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• Use of Aluminum Alloys in engine blocks and cylinder

heads

• Thermo-Mechanical Fatigue Results

• Summary

• Modeling Studies (Precipitation hardened aluminum

alloys)

OutlineOutline
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Advantages of cast aluminumAdvantages of cast aluminum

• Lightweight

– V-8 Engine Block: 150 lbs Cast Iron vs. 68 lbs
Aluminum

• Cast into complex shapes

• Increased thermal conductivity
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• Cylinder Heads

Inlet Valve Exhaust Valve

Spark Plug

Practical ApplicationPractical Application
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Al319Al319--T7BT7B

• Nominal Composition in weight percentage

– (*) WAP319: max 0.4% Fe - EAP319: max 0.8% Fe

• Thermal treatment
– solutionizing at 495°C for 8 hours followed by precipitating at

260°C for 4 hours)
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ThermoThermo--Mechanical Fatigue CyclesMechanical Fatigue Cycles

• Simultaneously changing strain and
temperature (T)

• In-Phase: max-strain at max-T

• Out-of-Phase: max-strain at min-T
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• Fatigue of materials subjected to simultaneously changing
temperature and strain.

• εtot = εth + εmech

• Terminology
– in-phase

– out-of-phase

ThermoThermo--Mechanical FatigueMechanical Fatigue

Temp.

Mech. Strain

Tmax

Tmin

εmaxεmin
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• Isothermal LCF

– 20°C, 150°C, 250°C and 300°C

– 2×10-1 s-1 , 4×10-3 s-1 and 5×10-5 s-1

• Thermo-Mechanical Fatigue

– 100–300°C — 5×10-5 s-1

Experimental ProceduresExperimental Procedures
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TMF OP 100TMF OP 100--300°C 1.0%300°C 1.0%
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Fatigue Life CriterionFatigue Life Criterion

LCF - 250°C - 0.3% - 0.5 hz
WAP319-T7B
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TMF LoopsTMF Loops
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TMFTMF –– Peak StressesPeak Stresses
300

250

200

150

100

50

St
re

ss
(M

Pa
)

2 3 4 5 6 7 8 9
0.1

2 3 4 5 6 7 8 9
1

2

Inelastic Strain Range (%)

OP IP
σmax
-σmin 100¡C

300¡C



University of Illinois at Urbana-Champaign

Department of Mechanical and Industrial Engineering

TMFTMF –– Stress Range EvolutionStress Range Evolution
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Cyclic StressCyclic Stress--Strain CurvesStrain Curves
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TMF LifeTMF Life
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TMF LifeTMF Life
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EAP319EAP319--T7BT7B
TMFTMF--OPOP

100100––300°C300°C
∆ε∆εmm=0.6%=0.6%
NNff=2460 c.=2460 c.
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EAP319EAP319--T7BT7B
TMFTMF--IPIP

100100––300°C300°C
∆ε∆εmm=0.54%=0.54%
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1. TMF stress-strain behavior is identical for both IP and
OP loading conditions. TMF-IP lives are shorter than
TMF-OP (based on the mechanical or inelastic strain
range) lives.

2. Creep damage dominates for TMF-IP loading and in
the high strain range regime.

3. The secondary alloy (EAP319) is softer than the
primary alloy (WAP319), but TMF lives are very
similar.

SummarySummary
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AluminumAluminum--Copper AlloysCopper Alloys
• Precipitate-dislocation interactions

– Anisotropy on plastic flow behavior (Hosford & Zeisloft ‘72, Bate et al. ‘81, Barlat & Liu ‘98,
Choi & Barlat ‘99)

– Bauschinger effect (Abel & Ham ‘66, Moan & Embury ‘79, Wilson ‘65)

• Coherent particles - GP zones and θ'' (Price and Kelly ‘64)

– Higher yield stress than Al shearing of particles

– Comparable work hardening rates and

deformation to Al

• Semi-coherent - θ' ( P & K ‘64, Russell & Ashby ‘70)

– High yield stress and high work hardening rates

• Incoherent particles - θ ( P & K ‘64, R & A ‘70)

– Low initial yield stress

– Highest rates of work hardening
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Precipitate DevelopmentPrecipitate Development

GP zones * Peak aged, θ'

Over aged, θ' & fine θVery over aged, coarse θ
*Sato & Takahashi, 1983
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Limitations of current modelsLimitations of current models

• No implicit consideration of aging treatment.
– Models were developed for one specific aging treatment

• Peak aged, θ'

• No inclusion of length scale
– Volume fraction, precipitate size, mean free path etc. with aging treatment

• Empirical hardening models with a microstructural basis.
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Proposed Hardening LawProposed Hardening Law
• Single crystal formulation - one precipitate type

• Polycrystal formulation
– More than one type of precipitate
– Incorporate grain size length scale
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Constitutive EquationsConstitutive Equations
• Relate stress and strain rate at single crystal and

polycrystal level.

• Can be written in pseudo-linear form.

• Assume overall polycrystal response described by law
similar to that of single crystal.
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Hardening with PrecipitatesHardening with Precipitates
• Start with dislocation evolution equation

• Combine with the Bailey-Hirsch relationship for flow stress.

Ýρ = Ko
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SummarySummary

• The hardening law including the effects of
precipitates on the deformation behavior of binary
Al - Cu alloys is physically based and accounts for
precipitate size, orientation, and mean free path.

• The model incorporates hardening law and
predicts single crystal behavior of pure Al and Al-
Cu alloys, it also predicts polycrystalline
experiments from knowledge of single crystal
behavior.


