Porosity in Thermite Welds

Y. Chen & F. V. Lawrence

Civil and Environmental Engineering Department University of Illinois at Urbana-Champaign

FCP -2001

What is Thermite Welding?

- Thermite weld -- A welding technique to utilize Aluminothermic reaction to join massive industrial components.
- Aluminothermic reaction:

$$3FeO + 2Al = 3Fe + Al_2O_3 + 783 \, KJ/mole$$

 $Fe_2O_3 + 2Al = 2Fe + Al_2O_3 + 759 \, KJ/mole$
 $3Fe_3O_4 + 8Al = 9Fe + 4Al_2O_3 + 3010 \, KJ/mole$

What is Thermite Welding?

• Equipment used for thermite rail welding:

Figure 2.3. Schematic Diagram of Thermite Welding Set Up [16]

Thermite Charges

- Iron oxide particles
 - with ferroalloy pellets
- Aluminum powder
 - 10~15% in excess of stoichiometric amount
 - Size: 3-500μm
- Additives
 - help slag-metal separation

Problems associated with Thermite welds

- Low tensile ductility
 - Rails: 14% reduction area.
 - Thermite welds: 1~3% reduction area.
- Low impact toughness
 - − *Rails*: ~ 6 J Charpy V-notch.
 - Thermite welds: 1.5~2.8 J Charpy V-notch.
- Coarse grain, dendrite microstructure.
- Inclusion and porosity
 - Develop internal fatigue cracks, and offer easy crack propagation path.
 - Pores are much more serious defects.

Source of porosity in thermite welds

- 1.
- Dissolved gases in molten metal.
 - Due to small solubility of gas element in solid metal.
 - Form tiny, distributed gas pores in welds.
 - Weakly depends on solidification pattern.

Gas pores

- Trapped gas during pouring.
- Chemical reaction products (eg. CO, CH₄)
- Relatively large pores.
- Depends on solidification condition and impurity.

Shrinkage pores

- Volume contraction during solidification.
- Very large pores, or pore cluster.
- Strongly depends on solidification condition.

Measurement of porosity content

Radiographs of thermite welds

Measurement of porosity content

Optical measurement of Thermite welds

Table 1: Porosity content in thermite weld.

Sample Name		L_1	F_1	F_3	F_4	N_1	N_2	N_3	N_6	N_7	N_8
Porosity (vol.%)	x-ray	0.84	0.92	0.4	0.4	0.6	0.96	1.2	0.4	0.56	0.56
	optical	0.93	1.01	_	_	-	_	1.28	0.48	_	

- There is a wide variation of porosity content in different welds.
- Porosity content measured by radiograph method is lower than that of optical measurement.

SEM observation

SEM observation

X-ray mapping of inclusions in welds

L_1

Grey-scale variation across sample

Porosity distribution and preheat

Long preheat (7 min)

Short preheat (2 min)

Fusion width and standard deviation across thermite weld

Distance from the rail base (cm)

- 1. Porosity content in thermite welds is measured by radiography method. Because of the present of Al₂O₃, radiograph method underestimates the total porosity content.
- 2. There is a wide variation of porosity content in different welds.
- 3. Pores are very often associated with inclusions.
- 4. Porosity cluster is often observed along centerline of weld.
- 5. Preheat time can affect the formation centerline porosity cluster.

Future work

- Modeling the thermite welding process (2-D and 3-D).
 - Effect of preheating: flame temperature + time.
 - Influence of tapping time.
 - Heat input: amount of thermite charges.
 - Ambient temperature.

Future work

- Understand the key controlling factors for thermite welds, and what can be done to improve.
- Experimentally fabricate thermite weld in a well controlled environment and verify the theoretical study.