow

Oh

/ I

csﬂow

TTT( T_LOT_LT

4
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Edge Notch — Plane Strain

c,=kP =296,
From the punch problem: 11111

c,= 2.96 Gq,,,

By analogy: j t 11 (
;.9610fow
v

2.38 o4,
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Center Notch — Plane Strain

Slip Line Field
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1.15 G,

/‘l

|

0.56 oy,
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Agenda

B Limit theorems

B Plane Stress — Plane Strain
B Notched plates

B Notched bars

B Brittle Faracture

FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 28 of 24



What does all this tell us?

A

O

C

&

<

Lower Bound Theorem:

Py=Pg =P, =P,

Upper Bound Theorem: P, =Pg=P; <P

Slip Line Theory:

Py=Pg=P. <P,

No effect of stress concentration on static strength !

Some stress concentrations can increase the strength !
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Failure Loads

Edge Center

P P
Plane Stress <A =1.1564 | (O A~ Ctow

net

net

Plane Strain <A =2.96064,, | (O y =1.156,,

net net
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Conclusion

Net section area, state of stress and material strength
control the failure load in a structure.
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Stress or Strain Control?

| Elastic material surrounding
elastic the plastic zone forces the
material displacements to be compatible,
|.e. no gaps form in the structure.

| Boundary conditions acting on the
plastic plastic zone boundary are

Z0ne displacements. Strains are the
first derivative of displacement
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Define K_ and K,

S,e Define: nominal stress, S
nominal strain, e

| notch stress,
)2 notch strain, ¢

Stress concentration K_=

Strain concentration K, =
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K:S

Stress (MPa)

Strain
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Stress and Strain Concentration

K, —>K?

Stress/Strain Concentration

First yielding K —1

Nominal Stress
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Failure of a Notched Plate
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Real Data

T Materials:
1018 Hot Rolled Steel
7075-T6 Aluminum
1 10 1/4 thick
O %T o O > <
IR Lt R Sk Pt ke
= 15 a
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500

400

300

Stress, MPa

200

100

FCP Fall 2015

1018 Stress-Strain Curve

true fracture strain, ¢, = 0.86

true fracture stress, o; = 770 MPa

0.1 0.2 0.3 0.4 0.5
Strain
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7075-T6 Stress-Strain Curve

700
600 | .
M e
© 500 ﬁ
=
5 400 |
(/]
o
= 300 } -
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200 true fracture stress, o; = 720 MPa
100 ¢
O [ [ [ [
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7075-Tb Test Data

100
80 edge
diamond
slot
Z 60
= hole
5
S
= 40
20
O [ [ [ []
0 2 4 6 8 10

displacement, mm
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1018 Steel Test Data
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© o edge \
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© diamond 1\
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Agenda

B Limit theorems

B Plane Stress — Plane Strain
B Notched plates

B Notched bars

B Brittle Faracture
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Stress Concentration

Axial, o,

Tangential, o,
1T //
4_ —>\
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Elastic stress distribution
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Bridgeman Analysis (1943)

L

_6,—0C

t=—%2—7L=constant
2
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Plastic stress distribution
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Stresses

2 2
G,=0, ’I+|n[a +23p rj

2ap

PZ=J-2anZdr
0
P —na’ oﬂOW(n@jln( 1+ij
a 2p

I:)max = Anet Oflow CF

CF constraint factor
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Constraint Factors

alp CF

0 1

1 1.21
2 1.38
4 1.64
8 1.73
20 2.63
o0 2.96

I:)max = Anet Oflow CF
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Effect of Constraint

Stress, o,

Increasing constraint

>

Strain, e,
Higher strength and lower ductility

47 of 24
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Failures from Stress Concentrations

Net section stresses
must be below the
flow stress

111 Notch strains must be
b[ below the fracture strain
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Typical Stress Concentration

N K$ ‘
- K ductile
ductile T \
N— brittle brittle
Stress distribution Strain distribution

A ductile material has the capacity for very large strains and
it reaches the strength limit first

A brittle material reaches the strain limit first
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Strain Distribution

Nominal strain will reach the yield strain when the strength limit is reached

a

C
S ductile ¢, > KT €y jelg
-
2 2
£ €r KT €yielg f------------------—--
) .
= transition
c
'© KT 8yleld< &t < KT yleld
=
0p)
e ~K; Eyield

prittle  &; <K1 &g

A 4
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Notched Bars
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7075-Tb Test Data

1.6
3.2
25.4

load, kN

0 1 2 3 4 5
displacement, mm
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1018 Steel Test Data

1.6
3.2
25.4

load, kN

displacement, mm
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Conclusion

Net section area, state of stress and material strength
control the failure load in a structure only in ductile
materials. In brittle materials, cracks will form before the
maximum load capacity of the structure is reached.
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Agenda

B Limit theorems
B Plane Stress — Plane Strain

B Notc
B Notc
M Britt
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ned bars

e Fracture
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Brittle Fracture

Failure of structures by the rapid growth of
cracks (or crack-like defects) until loss of
structural integrity.
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Fracture

1972
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Stress Concentration

Gapplied B Inglis Equation

a
Olocal = (l"' 2\/;j Gapplied

=Ko

—

applied

B Crack dimensions
m a=103
m p=107°

Clocal B Does this make sense?

<«—— 28 ——>

Gapplied @
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Griffith Approach

Q

applied o Uncracked plate elastic energy

2
X U, =%Gs(2w*l*t):g—E(2W*l*t)

Introduce a crack which
u Reduces elastic energy by:

u2 =%(2na2*t)

u Increases total surface energy by:

] ow : ['=2y e 2at
' m For a crack to grow, the energy provided
by new surfaces must equal that lost by
elastic relief
cyapplied
. 2a
thickness, t AU" = Al
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Griffith Approach

B  Strain energy goes into surface energy

au_or
v E

N—

Aa

«—— 2W —»

1 2E yq

cSapplied 6 —

thickness, t T a
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Plastic Energy Term

Oapplied . . . . . .
PP B Previous derivation is for purely elastic material

B Most metals and polymers experience some
i plastic deformation

B  Strain energy (U) goes into surface energy (I')

& plastic energy (P)
ouU 6F oP
l v

da oa 8a
B Orowan introduced plastic deformation energy,

Yo

_\/ZE(7S+7p)
O =

y 2w Ta Tp 22 7s
1 B  Materials which exhibit plastic deformation
Gapplied absorb much more energy, removing it from the
: crack ti
thickness, t P

FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 61 of 24



Energy Release Rate, G

G .
applied B Irwin chose to define a term, G, that
characterizes the energy per unit crack
A area required to extend the crack:

10U Change in
. G= “toa «— crackarea
I , 2
G="29_
Aa E
EG
o= |—
a

—— 2w ——

v I —_—

1 B Comparing to the previous expression, we

see that:
G applied G= 2(7/5 + 7/p)
B  Works well when plastic zone is small

thickness, t i imensi
(“fraction of crack dimensions”)
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Experimentally Measuring G

Load cracked sample in elastic
range

Fix grips at given displacement
Allow crack to grow length Aa
Unload sample

Compare energy under the
curves

G is the energy per unit crack
area needed to extend a crack

- B Experimentally measure

1 1 2 4 combinations of stress and

oy G = © Td .t fracture crack size at fracture to
determine G,¢

— T

AU

LN
Load

a+ Aa

Displacement
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Stress Based Crack Analysis

B  Westergaard, Irwin analyzed fracture of cracked components using
elastic-based stress theory

B Three modes for crack loading

Mode | Mode Il Mode 111
opening in-plane shear  out-of-plane shear
v
4D
N N
| N
From: Socie
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Stress Intensity Factor, K

Stress intensity factor

flaw size
operating stresses

B Critical parameter is now based on:

B Stress
B Flaw Size

K=c./mta F a
t b

T specimen geometry

B Specimen geometry included using “correction factor’

M crack shape
B specimen size and shape

B type of loading (i.e. tensile, bending, etc)
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Stress Intensity Factor, K
Stress Fields (near crack tip)

9{ .6’.36’}
o, = COS—| 1—sIin—sin—
2 2 2

K
2Ty

9{ .9.39}
cosS—| 1+sIn—sin—
2 2

K
e P oY=

& . 6 30
COS — SIN—COS —
2 2

A K
: Txy_4/27zr

X

*Note: asr — 0, stress fields —
}:’ * Plane stress - too thin to support stress through thickness

o,=0 ¢, #0

.\@) — *kPlane strain - so thick that constrains strain through thickness

o, :V(O'X+Jy) g, =0
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Stress Intensity Factor, K
Displacement Fields

. *  Displacement in x-direction
Cou= R sl 37 14 26in2?
2G \2rx 21 1+v 2
!
o], | * Displacement in y-direction
U K Gin 937 11 9¢0s2?
2G \2rx 2| 1+v 2
' ou oV y 8u+av
E, =— E =— e
" oX Y ox Yooy ox
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Kand G

G:KE plane stress

plane strain
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Linear Elastic Fracture Mechanics

B How can we use an elastic concept (K) when there is plastic

deformation?
B Small scale yielding
B “Blunts” the crack tip

A

v

plastic zone

2rIo

* At elastic-plastic boundary,

K 9[ .0 . 30}
o, = coS—| 1+sin—sin—
2 2

Yo 2
*x  Note: zone of yielding will vary with 6

% Consider stressat9 =0
K
O, =

Yo l2xr*
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Design Philosophy

Kc=0+/ma f(ij
T A 4 W

fracture toughness T
flaw shape

flaw size

operating stresses
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Critical Crack Sizes

2

1K

acritical -
oF;

FCP Fall 2015 © 2015 Stephen Downing, University of Illinois at Urbana-Champaign, All Rights Reserved 71 of 24



FCP Fall 2015

1000

100

—
o

Fracture Toughness K, (MPa m1’?)
5

0.01

From M F Ashby, Materials Selection in Mechanical Design, 1999, pg 431
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Fracture Toughness

7. Fracture

Toughness-Strength

Metals and Polymers: Yield Strength
Ceramics and Glasses: Compressive Strength . .
Composites: Tensile Strength Engineering

) 2 Alloys
Process Zone Diameter =~ Kicfno, 25078 },

MFA: 88-91
] s
Yield before /7 -

Fracture d Prad
Ve

T rrrrir

Vs
Guida Lines /-

T
~
s - Engineering”,”
for Safe 7~ c—g-——rg 4
Deslgn -~ OMmposites
4

P

N 7" Engineerin p
27| Pohimere.
/7
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x
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ji]
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N

g
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N
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7 rQ; \Si € E
4 h
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e
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\
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” 4 N’

-~ Engineering
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Thickness Effects

100r

&
—
©
Q. 80t ¢
= N
N ¢
N ¢
o 60 ¢
C L J z
c ¢
(@))
S 40}
O
'
O
[ S
3 20t
(@)
®
=

0

0 5 10 15 20 25

thickness, mm
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Plastic Zone Size

plane strain

2
11 K
r =

=
6n| o,

N plane stress
2

11 K
r =

" 2nm Oys
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3D Plastic Zone

plane stress

L&
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Fracture Surfaces
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Size Requirements

tW-a,a 22.5[
Oys

2024- T3 345
7075 -T6 495
Ti-6Al-4V 910
Ti-6Al-4V 1035
4340 860
4340 1510
17-7 PH 1435
52100 2070

y 2
j z50rp

KIc

44
25
105
99
99
60
77
14

t, mm
40.7
6.4
33.3
7.1
33.1
3.9
7.2
0.1
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