# 6.2 Classification of weldments





Good Bad



- TWI Classification system
- AISC classification system
- An alternative classification system



# B - Longitudinal butt





## C - longit. Butt w/ Reinforcement





#### C - Transverse Butt, Machined





# D - Long. Butt w/ Start-stop





# D - Butt weld w/ good toe





#### E - Butt weld w/ bad toe





#### F2 - Trans. butt in rolled section





## F - Trans. Butt w/ backing strip





#### F - Attachments on plate face





#### F - Groove welded cruciform





# G - Attachments near edge





# F2 - Load carrying fillet weld





#### W - Fillet weld metal





#### TWI - Classification system





# Application of TWI system





# Application of TWI system



# TWI rules

#### DESIGNING FOR FATIGUE LOADING

- 1 Use smooth shapes and transitions
- 2 Put welds in low stress areas if possible
- 3 Check weld joint classification
- 4 Check effect of possible weld defects, and if necessary define weld quality
- 5 Fatigue strength of welded steels does not depend on yield or tensile strengths of the parent metal
- 6 Improvement techniques can be used
- 7 Provide for inspection in service for fatigue cracks

0359 The Welding Institute UK 1980



- TWI Classification system
- AISC classification system
- An alternative classification system

# AISC classification system



# AISC category B and C



 $10^{7}$ 



Fatigue life, N (cycles)

 $10^{5}$ 

 $10^{\,6}$ 

 $10^{4}$ 

 $10^{\,0}$ 

 $10^{2}$ 

10<sup>3</sup>

The good welds!



# AISC category D and E





The bad welds!

# AISC category best fit lines to data





- TWI Classification system
- AISC classification system
- An alternative classification system



#### Weld stress concentrations



# Ripple





#### Groove welded butt joints





## Non-load-carrying fillet welds





#### Transverse attachments





#### Longitudinal attachments



# Good, bad, maverick



#### Good welds, Bad welds, Mavericks



#### The good welds: weld toe failures







Detail #3

 $K_f = 1.87$ 

 $^{2}$ S design = 27.0 ksi.

Full-Penetration Groove

Weld: Detail #10

$$K_f = 2.12$$

 $^{2}$ S design = 23.3 ksi.

Non-Load Carrying Fillet

Weld: Detail #25

$$K_f = 2.23$$

 $^{2}$ S design = 22.1 ksi.



#### The bad welds: terminations



Load Carrying Fillet Weld:

Detail #20

$$K_f = 3.12$$

 $^{2}$ S design = 17.5 ksi.



Weld Termination:

Detail #30

$$K_f = 3.27$$

 $^{2}$ S design = 14.5 ksi.



#### Fatigue severity of terminations



- Starts and stops introduce weld discontinuities.
- Residual stresses very high.
- 3-D stress concentrations effects.



# **Examples of terminations**



# The mavericks: something undefined



Partial penetration
 weldment. The
 amount of penetration
 is generally unknown.



• Undercut. Failure occurs at the undercut on wrap-around weld where the arris of the plate is melted. the amount of the undercut is generally unknown.

# The mavericks: complex components



Multiple failure sites.
 The stress distribution in the joint changes as fatigue cracks initiate and grow at various locations.



 Local stresses uncertain because of structural redundancy



# Summary

- Classification systems popular, simple and probably sufficient for many applications.
- However, the actual fatigue resistance of a weldment varies considerably with manner of loading, weldment size, and the state of the mean and residual stresses.....