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Deterministic versus Random

Deterministic – from past measurements the future position
of a satellite can be predicted with reasonable accuracy

Random – from past measurements the future position of
a car can only be described in terms of probability and
statistical averages
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Time Domain
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Frequency Domain
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Statistics of Time Histories

! Mean or Expected Value

! Variance / Standard Deviation
! Coefficient of Variation

! Root Mean Square
! Kurtosis

! Skewness
! Crest Factor

! Irregularity Factor



AAR Seminar © 2001 Darrell Socie, All Rights Reserved 5 of 57

Mean or Expected Value

Central tendency of the data
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Variance / Standard Deviation

Dispersion of the data
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Coefficient of Variation
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Root Mean Square
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The rms is equal to the standard deviation
when the mean is 0
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Skewness

Skewness is a measure of the asymmetry of the data
around the sample mean. If skewness is negative, the
data are spread out more to the left of the mean than
to the right. If skewness is positive, the data are spread
out more to the right. The skewness of the normal
distribution (or any perfectly symmetric distribution) is zero.
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Kurtosis

Kurtosis is a measure of how outlier-prone a distribution is.
The kurtosis of the normal distribution is 3. Distributions that
are more outlier-prone than the normal distribution have
kurtosis greater than 3; distributions that are less
outlier-prone have kurtosis less than 3.
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Crest Factor

The crest factor is the ration of the peak (maximum) value
to the root-mean-square (RMS) value. A sine wave has a
crest factor of 1.414.
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Irregularity Factor

Positive zero crossing
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IF → 1 is narrow band signal

IF → 0 is wide band signal



AAR Seminar © 2001 Darrell Socie, All Rights Reserved 13 of 57

Time Domain Nomenclature

! Random

! Stochastic
! Stationary

! Non-stationary
! Gaussian

! Narrow-band
! Wide-band
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Random

The instantaneous value can not be predicted at any
future time.
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Stochastic

Stochastic processes provide suitable models for
physical systems where the phenomena is governed
by probabilities.
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Stationary

The properties computed over short time intervals, t + ∆t,
do not significantly vary from each other

∆t
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Non-stationary
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Gaussian

Normally distributed around the mean
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Narrow-band
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Wide-band
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Frequency Domain Nomenclature

Fourier
Nyquist frequency

Aliasing
Anit-aliasing filter

FFT
Inverse FFT

Autospectral density
Transfer Function
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Fourier 1768 - 1830

Fourier studied the
mathematical theory of heat
conduction.
He established the partial
differential equation
governing heat diffusion and
solved it by using infinite
series of trigonometric
functions.
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Fourier Series
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Digital Sampling

∆t

What ∆t should be used for sampling the data?
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Aliasing

Both signals have the same digital samples.

f

2f

2 signals that differ in frequency by a factor of 2
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Nyquist frequency
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Anti-aliasing Filter
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Fourier Transform
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The area under each spike represents the magnitude
of the sine wave at that frequency.
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The magnitude of the FFT depends on the frequency window ∆f.
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Fast Fourier Transform - FFT
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Fast Fourier Transform - FFT
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Inverse FFT
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Autospectral Density

Function Units

Time History EU X(n)

Linear Spectrum EU S(n) = DFT(X(n))

AutoPower EU^2 AP(n) = S(n) · S(n)

PSD (EU^2)/Hz PSD(n) = AP(n) / ( Wf · ∆ f )

ESD (EU^2*sec)/Hz ESD(n) = AP(n) · T / ( Wf · ∆ f )
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Calculating Autospectral Density
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Power Spectral Density - PSD
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Linear Spectrum
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Comparison
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Frequency Domain Limitations
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Linear Spectrum

Frequency (Hz)

0 20 40 60 80 100 120 140

103

102

101

100

10-1

S
tr

ai
n

(u
st

ra
in

)



AAR Seminar © 2001 Darrell Socie, All Rights Reserved 39 of 57

Transfer Function
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Frequency Based Fatigue

! Stationary Loading
! Wind
! Sea State
! Vibration
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Assumptions

Random
Gaussian
Stationary
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Fatigue Analysis
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Dynamics Model
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PSD Moments
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Expected Values
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Probability Density Function
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Fatigue Damage

Cycles at level i ni = p( ∆Si ) δS NT

Total cycles NT = E( P ) T

Total time
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Narrow Band Solution
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the same peak distribution
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IF → 1 is narrow band signal

IF → 0 is wide band signal
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Dirlik Solution
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Loading History
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Rainflow Ranges
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Relative Fatigue Estimates
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Fatigue Data
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Loading History
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Slope = 3
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Slope = 5
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Slope = 10
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