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Probabilistic Aspects of Fatigue

n Introduction
n Basic Probability and Statistics
n Statistical Techniques
n Analysis Methods 
nCharacterizing Variability
nCase Studies
n FatigueCalculator.com
nGlyphWorks
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Case Studies

nDARWIN
nSouthwest Research

n Bicycle
n Loading Histories
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A Software Framework for 
Probabilistic Fatigue Life Assessment

ASTM Symposium on 
Probabilistic Aspects of Life Prediction

Miami Beach, Florida
November 6-7, 2002

R. C. McClung, M. P. Enright, H. R. Millwater*, 
G. R. Leverant, and S. J. Hudak, Jr.

Southwest Research

Slides 6 – 27 used with permission of of Craig McClung
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Motivation
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UAL Flight 232

July 19,1989
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Turbine Disk Failure

Anomalies in titanium engine disks

Hard Alpha
Very rare
Can cause failure
Not addressed by safe life methods

Enhanced life management process
Requested by FAA
Developed by engine industry
Probabilistic damage tolerance methods
Supplement to safe life approach

SwRI and engine industry developed DARWIN with FAA funding
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Probabilistic Damage Tolerance

Probabilistic Fracture Mechanics

Probability of DetectionAnomaly Distribution

Finite Element Stress Analysis

Material Crack Growth Data

NDE Inspection Schedule

Pf vs. Cycles

Risk Contribution Factors
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Zone-Based Risk Assessment

Define zones based on similar stress, 
inspection, anomaly distribution, lifetime

Total probability of fracture for zone:
(probability of having a defect)  x  (POF given 

a defect)
Defect probability determined by anomaly 

distribution, zone volume
POF assuming a defect computed with 

Monte Carlo sampling or advanced 
methods

POF for disk obtained by summing zone 
probabilities

As individual zones become smaller (number of 
zones increases), risk converges down to 
“exact” answer
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Fracture Mechanics Model of Zone
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Stress Processing

FE Stresses and plate definition

stress 
gradient

Stress gradient extraction

FE Analysis
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Anomaly Distribution
# of anomalies per volume of material as function of defect size

Library of default anomaly distributions for HA (developed by RI SC)
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Probability of Detection Curves
Define probability of NDE flaw detection as function of flaw siz e
Can specify different PODs for different zones, schedules
Built-in POD library or user-defined POD
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Random Inspection Time
“Opportunity Inspections” during on-condition maintenance

Inspection time modeled with Normal distribution or CDF table
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Output: Risk vs. Flight Cycles
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Output: Risk Contribution Factors
Identify regions of component with highest risk
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Implementation in Industry
FAA Advisory Circular 33.14 requests risk 

assessment be performed for all new 
titanium rotor designs

Designs must pass design target risk for rotors

Components

Risk

Maximum
Allowable

Risk

10-9

Risk
Reduction
Required

CA B
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Probabilistic Fracture Mechanics

Material Crack Growth Data

Finite Element Stress Analysis

Anomaly Distribution NDE Inspection

Pf vs. Flights

RPM-Stress Transform Crack Initiation
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Three Sources of Variability

n Anomaly size (initial crack size)
n FCG properties (life scatter)
n Mission histories (stress scatter)
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Hard Alpha Defects in Titanium

Initial DARWIN focus on 
Hard Alpha
Small brittle zone in 

microstructure
Alpha phase stabilized by N 

accidentally introduced 
during melting

Cracks initiate quickly

Extensive industry effort 
to develop HA 
distribution
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Resulting Anomaly Distributions

Post 1995 Triple Melt/Cold Hearth + Vacuum Arc Remelt
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FCG Simulations for AGARD Data

Use individual fits to 
generate set of a vs. 
N curves for identical 
conditions

Characterize resulting 
scatter in total 
propagation life

Lognormal distribution  
appropriate in most 
cases

N, cycle
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Engine Usage Variability

Stress/Speed: 
∆σ ∝ (RPM) 2

Total Cyclic Life (LCF): 
Nf  = Ni + Np

Ni ∝ ∆σ 3-5

Np ∝ ∆σ 3-4

Life/Speed: 
Nf ∝ (RPM)6

Component life is very sensitive 
to actual usage
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Usage Variability
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Components of Usage Variability:

• Mission type

• Mission-to-mission variability

• Mission mixing variability
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Web Site: www.darwin.swri.org
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Bicycle

Assess risk in a new design
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Variability / Uncertainty

n Fatigue strength of fork
n Load history variability
n Load history uncertainty
n Analysis uncertainty
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Loading History
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Rainflow
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Exceedance Diagram
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Random Variables

n Strength  LN( 1356 , 0.06 ) 
n Loading History  LN( 1 , 0.3 )
nEstimated from other data

n Loading History Uncertainty in Mean
nCould be “off” by a factor of 2  LN( 1.0 , 0.25 ) 

n Analysis 
nEstimated from other data  LN( 1.0 , 1.0 )
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Combined Variability for Loads
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Analysis
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Results
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Results
Monte Carlo Simulation Results Table

mean COV r2 Sµi αi
Blocks 7.778e+04 6.132
intercept 1.360e+03 0.061 0.015 5.4            0.10
slope -1.900e-01 0.000 0.000 -13.9
damage 9.856e-01 0.980 0.016 0.99           0.31
scale 9.981e-01 0.588 0.928 -5.4            0.94
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Correlation Coefficient
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Course of Action

nMake it stronger
nRun tests to reduce analysis uncertainty
n Field tests to reduce loading uncertainty
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Eliminate Mean Uncertainty
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Service Loading Spectra
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Problem Statement

Given a rainflow histogram for a single user, 
extrapolate to longer times

Given rainflow histograms for multiple users, 
extrapolate to more users
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Probability Density
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Kernel Smoothing
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Sparse Data
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Exceedance Plot of 1 Lap
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10X Extrapolation
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Results

-3

-2

-1

0

1

2

3

0 -1 -2 -33 2 1
To Load, kN

Fr
om

 L
oa

d,
 k

N

-3

-2

-1

0

1

2

3
Fr

om
 L

oa
d,

 k
N

Simulation Test Data

0 -1 -2 -33 2 1
To Load, kN



51

6 Case Studies     © 2003-2005 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 50 of 62

Exceedance Diagram
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Problem Statement

l Given a rainflow histogram for a single 
user, extrapolate to longer times

l Given rainflow histograms for multiple 
users, extropolate to more users
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Extrapolated Data Sets
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Issues

In the first problem the number of cycles is 
known but the variability is unknown and 
must be estimated

In the second problem the variability is known 
but the number and location of cycles is 
unknown and must be estimated
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Assumption
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to have more higher amplitude cycles 
and fewer low amplitude cycles
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Translation
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Damage Regions
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ATV Data - Most Damaging in 19
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ATV Exceedance
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Airplane Data - Most Damaging in 334
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Airplane Exceedance
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Tractor Data - Most Damaging in 54
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Tractor Exceedance
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