Thermo-Mechanical Fatigue of Cast 319 Aluminum Alloys

Huseyin Sehitoglu, ¹Carlos C. Engler-Pinto Jr. ², Hans J. Maier ³, Tracy J. Foglesong⁴

 ¹ University of Illinois at Urbana- Champaign, USA,
² Ford Motor Company, Dearborn, ³ Universität-GH Paderborn, Germany, ⁴ Exxon, Houston

Research Supported by Ford Motor Company

Outline

- Use of Aluminum Alloys in engine blocks and cylinder heads
- Thermo-Mechanical Fatigue Results
- Summary
- Modeling Studies (Precipitation hardened aluminum alloys)

Percentage of Vehicles with Aluminum Engine Blocks and Heads (*)

		1994	2000	2005
Heads				
	Passenger cars	78%	85%	95%
	Light trucks	20%	40%	60%
Blocks				
	Passenger cars	13%	30%	50%
	Light trucks	5%	10%	20%

(*) Delphi VIII Study, 1996

Advantages of cast aluminum

- Lightweight
 - V-8 Engine Block: 150 lbs Cast Iron vs. 68 lbs Aluminum
- Cast into complex shapes
- Increased thermal conductivity

Al319-T7B

• Nominal Composition in weight percentage

Al	Si	Cu	Mg	Mn	Fe	Zn	Ti	Cr
Bal.	7.2- 7.7	3.3- 3.7	0.25- 0.35	0.20- 0.30	*	0.25 max	0.25 max	0.05 max

- (*) WAP319: max 0.4% Fe - EAP319: max 0.8% Fe

- Thermal treatment
 - solutionizing at 495°C for 8 hours followed by precipitating at 260°C for 4 hours)

Thermo-Mechanical Fatigue Cycles

- Simultaneously changing strain and temperature (T)
- In-Phase: max-strain at max-T
- Out-of-Phase: max-strain at min-T

Thermo-Mechanical Fatigue

• Fatigue of materials subjected to simultaneously changing temperature and strain.

Experimental Procedures

- Isothermal LCF
 - 20°C, 150°C, 250°C and 300°C
 - $-2 \times 10^{-1} \text{ s}^{-1}$, $4 \times 10^{-3} \text{ s}^{-1}$ and $5 \times 10^{-5} \text{ s}^{-1}$
- Thermo-Mechanical Fatigue
 - 100-300°C 5×10⁻⁵ s⁻¹

Cyclic Stress-Strain Curves

University of Illinois at Urbana-Champaign TMF Life 5-4-Room 150;C 40 hz Temperature 3-250;C 40 hz \diamond Mechanical Strain Range 250¡C 0.5 hz \bigtriangledown 2-250; C $5x10^{-5}$ s⁻¹ 300; C $5x10^{-5}$ s⁻¹ 4 0.01-(X)300;C 0.5 hz +TMF OP \otimes 6. TMF IP \bigcirc 5-4-3-2-EAP319-T7B 0.001 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10⁸ 10^{1} Cycles to Failure **Department of Mechanical and Industrial Engineering**

EAP319-T7B TMF-IP $100-300^{\circ}C$ $\Delta \varepsilon_{m} = 0.54\%$ $N_{f} = 390 c.$

Summary

- 1. TMF stress-strain behavior is identical for both IP and OP loading conditions. TMF-IP lives are shorter than TMF-OP (based on the mechanical or inelastic strain range) lives.
- 2. Creep damage dominates for TMF-IP loading and in the high strain range regime.
- 3. The secondary alloy (EAP319) is softer than the primary alloy (WAP319), but TMF lives are very similar.

Aluminum-Copper Alloys

- Precipitate-dislocation interactions
 - Anisotropy on plastic flow behavior (Hosford & Zeisloft '72, Bate *et al.* '81, Barlat & Liu '98, Choi & Barlat '99)
 - Bauschinger effect (Abel & Ham '66, Moan & Embury '79, Wilson '65)
- Coherent particles GP zones and θ'' (Price and Kelly '64)
 - Higher yield stress than Al shearing of particles
 - Comparable work hardening rates and deformation to Al
- Semi-coherent θ' (P & K '64, Russell & Ashby '70)
 - High yield stress and high work hardening rates
- Incoherent particles θ (P & K '64, R & A '70)
 - Low initial yield stress
 - Highest rates of work hardening

nt of Machanical and Inductrial Franciscoving

Precipitate Development

GP zones *

Very over aged, coarse θ *Sato & Takahashi, 1983 Over aged, θ' & fine θ

200 nm

*Sato & Takahashi, 1983 Department of Mechanical and Industrial Engineering

Limitations of current models

- No implicit consideration of aging treatment.
 - Models were developed for one specific aging treatment
 - Peak aged, θ'
- No inclusion of length scale
 - Volume fraction, precipitate size, mean free path etc. with aging treatment
- Empirical hardening models with a microstructural basis.

Constitutive Equations

• Relate stress and strain rate at single crystal and polycrystal level.

$$\boldsymbol{\mathscr{E}}_{i}^{m} = \left\{ \boldsymbol{\mathscr{Y}}_{s=1}^{S} \frac{m_{i}^{s} m_{j}^{s}}{\tau_{c}^{s}} \left(\frac{m_{k}^{s} \boldsymbol{\sigma}_{k}^{\prime}}{\tau_{c}^{s}} \right)^{n-1} \right\} \boldsymbol{\sigma}_{j}^{\prime} \qquad \text{where} = 1,5$$

• Can be written in pseudo-linear form.

$$\acute{\mathcal{A}}_{i}^{n} = M_{ij}^{c(\text{sec})}(\sigma')\sigma'_{j}$$

• Assume overall polycrystal response described by law similar to that of single crystal.

$$\vec{E}_{i}^{in} = M_{ij}^{(\text{sec})}(\overline{\Sigma'})\overline{\Sigma'}_{j}$$

Hardening with Precipitates

Geometric storage term due to boundaries / obstacles

Dynamic recovery of dislocations

• Combine with the Bailey-Hirsch relationship for flow stress. $\tau = \tau_o + \alpha \mu b \sqrt{\rho}$

Summary

- The hardening law including the effects of precipitates on the deformation behavior of binary Al Cu alloys is physically based and accounts for precipitate size, orientation, and mean free path.
- The model incorporates hardening law and predicts single crystal behavior of pure Al and Al-Cu alloys, it also predicts polycrystalline experiments from knowledge of single crystal behavior.