

Multiaxial Fatigue

Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

© 2001-2012 Darrell Socie, All Rights Reserved

Contact Information

Darrell Socie
Mechanical Science and Engineering
1206 West Green
Urbana, Illinois 61801
USA

d-socie@uiuc.edu

Tel: 217 333 7630

Fax: 217 333 5634

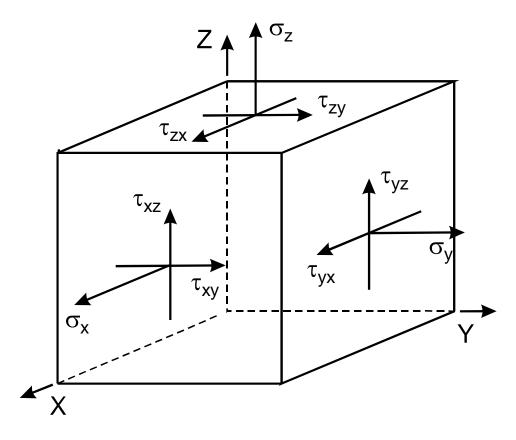
Outline

- State of Stress (Chapter 1)
- Fatigue Mechanisms (Chapter 3)
- Stress Based Models (Chapter 5)
- Strain Based Models (Chapter 6)
- Fracture Mechanics Models (Chapter 7)
- Nonproportional Loading (Chapter 8)
- Notches (Chapter 9)

State of Stress

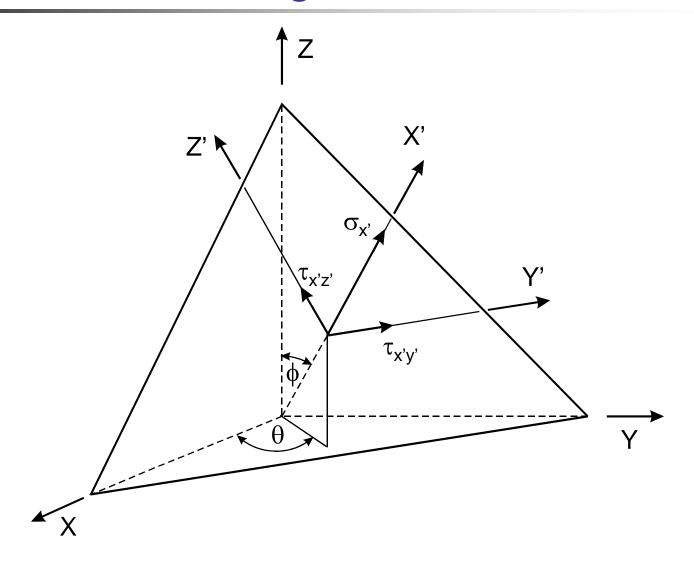
- Stress components
- Common states of stress
- Shear stresses

Stress Components

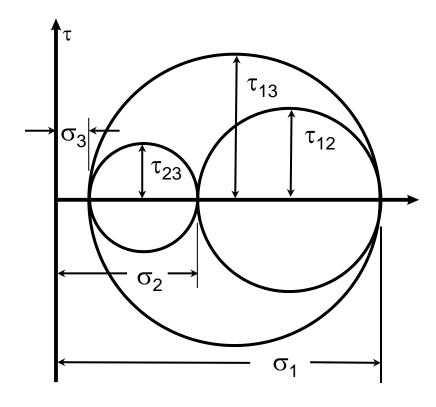


Six stresses and six strains

Stresses Acting on a Plane

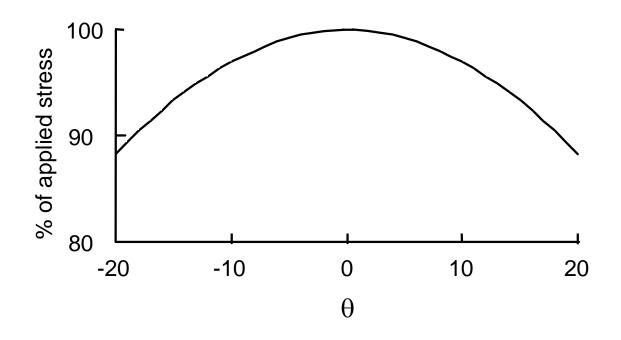


Principal Stresses



$$\begin{split} \sigma^{3} - \sigma^{2}(\ \sigma_{X} + \sigma_{Y} + \sigma_{Z}\) + \ \sigma(\sigma_{X}\sigma_{Y} + \sigma_{Y}\sigma_{Z}\sigma_{X}\sigma_{Z}\ -\tau^{2}_{XY} - \tau^{2}_{YZ} -\tau^{2}_{XZ}\) \\ - (\sigma_{X}\sigma_{Y}\sigma_{Z} + 2\tau_{XY}\tau_{YZ}\tau_{XZ} - \sigma_{X}\tau^{2}_{YZ} - \sigma_{Y}\tau^{2}_{ZX} - \sigma_{Z}\tau^{2}_{XY}\) = 0 \end{split}$$

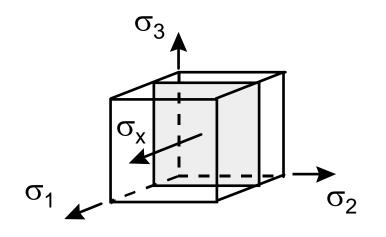
Stress and Strain Distributions

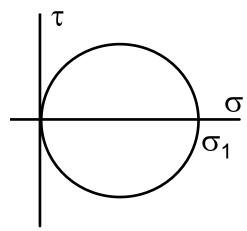


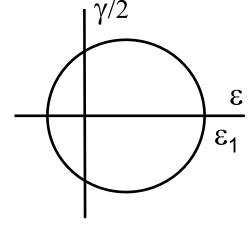
Stresses are nearly the same over a 10° range of angles



Tension

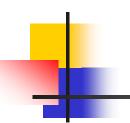




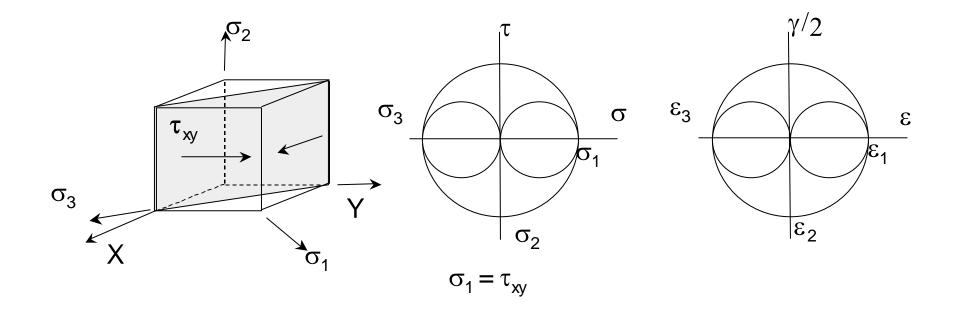


$$\sigma_2 = \sigma_3 = 0$$

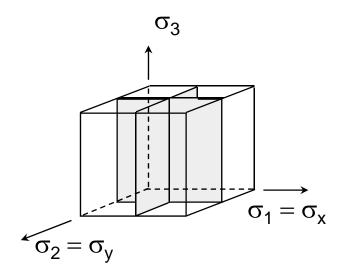
$$\varepsilon_2 = \varepsilon_3 = -v\varepsilon_1$$

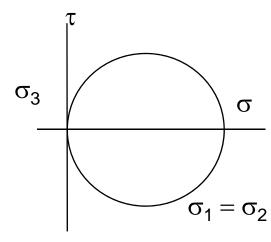


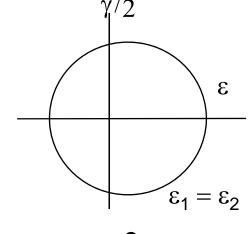
Torsion



Biaxial Tension

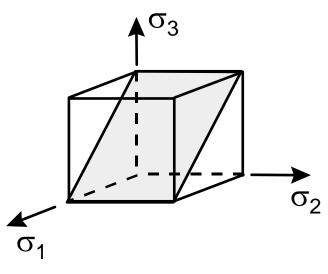


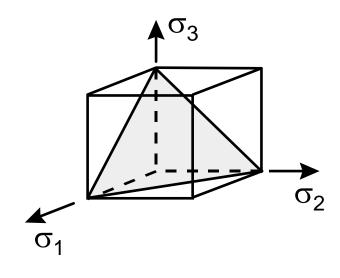




$$\varepsilon_3 = -\frac{2v}{1-v}\varepsilon$$

Shear Stresses





Maximum shear stress

Octahedral shear stress

$$\tau_{13} = \frac{\left|\sigma_1 - \sigma_3\right|}{2}$$

Mises:
$$\overline{\sigma} = \frac{3}{\sqrt{2}} \tau_{oc}$$

$$\tau_{\text{oct}} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_3)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2}$$

$$\tau_{oct} = \frac{3}{2\sqrt{2}} \tau_{13} = 0.94 \tau_{13}$$

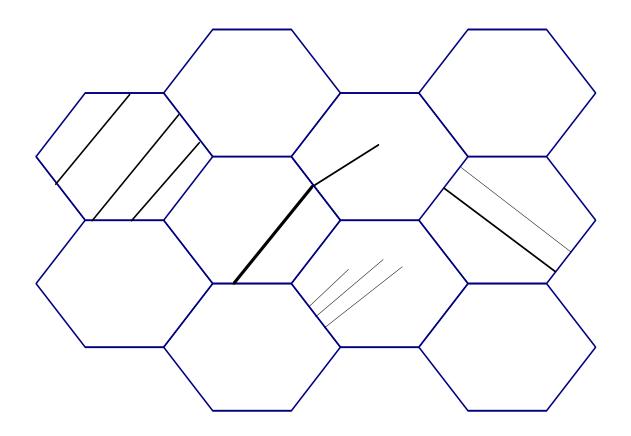
State of Stress Summary

- Stresses acting on a plane
- Principal stress
- Maximum shear stress
- Octahedral shear stress

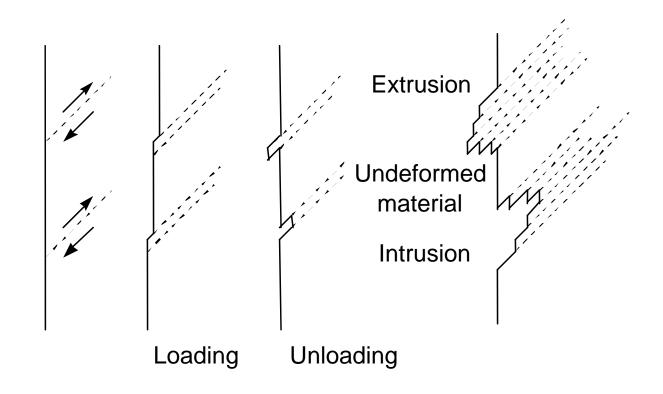
Fatigue Mechanisms

- Crack nucleation
- Fracture modes
- Crack growth
- State of stress effects

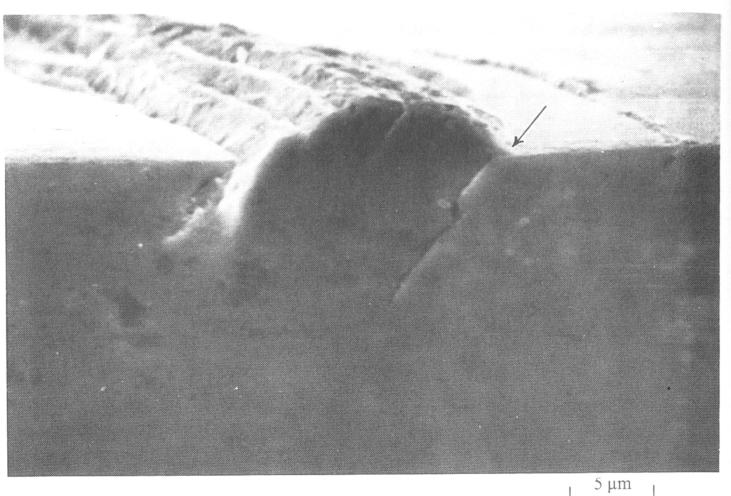
Crack Nucleation

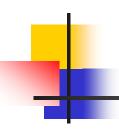


Slip Bands



Slip Bands

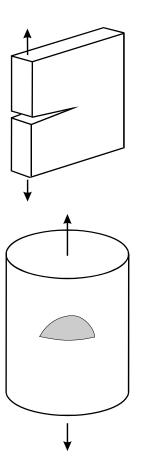


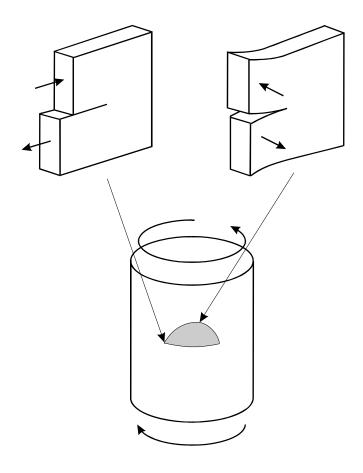


Mode I, Mode II, and Mode III

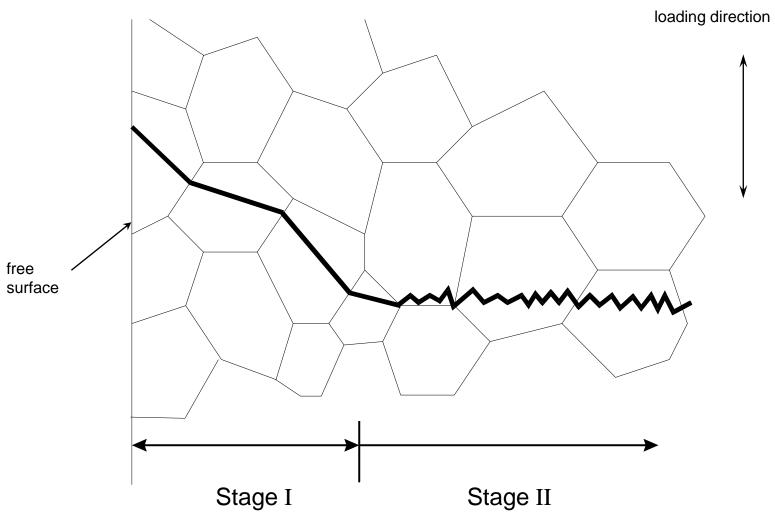
Mode II in-plane shear

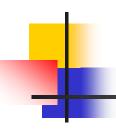
Mode III out-of-plane shear



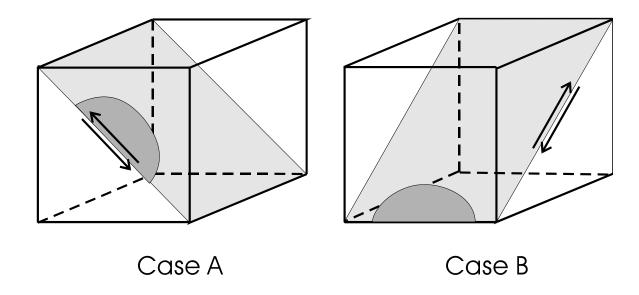


Stage I and Stage II





Case A and Case B

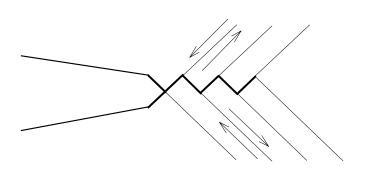


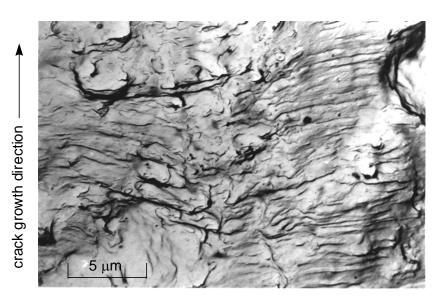
Growth along the surface

Growth into the surface

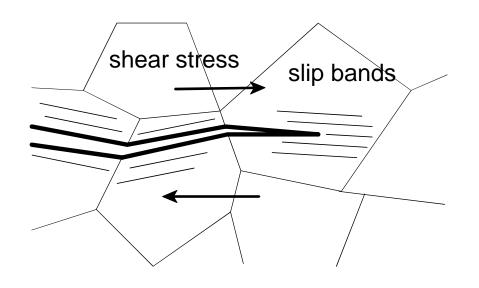


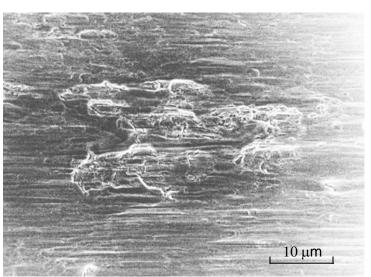
Mode I Growth





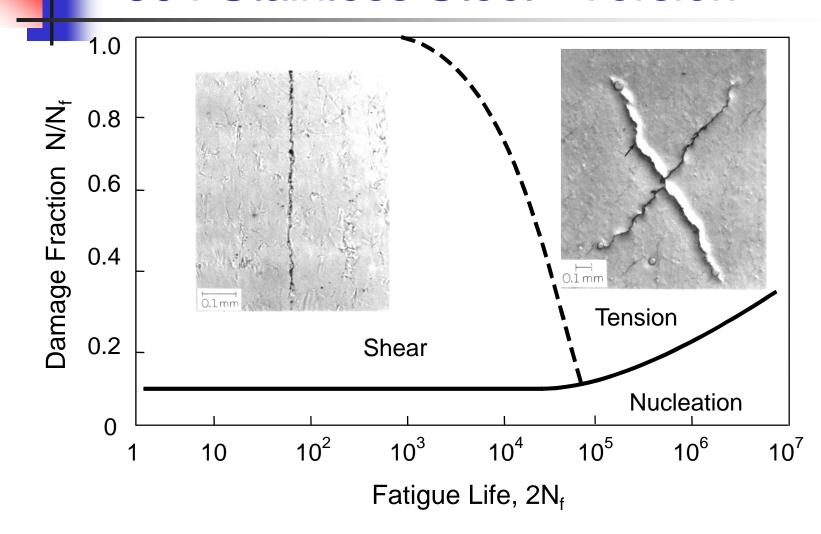
Mode II Growth



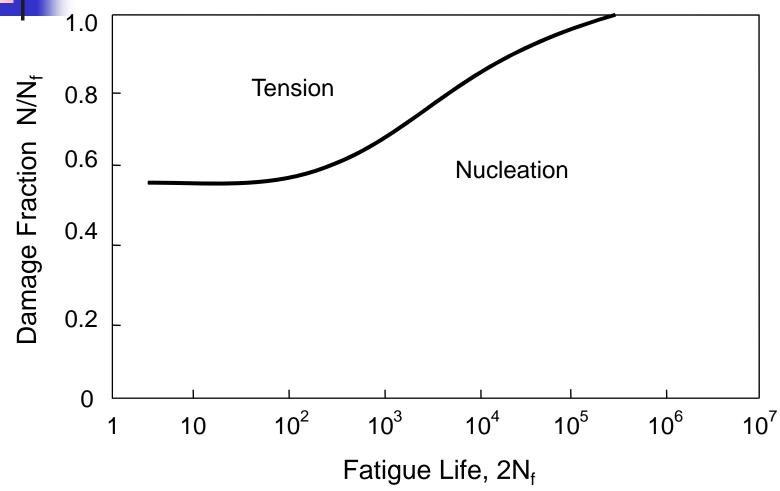


crack growth direction

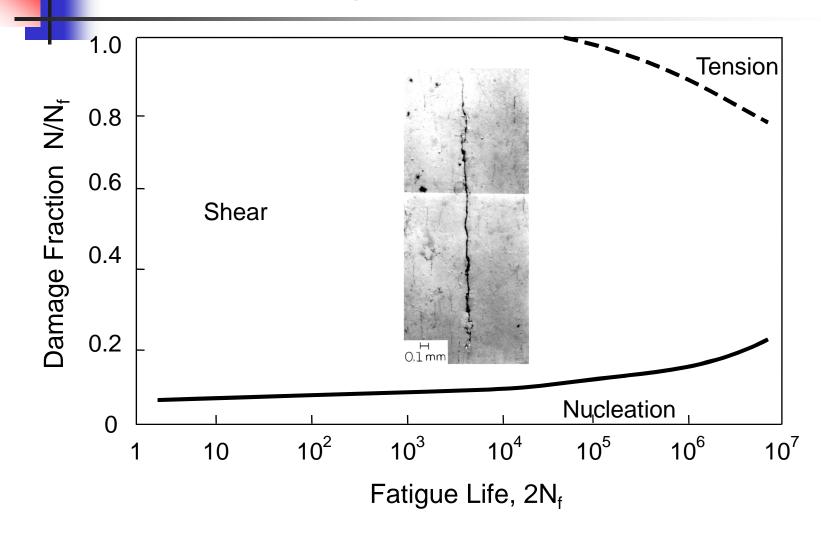
304 Stainless Steel - Torsion



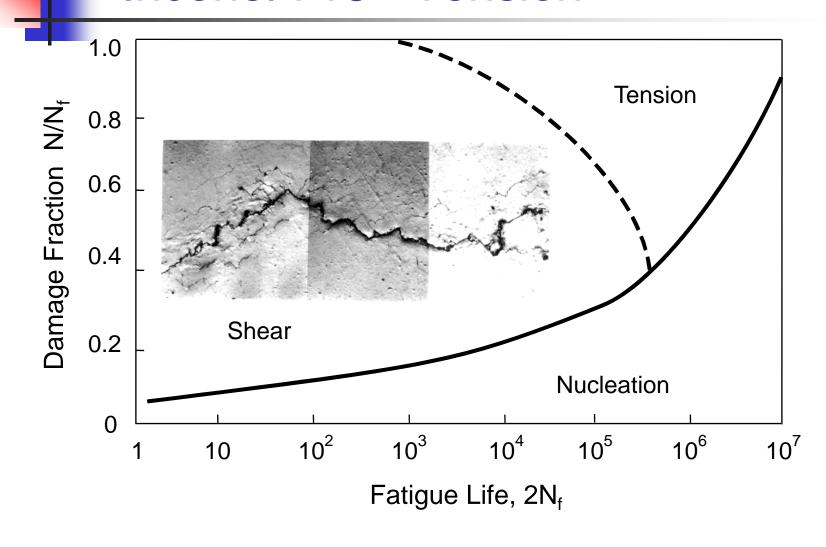
304 Stainless Steel - Tension



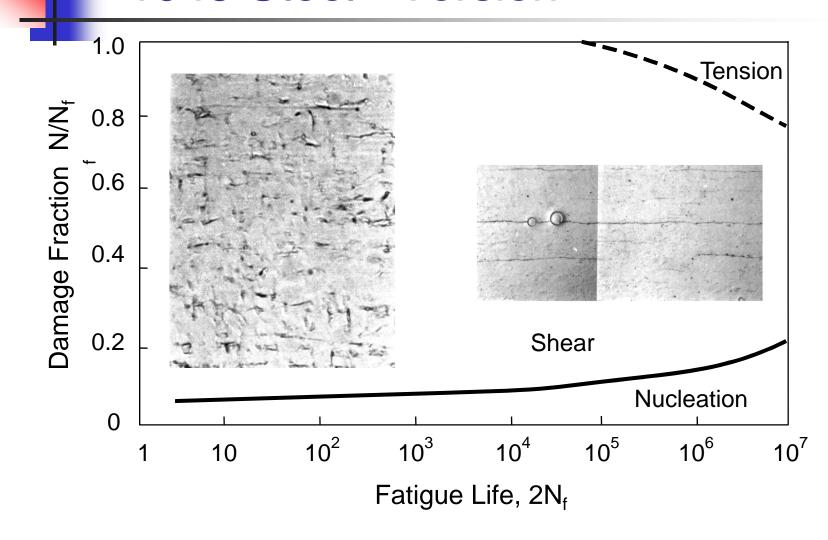
Inconel 718 - Torsion



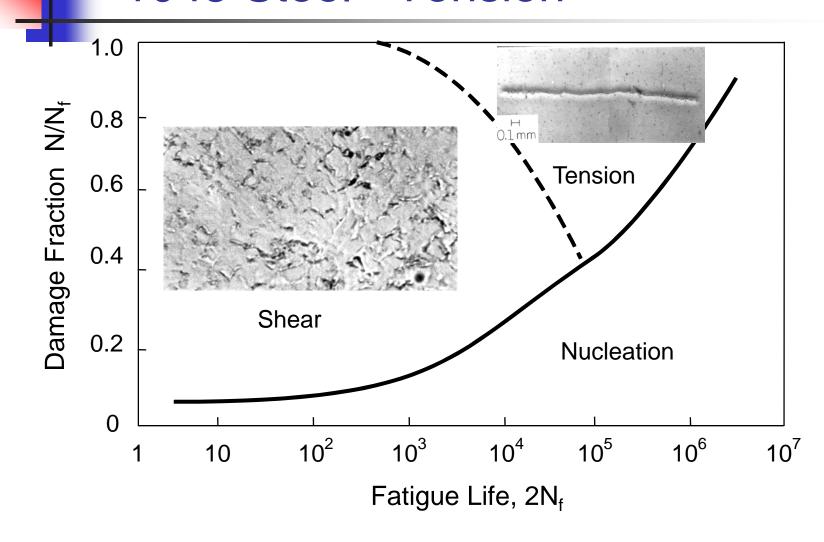
Inconel 718 - Tension

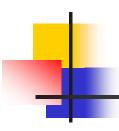


1045 Steel - Torsion



1045 Steel - Tension





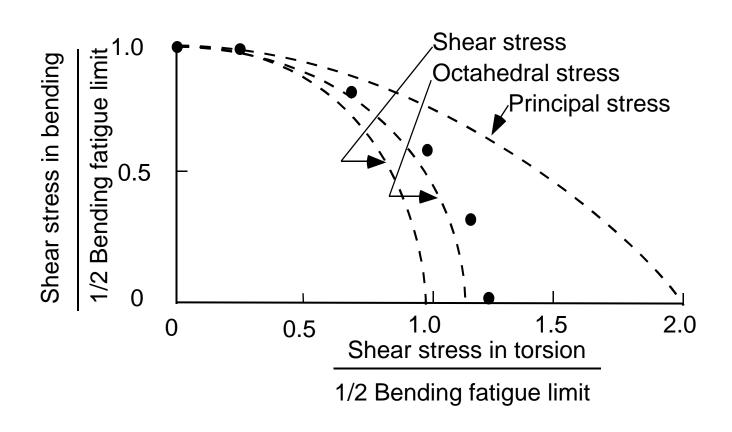
Fatigue Mechanisms Summary

- Fatigue cracks nucleate in shear
- Fatigue cracks grow in either shear or tension depending on material and state of stress

Stress Based Models

- Sines
- Findley
- Dang Van

Bending Torsion Correlation



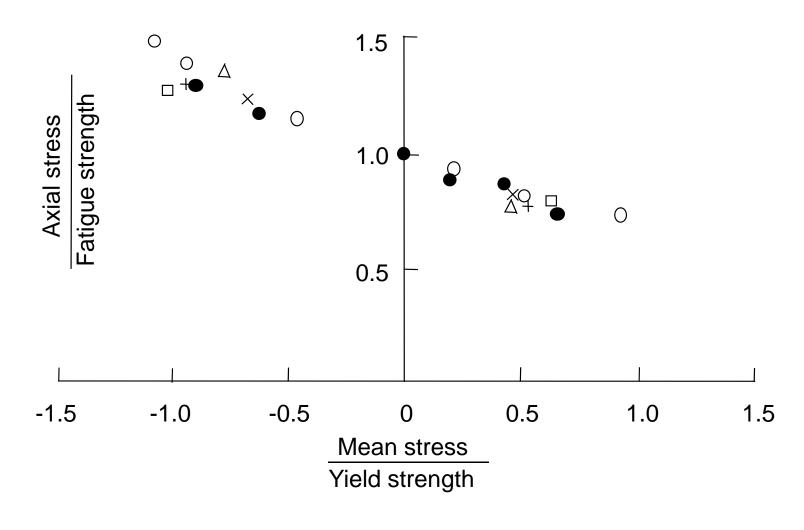


Test Results

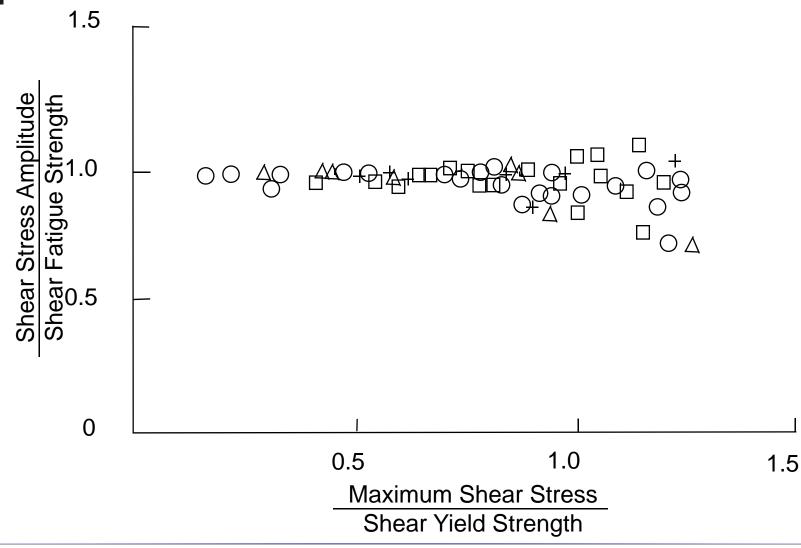
- Cyclic tension with static tension
- Cyclic torsion with static torsion
- Cyclic tension with static torsion
- Cyclic torsion with static tension



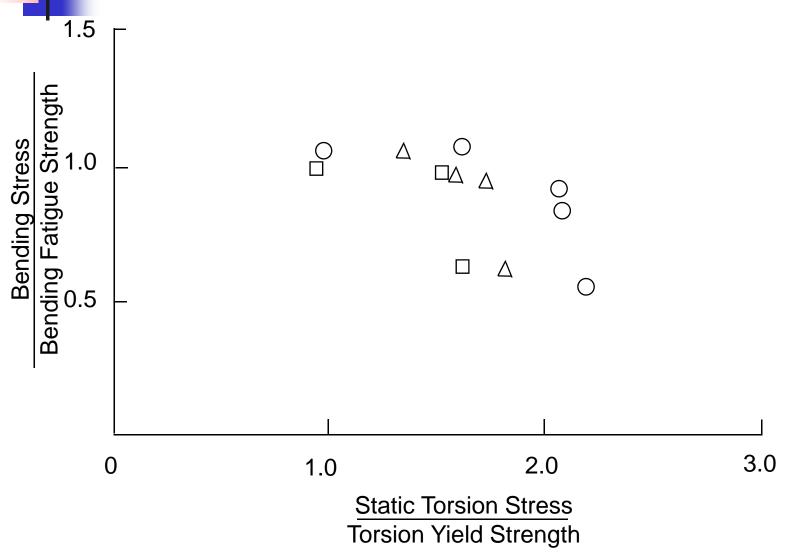
Cyclic Tension with Static Tension

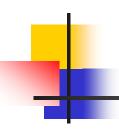


Cyclic Torsion with Static Torsion

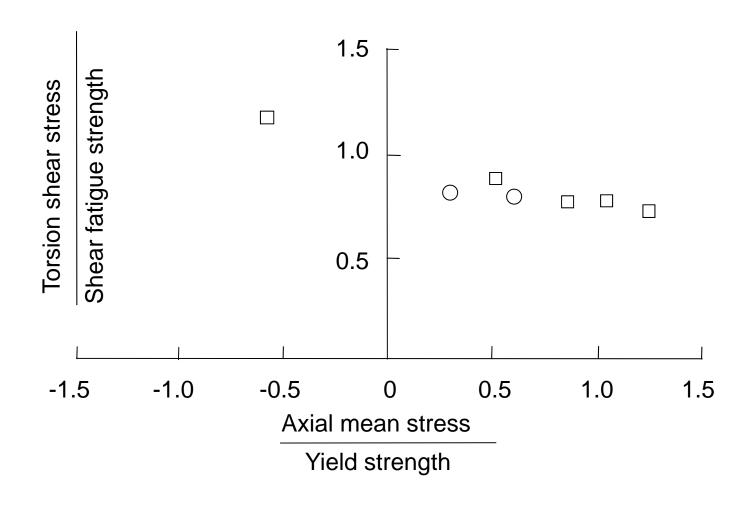


Cyclic Tension with Static Torsion





Cyclic Torsion with Static Tension



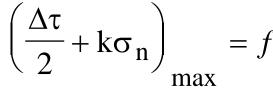
Conclusions

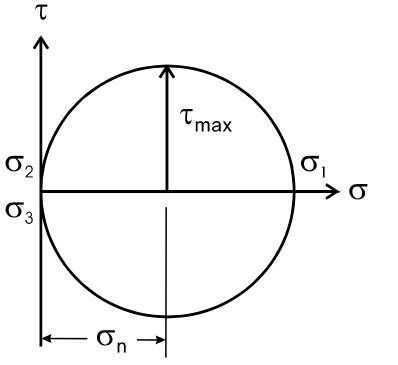
- Tension mean stress affects both tension and torsion
- Torsion mean stress does not affect tension or torsion

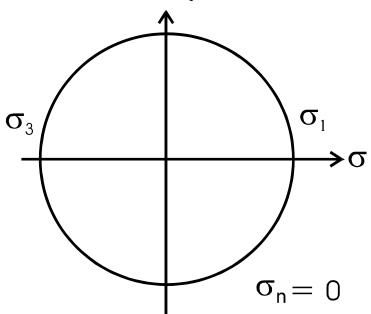
$$\frac{\Delta \tau_{\text{oct}}}{2} + \alpha (3\sigma_{\text{h}}) = \beta$$

$$\begin{split} \frac{1}{6} \sqrt{\left(\Delta \sigma_{x} - \Delta \sigma_{y}\right)^{2} + \left(\Delta \sigma_{x} - \Delta \sigma_{z}\right)^{2} + \left(\Delta \sigma_{y} - \Delta \sigma_{z}\right)^{2} + 6\left(\Delta \tau_{xy}^{2} + \Delta \tau_{xz}^{2} + \Delta \tau_{yz}^{2}\right)} + \\ \alpha \left(\sigma_{x}^{\text{mean}} + \sigma_{y}^{\text{mean}} + \sigma_{z}^{\text{mean}}\right) = \beta \end{split}$$

Findley



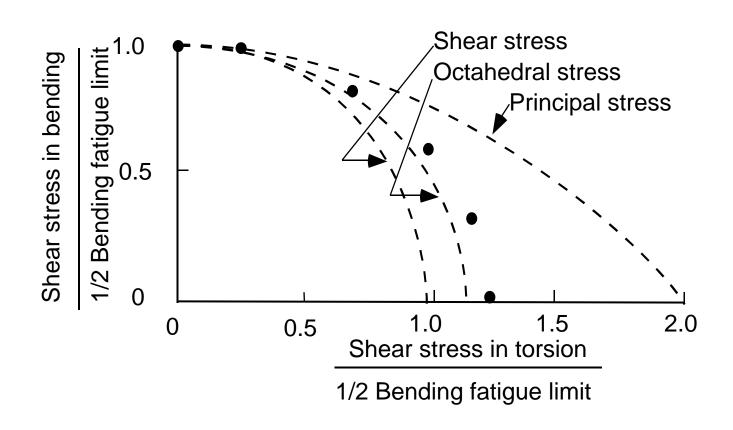




tension

torsion

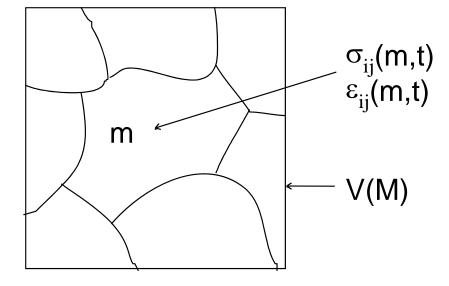
Bending Torsion Correlation



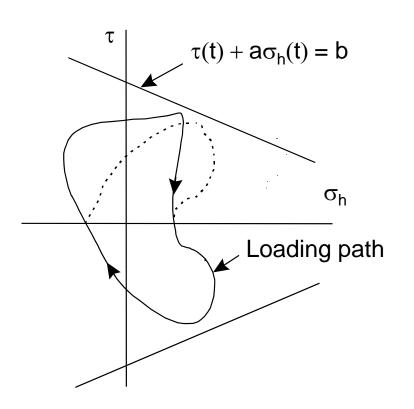
Dang Van

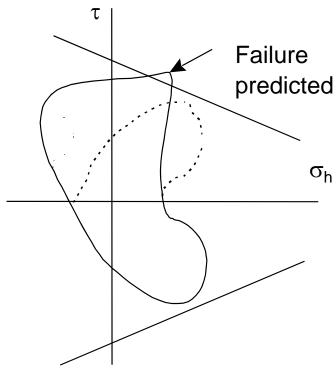
$$\tau(t) + a\sigma_h(t) = b$$

$$\Sigma_{ij}(M,t)$$
 $E_{ij}(M,t)$



Dang Van (continued)





Stress Based Models Summary

Sines:
$$\frac{\Delta \tau_{\text{oct}}}{2} + \alpha (3\sigma_{\text{h}}) = \beta$$

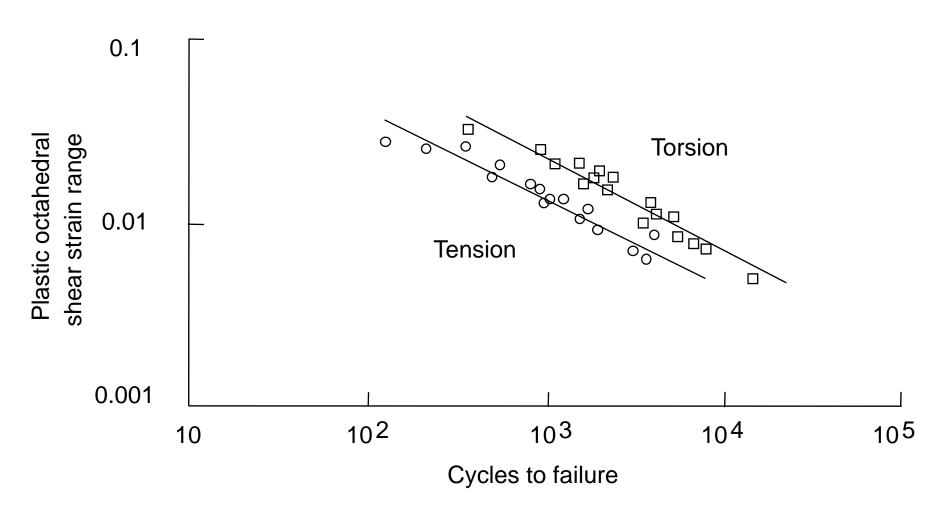
Findley:
$$\left(\frac{\Delta \tau}{2} + k\sigma_n\right)_{\text{max}} = f$$

Dang Van:
$$\tau(t) + a\sigma_h(t) = b$$

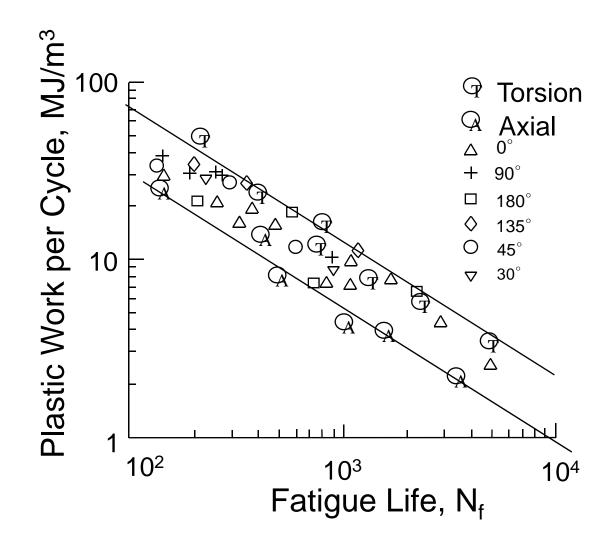
Strain Based Models

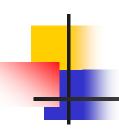
- Plastic Work
- Brown and Miller
- Fatemi and Socie
- Smith Watson and Topper
- Liu

Octahedral Shear Strain

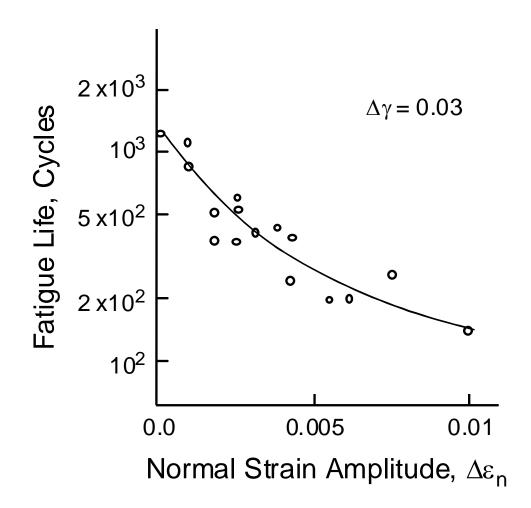


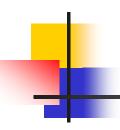
Plastic Work



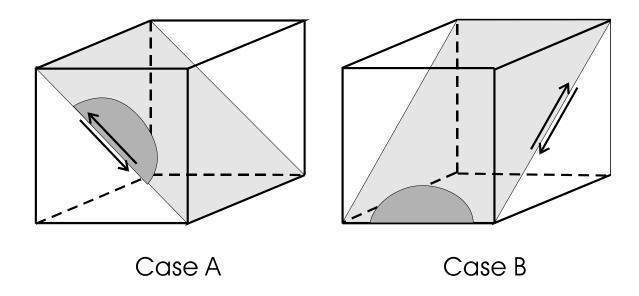


Brown and Miller





Case A and B



Growth along the surface

Growth into the surface

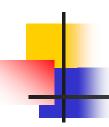
Brown and Miller (continued)



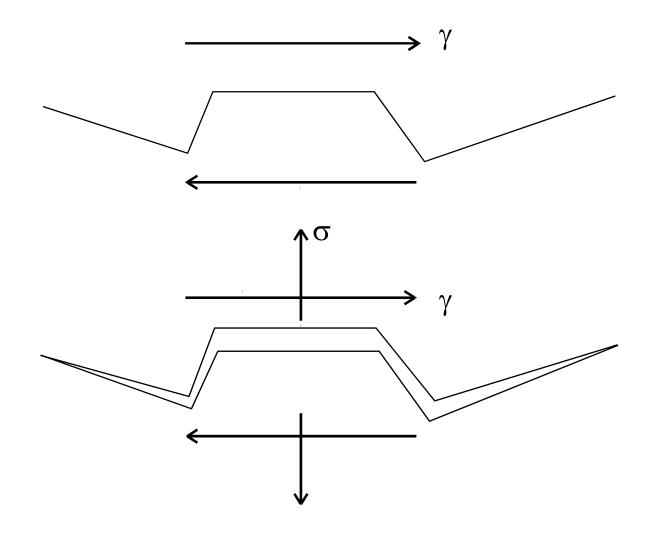
Brown and Miller (continued)

$$\Delta \hat{\gamma} = \left(\Delta \gamma_{\max}^{\alpha} + S \Delta \epsilon_{n}^{\alpha}\right)^{\frac{1}{\alpha}}$$

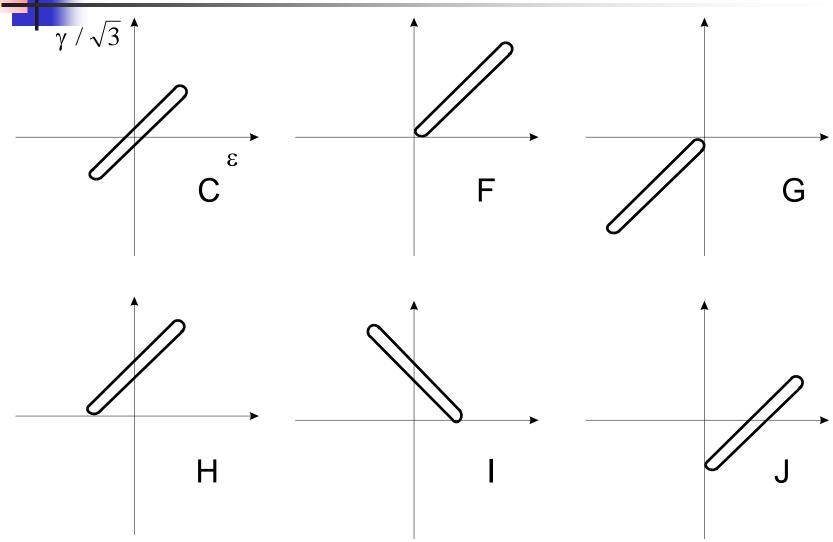
$$\frac{\Delta \gamma_{\text{max}}}{2} + S \Delta \varepsilon_{\text{n}} = A \frac{\sigma_{\text{f}}^{'} - 2\sigma_{\text{n,mean}}}{E} (2N_{\text{f}})^{\text{b}} + B \varepsilon_{\text{f}}^{'} (2N_{\text{f}})^{\text{c}}$$



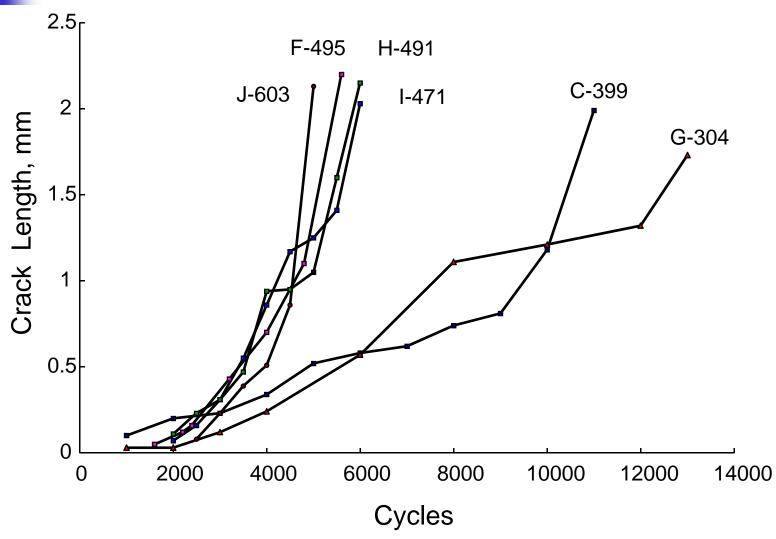
Fatemi and Socie



Loading Histories

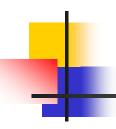


Crack Length Observations

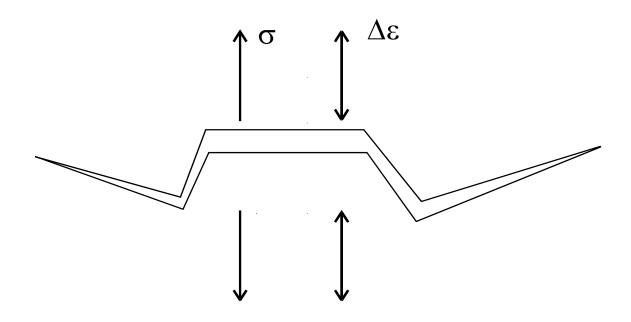


Fatemi and Socie

$$\frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,max}}{\sigma_{y}} \right) = \frac{\tau_{f}}{G} (2N_{f})^{bo} + \gamma_{f}' (2N_{f})^{co}$$



Smith Watson Topper



SWT

$$\sigma_{n} \frac{\Delta \varepsilon_{1}}{2} = \frac{\sigma_{f}^{'2}}{E} (2N_{f})^{2b} + \sigma_{f}^{'} \varepsilon_{f}^{'} (2N_{f})^{b+c}$$

Virtual strain energy for both mode I and mode II cracking

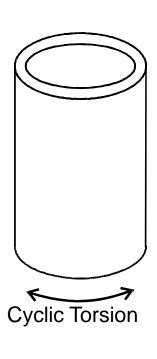
$$\Delta W_{I} = (\Delta \sigma_{n} \Delta \varepsilon_{n})_{max} + (\Delta \tau \Delta \gamma)$$

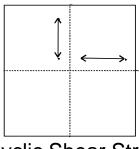
$$\Delta W_{l} = 4\sigma_{f}' \epsilon_{f}' (2N_{f})^{b+c} + \frac{4\sigma_{f}'^{2}}{E} (2N_{f})^{2b}$$

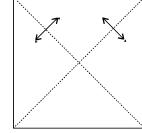
$$\Delta W_{II} = (\Delta \sigma_n \Delta \varepsilon_n) + (\Delta \tau \Delta \gamma)_{max}$$

$$\Delta W_{II} = 4\tau_f^{'}\gamma_f^{'}(2N_f^{})^{bo+co} + \frac{4\tau_f^{'}^{2}}{G}(2N_f^{})^{2bo}$$

Cyclic Torsion



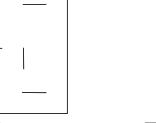


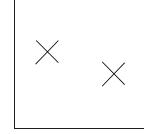


Cyclic Shear Strain

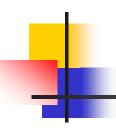
Cyclic Tensile Strain



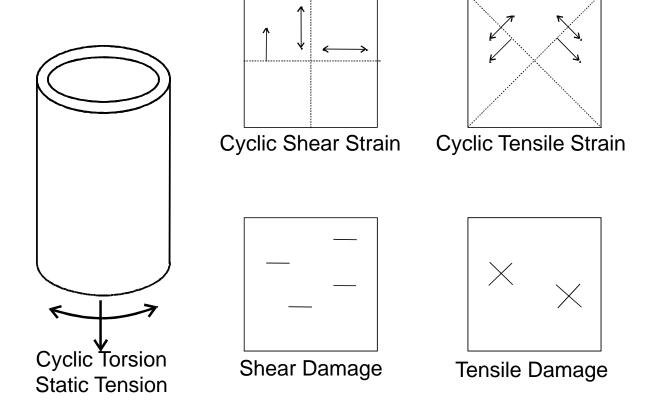




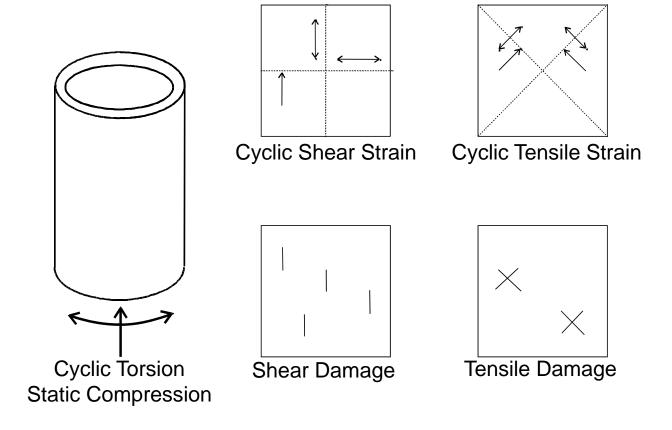
Tensile Damage

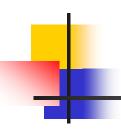


Cyclic Torsion with Static Tension

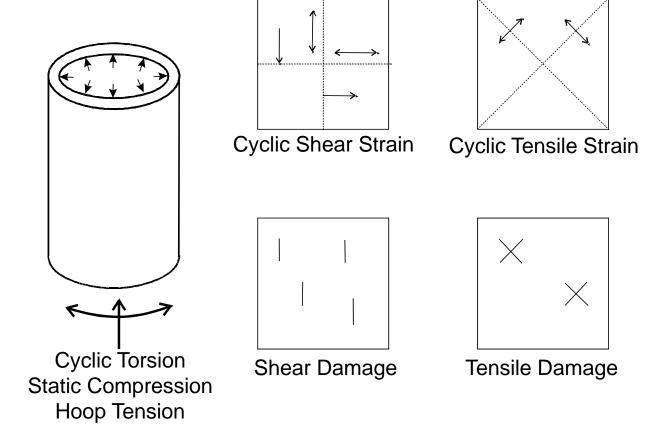


Cyclic Torsion with Compression





Cyclic Torsion with Tension and Compression



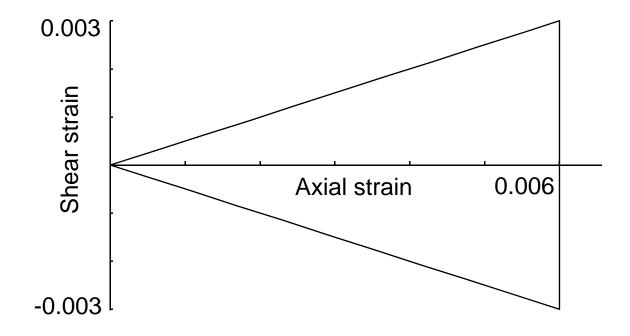
Test Results

Load Case	$\Delta \gamma / 2$	σ _{hoop} MPa	σ_{axial} MPa	$N_{\rm f}$
Torsion	0.0054	0	0	45,200
with tension	0.0054	0	450	10,300
with compression	0.0054	0	-500	50,000
with tension and	0.0054	450	-500	11,200
compression				

Conclusions

- All critical plane models correctly predict these results
- Hydrostatic stress models can not predict these results

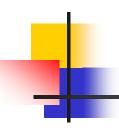
Loading History



Model Comparison

Summary of calculated fatigue lives

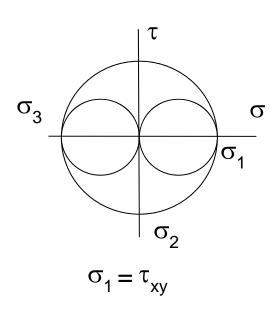
Model	Equation	Life
Epsilon	6.5	14,060
Garud	6.7	5,210
Ellyin	6.17	4,450
Brown-Miller	6.22	3,980
SWT	6.24	9,930
Liu I	6.41	4,280
Liu II	6.42	5,420
Chu	6.37	3,040
Gamma		26,775
Fatemi-Socie	6.23	10,350
Glinka	6.39	33,220



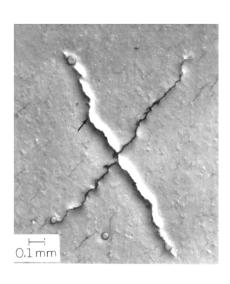
Strain Based Models Summary

- Two separate models are needed, one for tensile growth and one for shear growth
- Cyclic plasticity governs stress and strain ranges
- Mean stress effects are a result of crack closure on the critical plane

Separate Tensile and Shear Models







Inconel

1045 steel

stainless steel

Cyclic Plasticity

 $\Delta\epsilon$

 $\Delta \gamma$

 $\Delta\epsilon^p$

 $\Delta \gamma^{p}$

ΔεΔσ

 $\Delta\gamma\Delta\tau$

 $\Delta\epsilon^p\Delta\sigma$

 $\Delta \gamma^p \Delta \tau$

Mean Stresses

$$\begin{split} \Delta \epsilon_{eq} = & \frac{\sigma_f - \sigma_{mean}}{E} (2N_f)^b + \epsilon_f (2N_f)^c \\ \frac{\Delta \gamma_{max}}{2} + & S\Delta \epsilon_n = (1.3 + 0.7S) \frac{\sigma_f - 2\sigma_n}{E} (2N_f)^b + (1.5 + 0.5S) \epsilon_f (2N_f)^c \\ \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,max}}{\sigma_y} \right) = & \frac{\tau_f}{G} (2N_f)^{bo} + \gamma_f (2N_f)^{co} \\ \sigma_n \frac{\Delta \epsilon_1}{2} = & \frac{\sigma_f^2}{E} (2N_f)^{2b} + \sigma_f \epsilon_f (2N_f)^{b+c} \\ \Delta W_l = & \left[(\Delta \sigma_n \Delta \epsilon_n)_{max} + (\Delta \tau \Delta \gamma) \right] \left(\frac{2}{1-R} \right) \end{split}$$

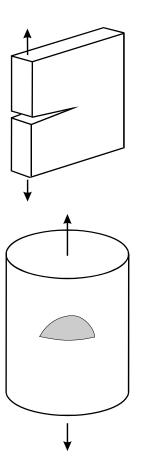
Fracture Mechanics Models

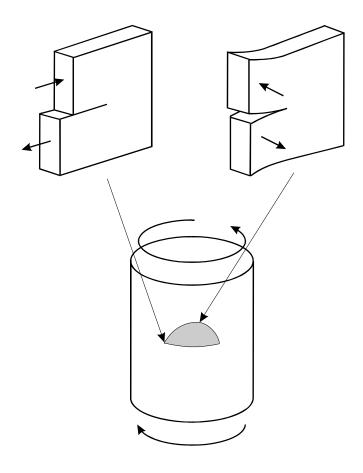
- Mode I growth
- Torsion
- Mode II growth
- Mode III growth

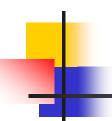
Mode I, Mode II, and Mode III

Mode II in-plane shear

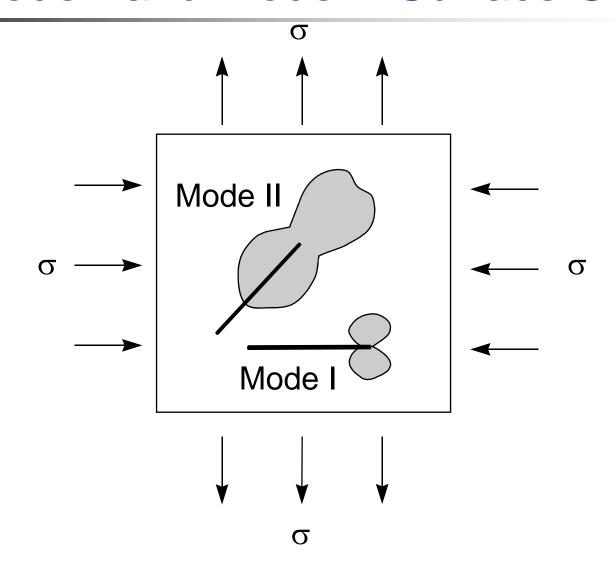
Mode III out-of-plane shear



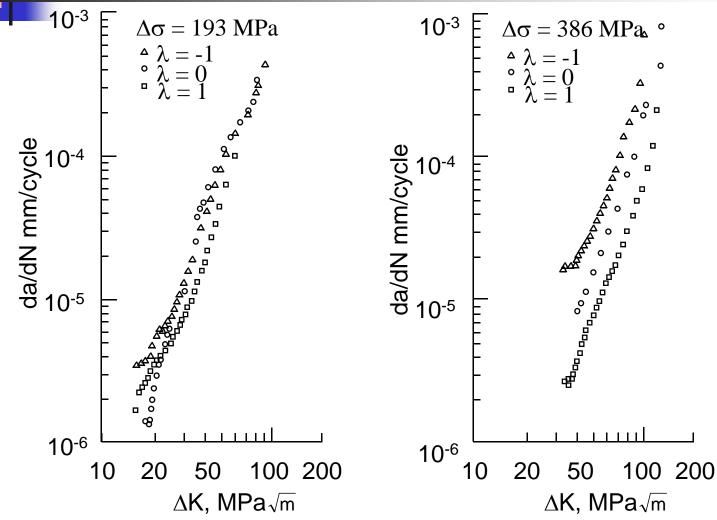




Mode I and Mode II Surface Cracks

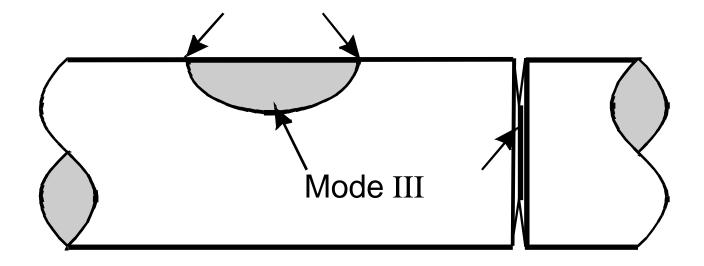


Biaxial Mode I Growth



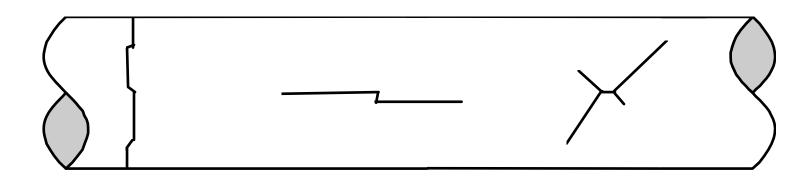
Surface Cracks in Torsion

Mode II





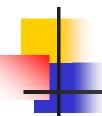
Failure Modes in Torsion



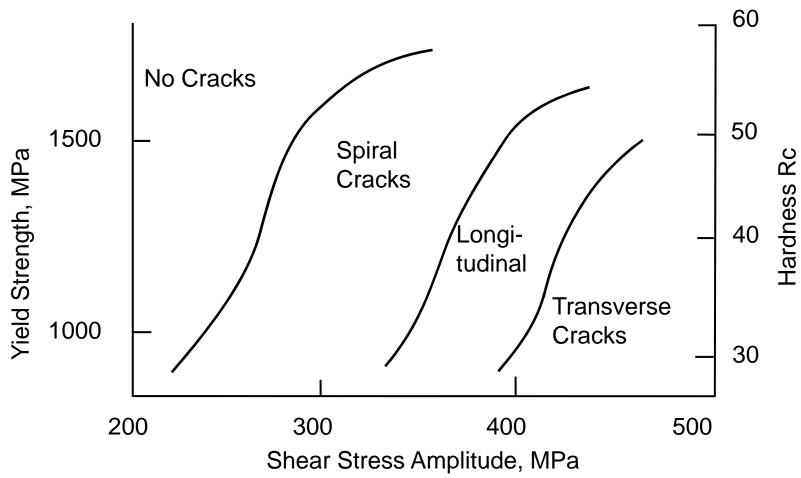
Transverse

Longitudinal

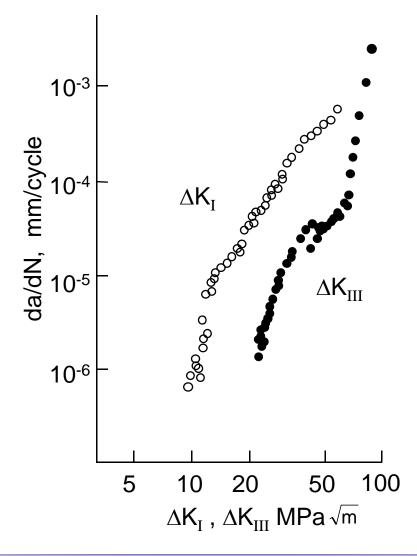
Spiral



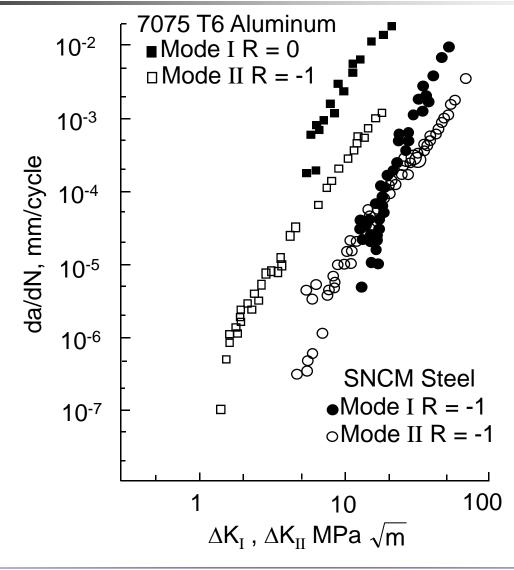
Fracture Mechanism Map



Mode I and Mode III Growth



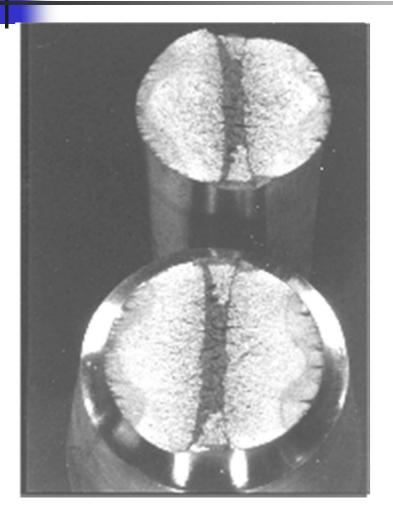
Mode I and Mode II Growth

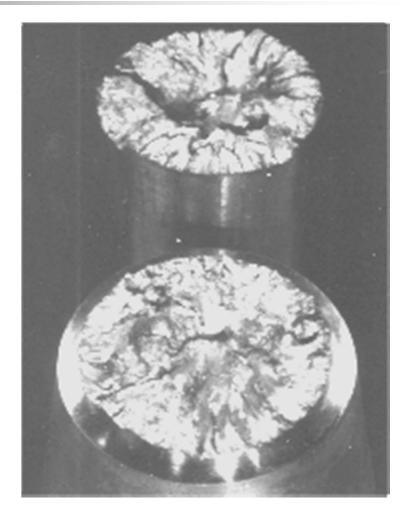


Fracture Mechanics Models

$$\begin{split} \frac{da}{dN} = & C \left(\Delta K_{eq} \right)^m \\ \Delta K_{eq} = & \left[\Delta K_I^4 + 8 \Delta K_{II}^4 + 8 \Delta K_{III}^4 / (1 - \nu) \right]^{0.25} \\ \Delta K_{eq} = & \left[\Delta K_I^2 + \Delta K_{II}^2 + (1 + \nu) \Delta K_{III}^2 \right]^{0.5} \\ \Delta K_{eq} = & \left[\Delta K_I^2 + \Delta K_I \Delta K_{II} + \Delta K_{II}^2 \right]^{0.5} \\ \Delta K_{eq} (\epsilon) = & \left[\left(F_{II} \frac{E}{2(1 + \nu)} \Delta \gamma \right)^2 + \left(F_I E \Delta \epsilon \right)^2 \right]^{0.5} \sqrt{\pi a} \\ \Delta K_{eq} (\epsilon) = & FG\Delta \gamma \left(1 + k \frac{\sigma_{n,max}}{\sigma_{ys}} \right) \sqrt{\pi a} \end{split}$$

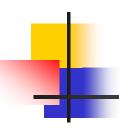
Fracture Surfaces



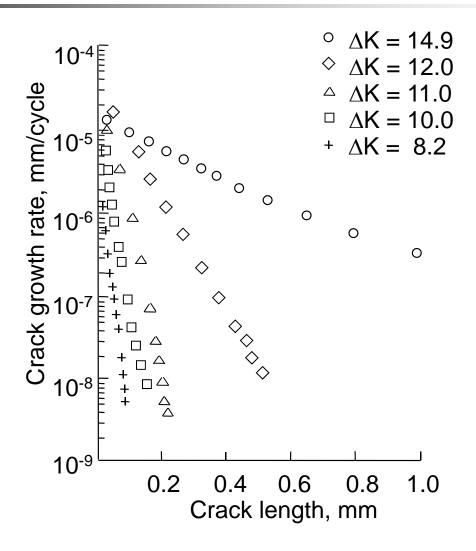


Bending

Torsion

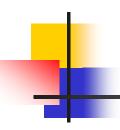


Mode III Growth



Fracture Mechanics Models Summary

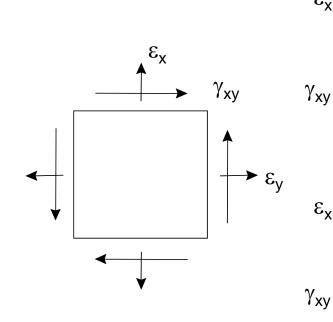
- Multiaxial loading has little effect in Mode I
- Crack closure makes Mode II and Mode III calculations difficult

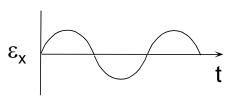


Nonproportional Loading

- In and Out-of-phase loading
- Nonproportional cyclic hardening
- Variable amplitude

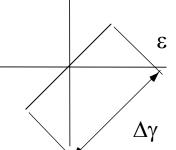
In and Out-of-Phase Loading





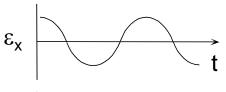
$$\varepsilon_{x} = \varepsilon_{o} sin(\omega t)$$

 $\gamma_{xy} = (1 + \nu)\epsilon_o sin(\omega t)$

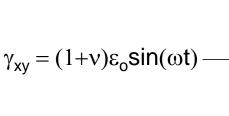


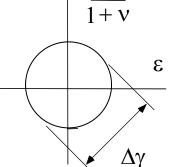
1 + v

In-phase



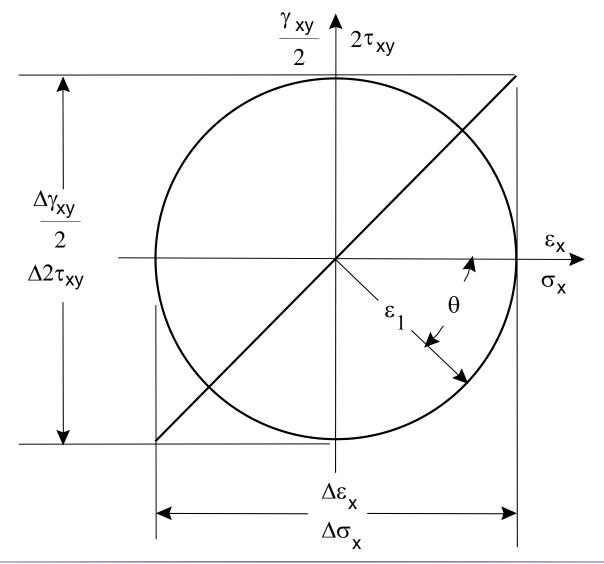
$$\epsilon_{\text{x}} = \epsilon_{\text{o}} \text{cos}(\omega t)$$



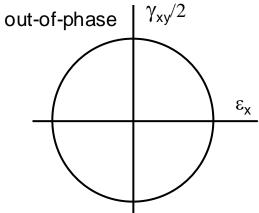


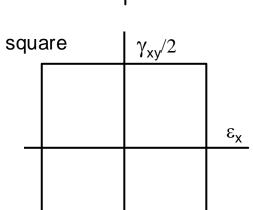
Out-of-phase

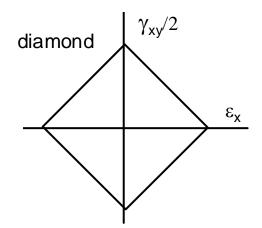
In-Phase and Out-of-Phase

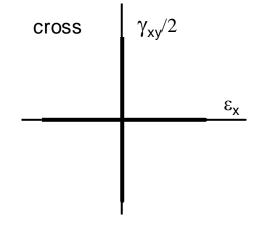


Loading Histories

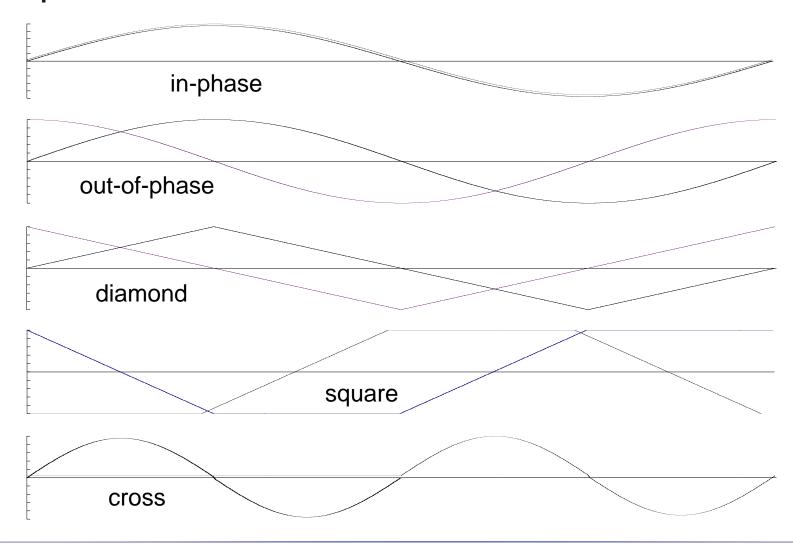






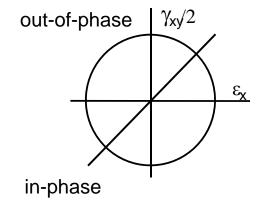


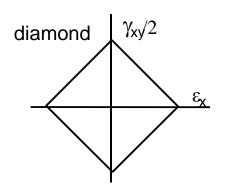
Loading Histories

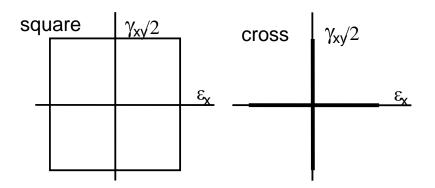


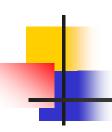
Findley Model Results

	$\Delta \tau / 2 \text{ MPa}$	σ MPa n.max	$\Delta \tau/2 + 0.3 \sigma$	N/N.
in-phase	353	250	428	1.0
90° out-of-phase	250	500	400	2.0
diamond	250	500	400	2.0
square	353	603	534	0.11
cross - tension cycle	250	250	325	16
cross - torsion cycle	250	0	250	216

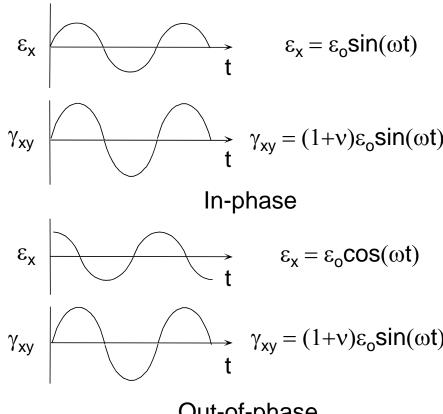


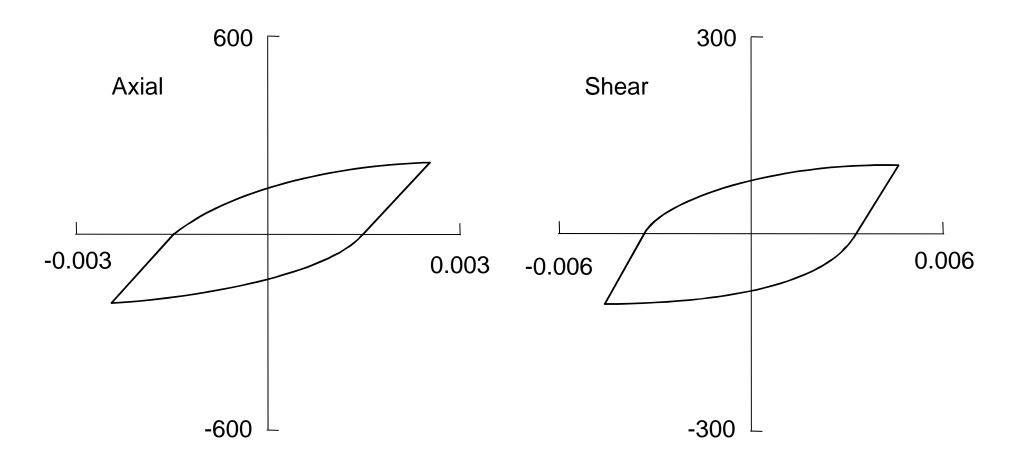




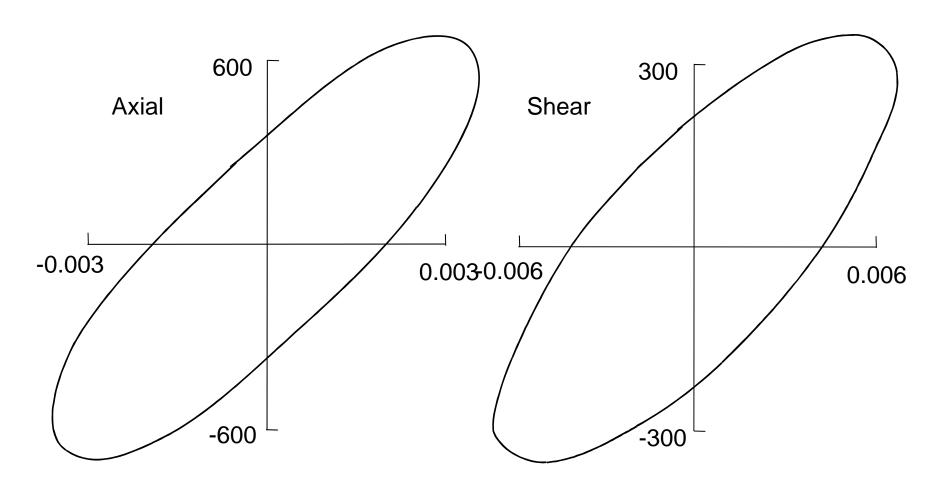


Nonproportional Hardening

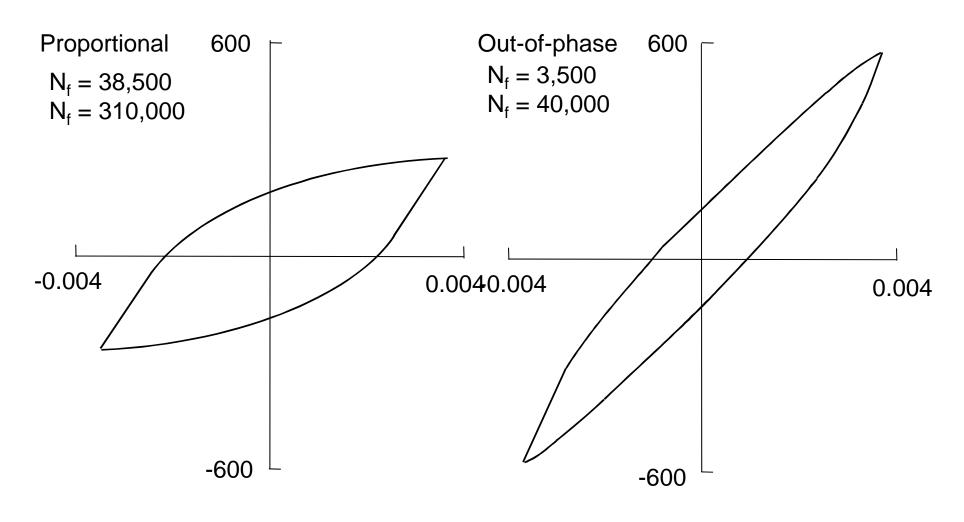




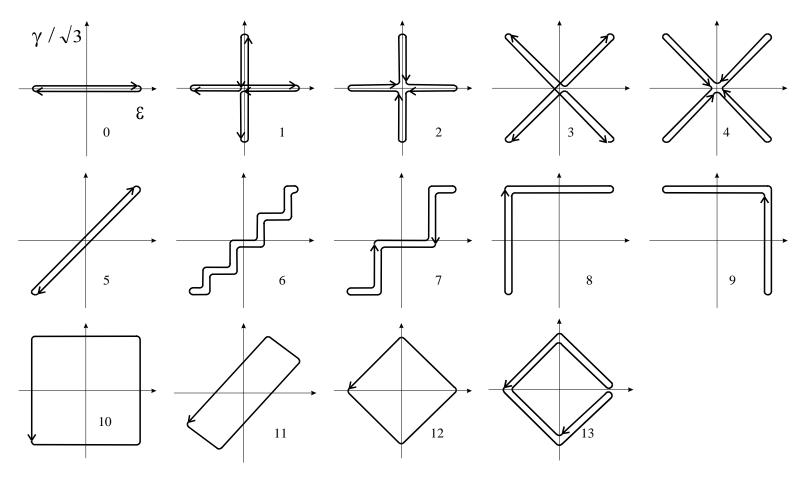
90° Out-of-Phase



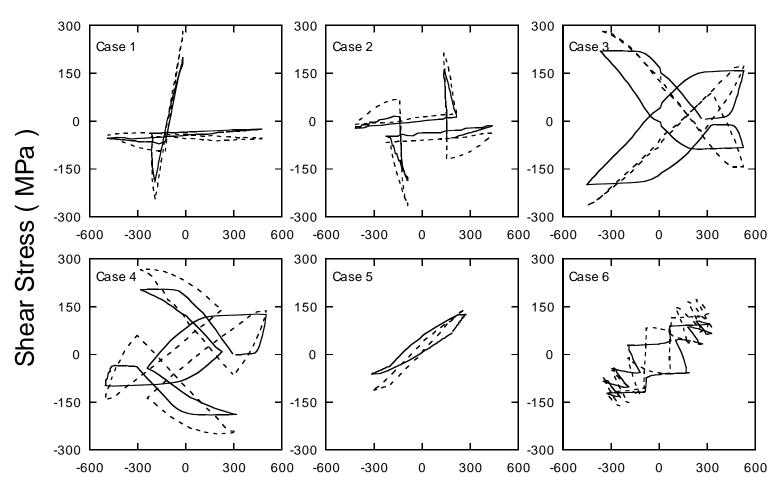
Critical Plane



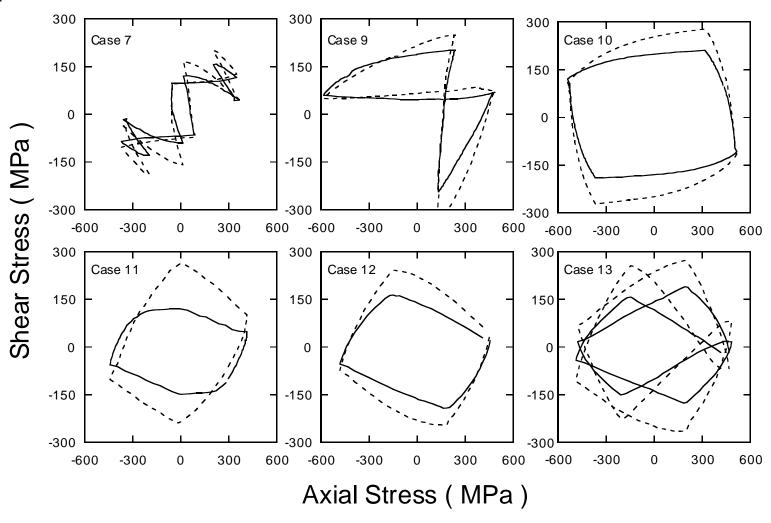
Loading Histories



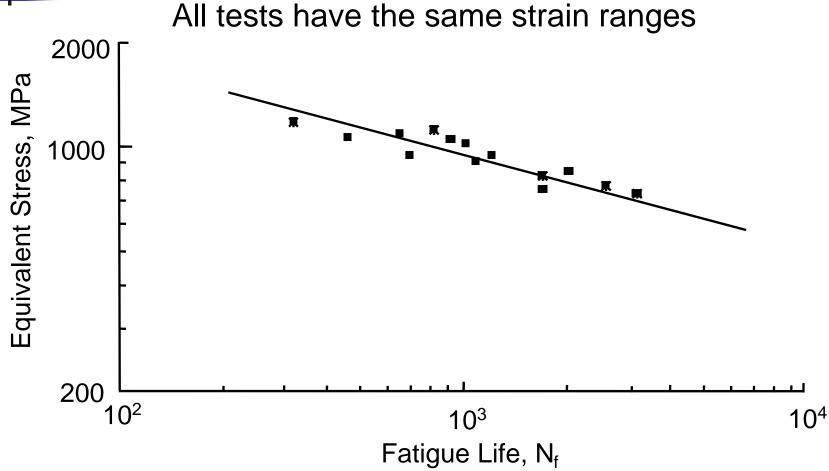
Stress-Strain Response



Stress-Strain Response (continued)

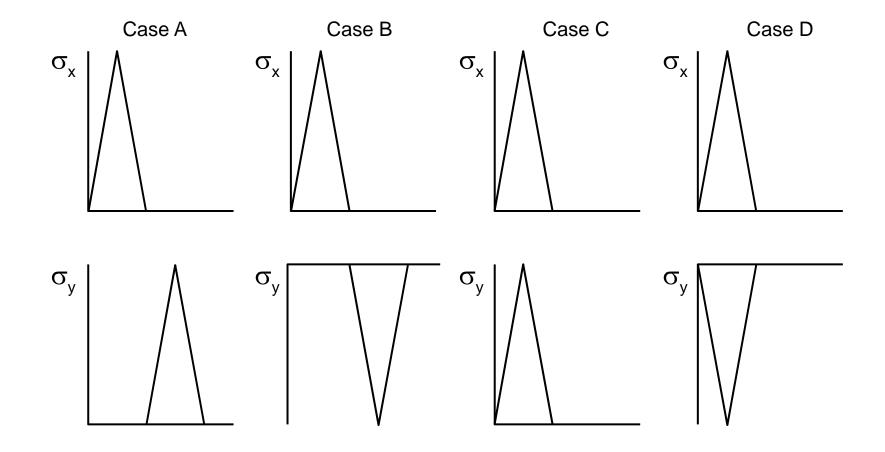


Maximum Stress

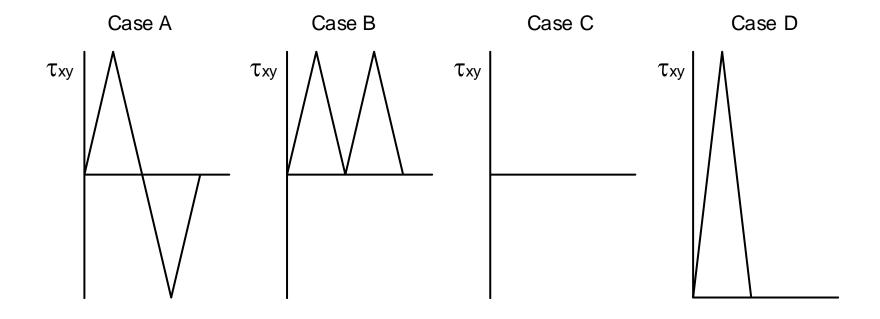


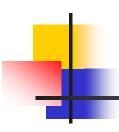
Nonproportional hardening results in lower fatigue lives

Nonproportional Example

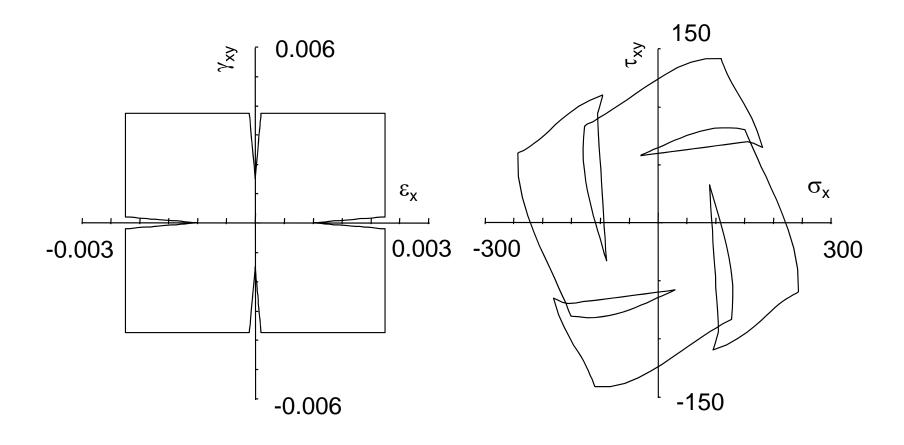


Shear Stresses

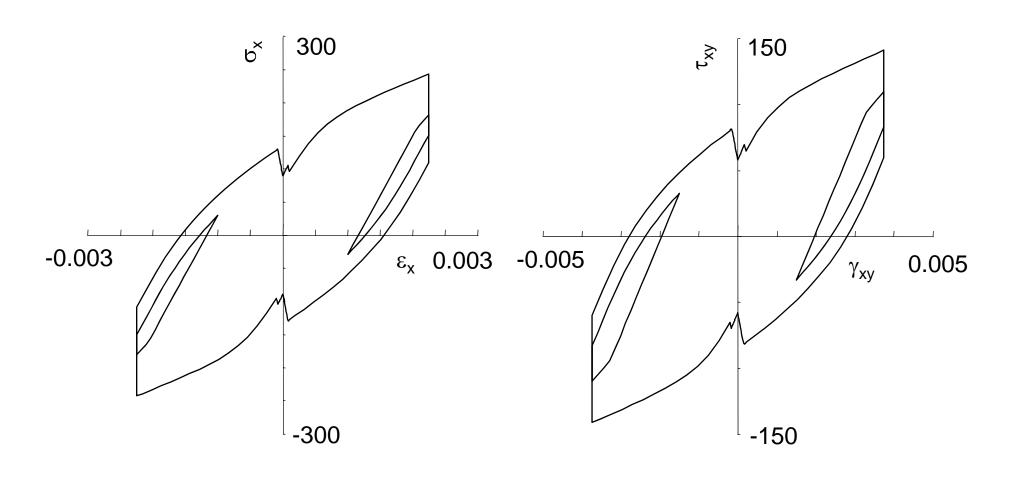


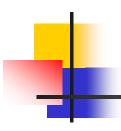


Simple Variable Amplitude History

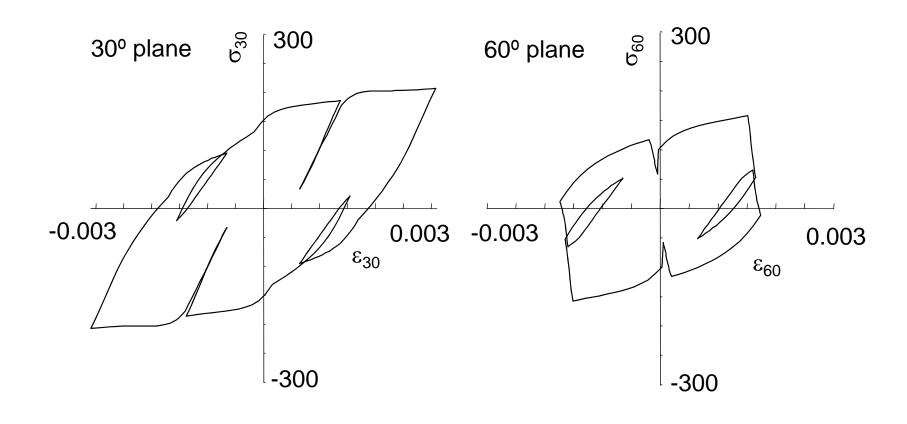


Stress-Strain on 0° Plane

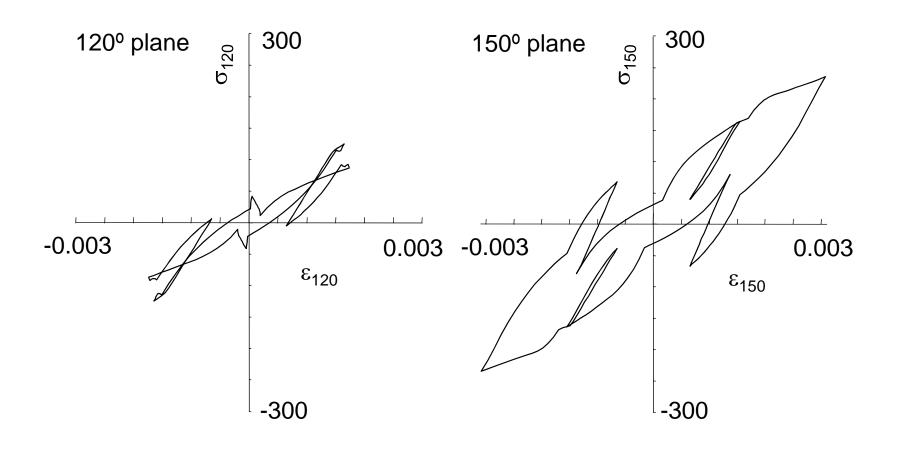




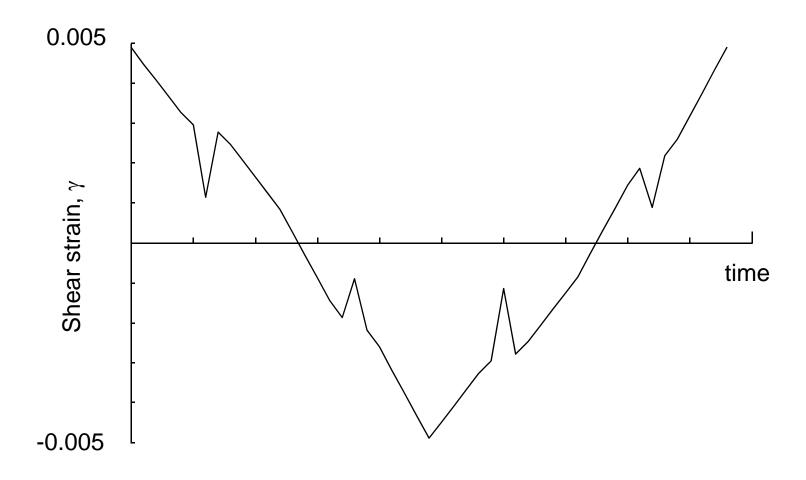
Stress-Strain on 30° and 60° Planes



Stress-Strain on 120° and 150° Planes

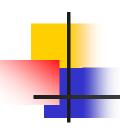


Shear Strain History on Critical Plane



Fatigue Calculations

Load or strain history Cyclic plasticity model Stress and strain tensor Search for critical plane



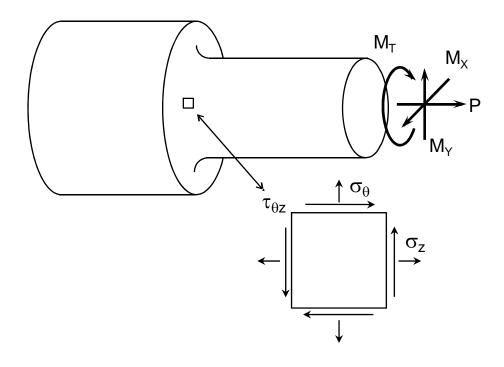
Nonproportional Loading Summary

- Nonproportional cyclic hardening increases stress levels
- Critical plane models are used to assess fatigue damage

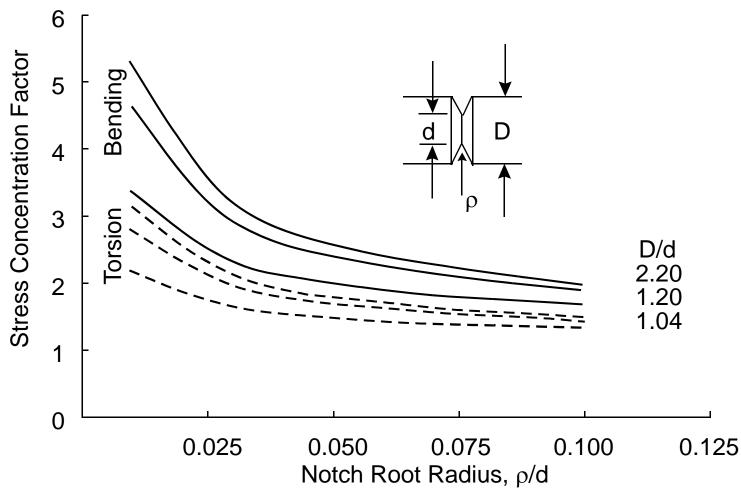
Notches

- Stress and strain concentrations
- Nonproportional loading and stressing
- Fatigue notch factors
- Cracks at notches

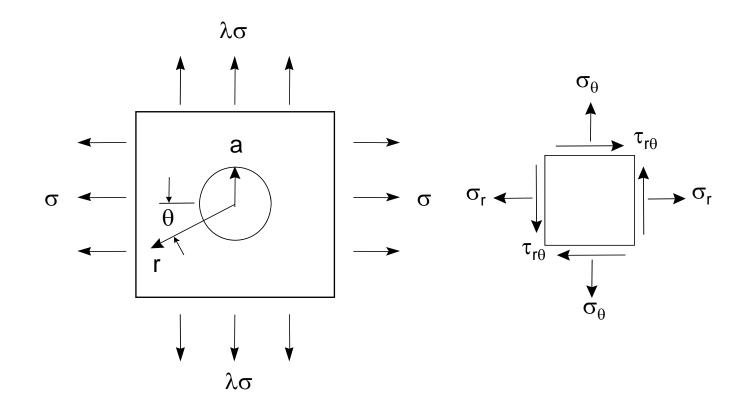
Notched Shaft Loading



Stress Concentration Factors

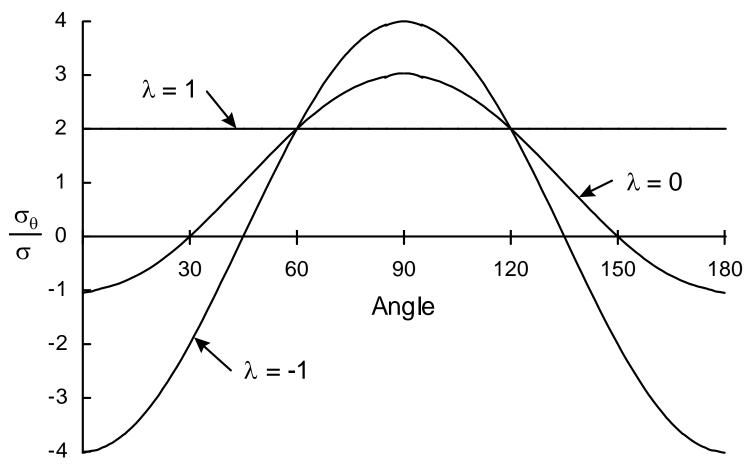


Hole in a Plate



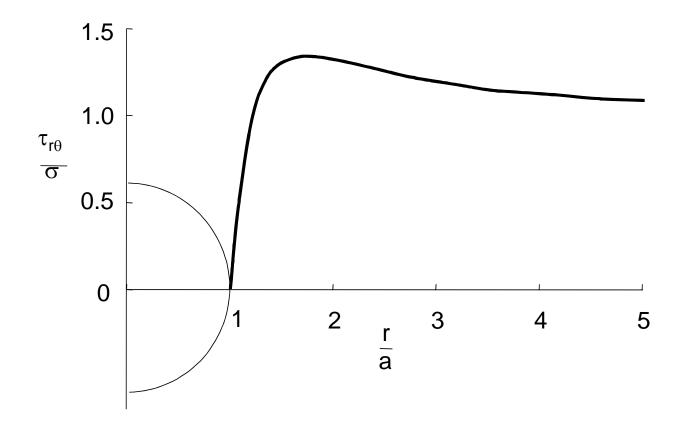


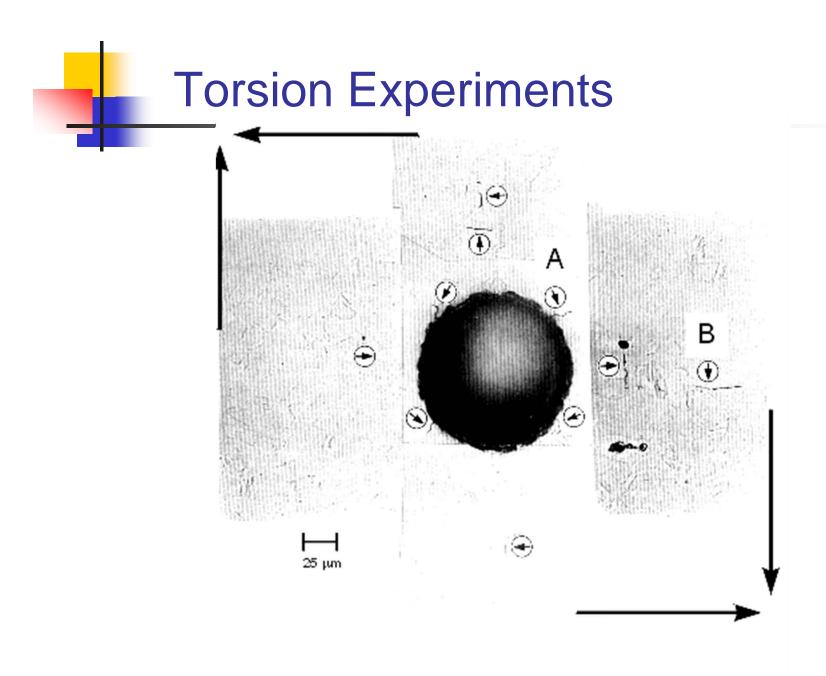
Stresses at the Hole



Stress concentration factor depends on type of loading

Shear Stresses during Torsion

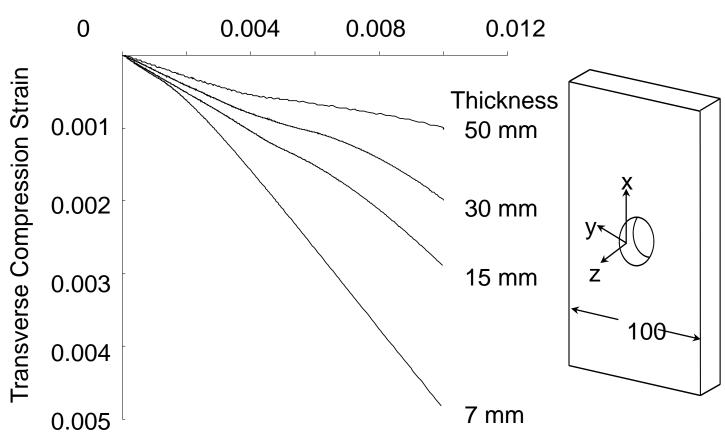




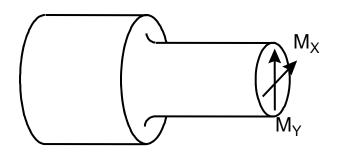
Multiaxial Loading

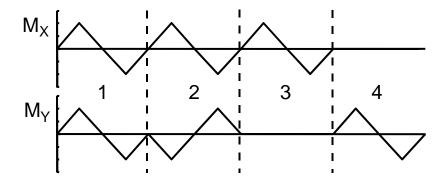
- Uniaxial loading that produces multiaxial stresses at notches
- Multiaxial loading that produces uniaxial stresses at notches
- Multiaxial loading that produces multiaxial stresses at notches

Thickness Effects

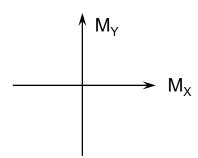


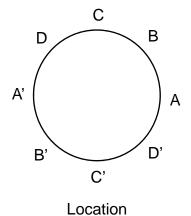
Applied Bending Moments

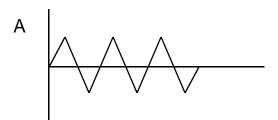


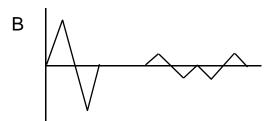


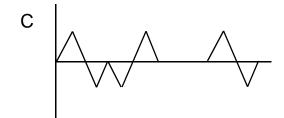
Bending Moments on the Shaft

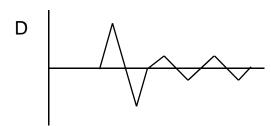










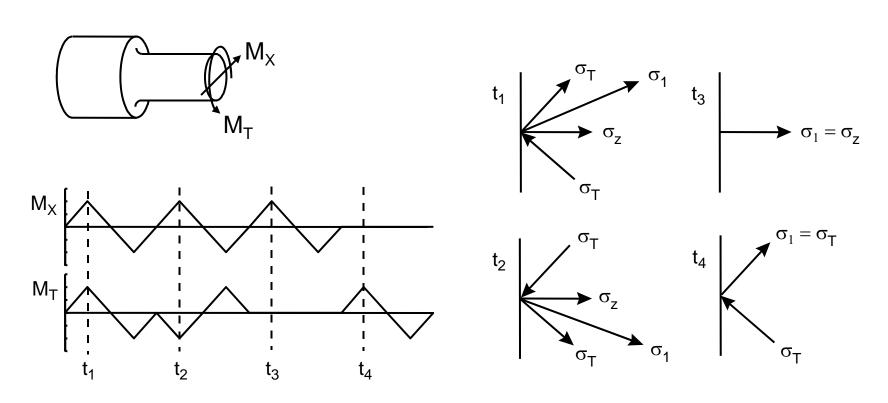


Bending Moments

$\Delta \mathbf{M}$	A	В	C	D
2.82		1		1
2.00	3		2	
1.41		2		1
1.00			2	
0.71				2

$$\Delta \overline{M} = \sqrt[5]{\sum \Delta M^5}$$

Torsion Loading



Out-of-phase shear loading is needed to produce nonproportional stressing

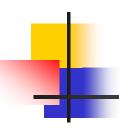
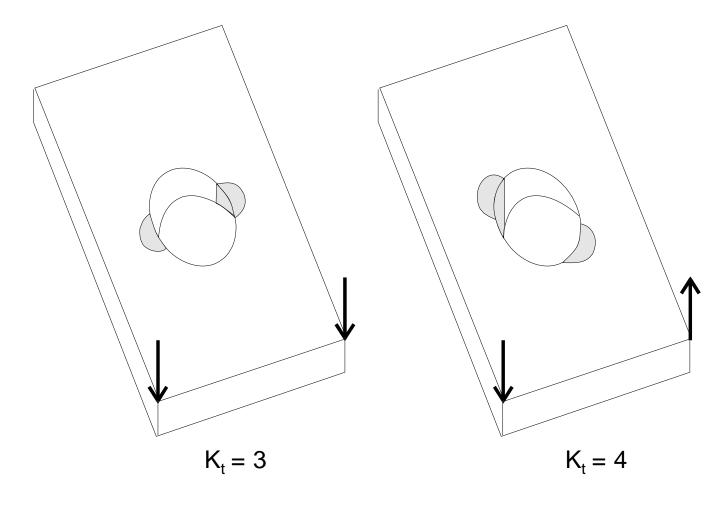
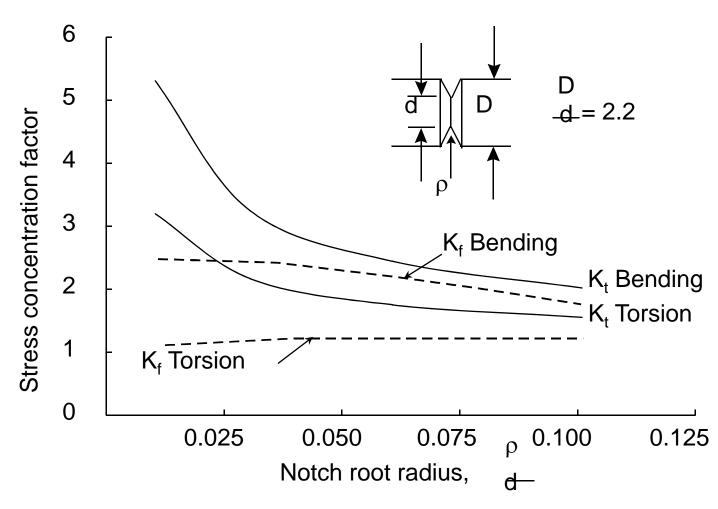


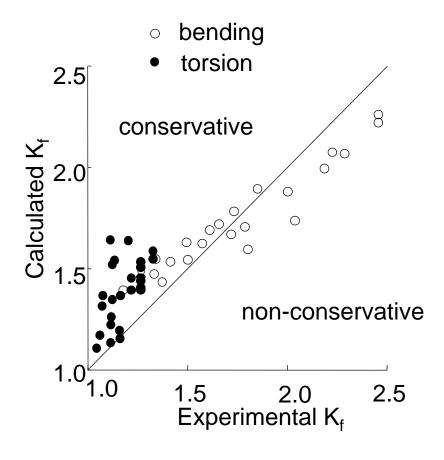
Plate and Shell Structures



Fatigue Notch Factors

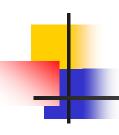


Fatigue Notch Factors (continued)



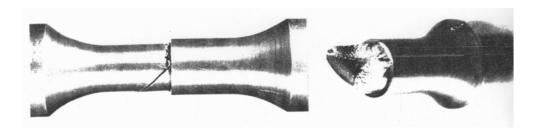
Peterson's Equation

$$K_{f} = 1 + \frac{K_{T} - 1}{1 + \frac{a}{r}}$$



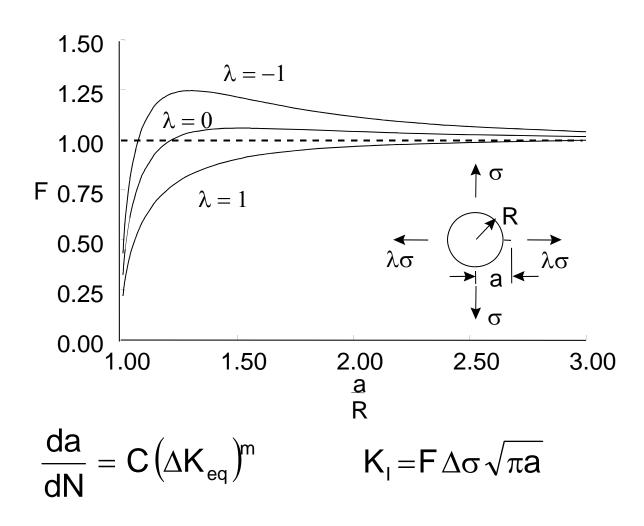
Fracture Surfaces in Torsion

Circumferencial Notch

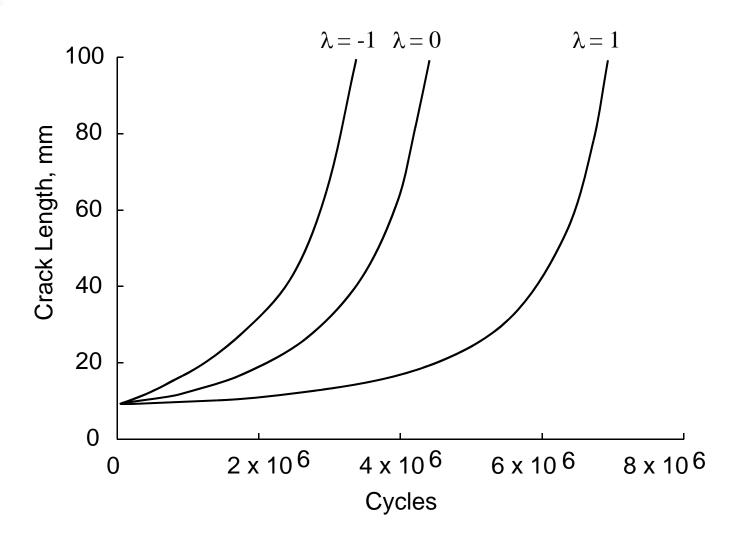


Shoulder Fillet

Stress Intensity Factors



Crack Growth From a Hole



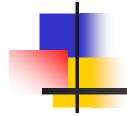
Notches Summary

- Uniaxial loading can produce multiaxial stresses at notches
- Multiaxial loading can produce uniaxial stresses at notches
- Multiaxial stresses are not very important in thin plate and shell structures
- Multiaxial stresses are not very important in crack growth

Final Summary

- Fatigue is a planar process involving the growth of cracks on many size scales
- Critical plane models provide reasonable estimates of fatigue damage

Multiaxial Fatigue



University of Illinois at Urbana-Champaign