Materials Issues in Fatigue and Fracture

- 5.1 Fundamental Concepts
- 5.2 Ensuring Infinite Life
- 5.3 Finite Life
- 5.4 Summary

A simple view of fatigue

- 1. Will a crack nucleate?
- 2. Will it grow?
- 3. How fast will it grow?

Cyclic nucleation and arrested growth

Crack growth

Fatigue of a component

The fatigue life of an engineering component consists of two main life

Initiation or nucleation of a fatigue crack (N_I)

Its growth to failure (N_p)

A smooth specimen

Finite life - crack growth

At sufficiently high alternating stresses a crack will nucleate and grow until the component breaks.

- Notched fatigue limit based on stress to initiate crack at notch root
- Notched fatigue limit based on complete fracture

Short and long life behavior

Crack nucleation dominates at long lives, crack growth dominates at short lives.

5.3 Finite Life

- Smooth specimens
- Short cracks
- Long cracks

Finite life - crack growth

- Notched fatigue limit based on stress to initiate crack at notch root
- Notched fatigue limit based on complete fracture

At sufficiently high alternating stresses even smooth specimens will nucleate a crack and ultimately fail in fatigue.

Plastic strains cause the nucleation of fatigue cracks. The life to fatigue failure of smooth specimens correlates with the plastic strain.

Strain-life curve

Behavior of Aluminum Alloys

Reversals, 2Nf

Comparison of various metals

11

Smooth specimen behavior

Transition Fatigue Life

Aluminum - smooth specimens

Initiation and small crack growth dominate so fatigue strength correlates with UTS and small grain size.

Steel - smooth specimens

As with aluminum, both tensile strength (hardness) and grain size influence the long-life fatigue resistance. Ductility is more important at short lives. At lives of ~ 5x103, all have the same fatigue resistance.

Titanium - smooth specimens

SN curves for Ti (R = -1)..grain size effects

Lamellar α

Duplex

5.3 Finite Life

- Smooth specimens
- Short cracks
- Long cracks

Growth of Small Cracks

Here the ? K is the remote stress intensity factor based on remote stresses....

Short Cracks, Long Cracks

$$? K_{eff} = U ? K$$

SHORT CRACK

- LESS RESIDUAL DEFORMATION
- LOWER o_{op}
- HIGHER U = ΔK_{eff}/ΔK

LONG CRACK

- MORE RESIDUAL DEFORMATION
- HIGHER opp
- LOWER U = △K_{eff}/△K

$$U = \frac{\Delta K_{eff}}{\Delta K} = \frac{S_{max} - S_{open}}{S_{max} - S_{min}} = \frac{1}{1 - R} \left(1 - \frac{S_{open}}{S_{max}} \right)$$

Crack Growth at a Notch

Cracks growing from notches don't know that that stress field they are experiencing is confined to the notch root.

Crack closure

Crack Closure Mechanisms

Intrinsic, extrinsic crack closure

Cyclic plastic zone size

$$r_{c} = \frac{1}{\pi} \left(\frac{\Delta K_{I}}{2\sigma_{y}^{'}} \right)^{2}$$

Cyclic plastic zone is the region ahead of a growing fatigue crack in which slip takes place. Its size relative to the microstructure determines the behavior of the fatigue crack, i.e.. Stage I and Stage II behavior.

Effect of grain size

(slower) (faster)

Effect mean stress

Effect stress range

Near threshhold: closure important High stress range: closure less important

Aluminum - crack growth

Steel - crack growth

Crack growth behavior of FP-steels does not vary much

Titanium - crack growth

Orientation can make a large difference with Ti. As with steel and Al, grain size (also O_2 content) make a large difference. Large GS = good!

5.3 Finite Life

- Smooth specimens
- Short cracks
- Long cracks

Behavior of long cracks

I Sensitive to microstructure and environment

II Paris power Law

III Approaching fracture when $K_{max} \sim K_{IC}$.

Stage II crack growth

Stage II crack growth $(r_c >> d)$

Behavior of structural metals

Ferritic-Pearlitic steels all have about the same crack growth rates

Crack Growth Rates of Metals

The fatigue crack growth rates for Al and Ti are much more rapid than steel for a given ? K. However, when normalized by Young's Modulus all metals exhibit about the same behavior.