
Professor Darrell F. Socie
Department of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

© 2001-2012 Darrell Socie, All Rights Reserved

Multiaxial Fatigue



Multiaxial Fatigue © 2001-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 1 of 125 

Contact Information

Darrell Socie
Mechanical Science and Engineering
1206 West Green
Urbana, Illinois 61801
USA

d-socie@uiuc.edu
Tel: 217 333 7630
Fax: 217 333 5634



Multiaxial Fatigue © 2001-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 2 of 125 

Outline

 State of Stress ( Chapter 1 )

 Fatigue Mechanisms ( Chapter 3 )

 Stress Based Models ( Chapter 5 )

 Strain Based Models ( Chapter 6 )

 Fracture Mechanics Models ( Chapter 7 )

Nonproportional Loading ( Chapter 8 )

Notches ( Chapter 9 )



Multiaxial Fatigue © 2001-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 3 of 125 

State of Stress

 Stress components
Common states of stress
 Shear stresses
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Stress Components
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Stresses Acting on a Plane
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Principal Stresses
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Stress and Strain Distributions
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Tension
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Torsion
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State of Stress Summary

 Stresses acting on a plane
 Principal stress
Maximum shear stress
Octahedral shear stress
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Fatigue Mechanisms

Crack nucleation
 Fracture modes
Crack growth
 State of stress effects
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Crack Nucleation
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Slip Bands
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Slip Bands
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Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

Mode I, Mode II, and Mode III
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Stage I Stage II

loading direction

free
surface

Stage I and Stage II
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Case A and Case B

Growth along the surface Growth into the surface
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crack growth direction
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1045 Steel - Tension
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Fatigue Mechanisms Summary

 Fatigue cracks nucleate in shear
 Fatigue cracks grow in either shear or tension 

depending on material and state of stress
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Stress Based Models

 Sines
 Findley
Dang Van



Multiaxial Fatigue © 2001-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 30 of 125 

1.0

0
0 0.5 1.0 1.5 2.0

Shear stress
Octahedral stress

Principal stress

0.5

S
he

ar
 s

tre
ss

 in
 b

en
di

ng

1/
2 

B
en

di
ng

 fa
tig

ue
 li

m
it

Shear stress in torsion

1/2 Bending fatigue limit

Bending Torsion Correlation



Multiaxial Fatigue © 2001-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 31 of 125 

Test Results

Cyclic tension with static tension
Cyclic torsion with static torsion
Cyclic tension with static torsion
Cyclic torsion with static tension
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Conclusions

 Tension mean stress affects both tension 
and torsion

 Torsion mean stress does not affect tension 
or torsion
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Findley
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Bending Torsion Correlation
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Dang Van
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Stress Based Models Summary
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Strain Based Models

 Plastic Work
 Brown and Miller
 Fatemi and Socie
 Smith Watson and Topper
 Liu
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Case A and B

Growth along the surface Growth into the surface
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Uniaxial

Equibiaxial

Brown and Miller ( continued )
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Brown and Miller ( continued )
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Fatemi and Socie
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Fatemi and Socie
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Smith Watson Topper
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Liu
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Cyclic Torsion

Cyclic Shear Strain Cyclic Tensile Strain
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Cyclic Torsion
Static Tension

Cyclic Shear Strain Cyclic Tensile Strain
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Cyclic Torsion with Static Tension
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Cyclic Shear Strain Cyclic Tensile Strain
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Test Results

 
Load Case /2 hoop MPa axial MPa Nf 

Torsion 0.0054 0 0 45,200 
with tension 0.0054 0 450 10,300 

with compression 0.0054 0 -500 50,000 
with tension and 

compression 
0.0054 450 -500 11,200 
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Conclusions

 All critical plane models correctly predict 
these results

Hydrostatic stress models can not predict 
these results
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Model Comparison
                                      Summary of calculated fatigue lives 

 
Model Equation Life
Epsilon 6.5 14,060
Garud    6.7 5,210
Ellyin 6.17 4,450

Brown-Miller 6.22 3,980
SWT 6.24 9,930
Liu I 6.41 4,280
Liu II 6.42 5,420
Chu 6.37 3,040

Gamma  26,775
Fatemi-Socie 6.23 10,350

Glinka 6.39 33,220
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Strain Based Models Summary

 Two separate models are needed, one for 
tensile growth and one for shear growth

Cyclic plasticity governs stress and strain 
ranges

Mean stress effects are a result of crack 
closure on the critical plane
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Separate Tensile and Shear Models
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Cyclic Plasticity
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Fracture Mechanics Models

Mode I growth
 Torsion
Mode II growth
Mode III growth
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Mode I, Mode II, and Mode III
Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear
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Mode II

Mode III

Surface Cracks in Torsion
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Transverse Longitudinal Spiral

Failure Modes in Torsion
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Fracture Mechanics Models
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Fracture Surfaces

Bending Torsion
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Fracture Mechanics Models Summary

Multiaxial loading has little effect in Mode I
Crack closure makes Mode II and Mode III

calculations difficult
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Nonproportional Loading

 In and Out-of-phase loading
Nonproportional cyclic hardening
 Variable amplitude
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Findley Model Results
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Nonproportional Hardening
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Stress-Strain Response (continued)
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Stress-Strain on 120° and 150° Planes
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Fatigue Calculations

Load or strain history

Cyclic plasticity model

Stress and strain tensor

Search for critical plane
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Nonproportional Loading Summary

Nonproportional cyclic hardening increases 
stress levels

Critical plane models are used to assess 
fatigue damage
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Notches

 Stress and strain concentrations
Nonproportional loading and stressing
 Fatigue notch factors
Cracks at notches
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Torsion Experiments
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Multiaxial Loading

Uniaxial loading that produces multiaxial 
stresses at notches

Multiaxial loading that produces uniaxial 
stresses at notches

Multiaxial loading that produces multiaxial 
stresses at notches
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Bending Moments
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Kt = 3 Kt = 4

Plate and Shell Structures
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Fracture Surfaces in Torsion
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Notches Summary

Uniaxial loading can produce multiaxial 
stresses at notches

Multiaxial loading can produce uniaxial 
stresses at notches

Multiaxial stresses are not very important in 
thin plate and shell structures

Multiaxial stresses are not very important in 
crack growth
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Final Summary

 Fatigue is a planar process involving the 
growth of cracks on many size scales

Critical plane models provide reasonable 
estimates of fatigue damage
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