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Talk Outline

Examples of High Temperature Problems
Basic Terminology at High Temperatures

Introduction to Constraint : Plasticity and ratchetting,
Out of Phase and In phase TMF

Experimental Techniques at High Temperatures
Fatigue Lives of Selected Materials under IF and TMF
Mechanics- Stress-strain Models

Life Models-Fatigue-Oxidation and Fatigue-Creep
Modeling

Future Directions
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Examples of Components

Experiencing High
Temperatures

Railroad Wheels undergoing Friction Braking
Brake Rotors

Pistons, Valves and Cylinder Heads of Spark-
ignition and Diesel Engines

Turbine Blades and Turbine Disks
Pressure Vessel and Piping
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Front Hub
Fillet

University of lllinois at Urbana-Champaign

Railroad Wheels under Friction
Braking
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Schematic of a Railroad Wheel,
Strain-Temperature-Stress Changes on the B1 location

under brake shoe heating (laboratory simulation based
on strain temperature measurements on wheels)
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Brake Rotor Cracking

Typical coning

distortion
Undeformed
rotor

-100

-200

200

100

-0.3

Minimum Temperature = 15
Maximum Temperature = 500
Cycle Time = 4 mintues

De, = 0.6%

N, = 37 cycles

-0.2 -0.1 0.0 0.1 0.2 0.3
mechanical strain (%)

Department of Mechanical and Industrial Engineering

Huseyin Sehitoglu

Page 6




University of lllinois at Urbana-Champaign
Design-Manufacturing-Life Prediction \

Methodology for Cylinder Heads and Blocks
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rcentage of Vehicles with Aluminu
Engine Blocks and Heads(*)

1994 2000 2005

Heads
Passenger cars 78% 85%  95%

Light trucks 20% 40%  60%
Blocks
Passenger cars 13% 30%  50%
Light trucks 5% 10%  20%
(*) Delphi VIII Study,
1996 Department of Mechanical and Industrial Engineering
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Iinder Heads (FEM and Fatigue Life Contours)
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Turbine Blades
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r Turbine Blades( Thermo-mechanical fatigue failure) \

W
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f Turbine Blades (strain- \
temperature variation
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Basic Terminology at High

Temperatures

 What is a high temperature problem?
Deformation under Constant or Variable
Stress at homologous temperatures above
0.35 (T/T,, >0.35 where T ,is melting
temperature).

e Stress Relaxation: Decrease in Stress at
Constant Strain

» Creep: Increase in Strain at Constant Stress

\ Department of Mechanical and Industrial Engineering/
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Isothermal vs. Thermo-mechanical fatigue

High temperature
fatigue testing or modeling
I

Y Y

| sothermal fatigue ) Non-isothermal fatigueD

HCF TE )
Den» O internal stresses
LCF TME )
\ Dein>0 external stressey
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Disk Specimen under TF loading
(Simovich)
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Limitations in our

Understanding of High
Temperature Material Behavior

sExperiments on TMF are missing
(difficult, expensive).

*Microstructural damage mechanisms are
not well understood.

«Stress-strain (constitutive) models have
not been established

*Proposed failure models have severe

drawbacks.
Department of Mechanical and Industrial Engineering
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Experimental Techniques at

High Temperatures

LOAD CELL

Induction
Coil

High
Temperature
: Extensometer l
C/L >
Strain, load,position control

GPIB

Temperature
Controller

Control
Tower
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Loading History
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Total Constraint

\T

\

A Chet =

Mechanical Strain
T /\/\
TO
t o
\ Department of Mechanical and Industrial Engineering/

Huseyin Sehitoglu 18

Page 18




University of lllinois at Urbana-Champaign

Total Constraint

The compatibility equation

€net = €th+€mech = & (T-T o) + €mech
When the net strain is zero and all of the thermal strain is converted to
mechanical strain. Then,

emech =-a (T-T o)
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Two-Bar Model(ctd.)

!
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Simple Relations

« Equilibrium : A;s; +A,s,=P
e Compatability : l,e;=1,e,
e Strain :
8 =Qe*€1in*C1th
e e
elthza(T'To)
@1 in = inelastic (plastic) strain

€ e= elastic strain
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The Concepts of Total, Partial,
Over and Notch Constraint

S1
T _BEp _A2lp
B 1= C '’ C= A1.lo
| C® ¥ : Tota Constraint

C® finite:; Partia Constraint
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The Stress-strain Response under

Total and Partial Constraint
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The Stress-strain Response under

Total and Partial Constraint (ctd.)
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Stress-strain Behavior under
Out-of-Phase versus In-Phase

min

ay

Mechanical Strain
T ! /
max

Out-of-Phase TMF Response
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Some Definitions

Indastic Strain range

DQn @Dem'“%"'l%
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Comparison of TMF IP and TMF OP Tests on

1010 Steel (Jaske’s Data)
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TMF experiments of Coffin

INFLUENCE OF THERMAL CYCLING WITH UNIAXIAL CONSTRAINT ON LIFE
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Thermal Block Histories on

Steels under Total Constraint

| ! |
Thermal Block History
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Classification of IF and TMF Studies

* Metallurgical Studies :

(a) Damage Mechanisms (Crack nucleation from slip bands,
precipitates, porosities, surface and internal oxidation, grain
boundary cavitation)

(b) Alloy Development

e Mechanistic Studies :

(a) Constitutive Modeling ( phenomenological:non-unified
and unified models for stress-strain prediction)

(b) Life Prediction Modeling (Crack nucleation (stress,

strain, time), Crack Growth (Mean stress, crack length)
\ Department of Mechanical and Industrial Engineering/
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Classification of IF and TMF Studies

(ctd.)

 Engineering Application :
(a) Material Selection
(b) Early Design
(c) Residual Life Assesment

\ Department of Mechanical and Industrial Engineering/
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Constitutive Modeling-

Experimentally Determined Flow Rule

1015 P [ A R N O H Poroind
Al319- Solutionized Small SDAS
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TMF OP 100-300°C 1.0%
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Hysteresis loops for the tests

performed at 5x103 s-1

3
\ -6x10

240
180
120 / A
© 60 ~ / / Z/
o
=3 o " / /////
)
g / // / /
5 -60 // / 7/ 7....
-120 /4 : =
-180 L —— experimental ||-----
= - - - TNET
240 —
-4 -3 -2 -1 0 1 2 3 4 5 6
Strain

Department of Mechanical and Industrial Engineering

/

Huseyin Sehitoglu

34

Page 34




Drag stress recovery

Hyteresis loops at 20°C for the material pre-exposed at 300°C
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Coarsening of the Precipitates

~
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TMF OP Stress-Strain Prediction

300
TMF OP DI=100-300°C,De=0.6% , 5x10°S"
Al 319-T7B Small SDAS
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Mechanistic Studies

Constitutive Modeling:

Requirements for a good model:

» Incorporate strain rate, temperature and mean
stress effect on stress-strain response

* Incorporate temperature-strain induced
changes on material’s stress-strain response

\ Department of Mechanical and Industrial Engineering/
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Mechanistic Studies

Constitutive Modeling:

* Non-unified Plasticity (stress-strain) Models:

Plastic strains (time-independent) and creep
strains are added.

* Unified Creep-Plasticity Models: Plastic strain

and creep srain is combined as inelastic
strain.

\ Department of Mechanical and Industrial Engineering/
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Life Prediction Modeling

Requirements for a good model:

» Incorporate stress,strain, thermal expansion,
mean stress, stress state effect on life

» Predict the effect of temperature, strain rate,
metallurgical changes on life.

\ Department of Mechanical and Industrial Engineering/
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TOTAL STRAIN RANGE
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Coffin’s Approach

—
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f Coffin’s Approach (Frequency \
Modified Life)
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Coffin’s Approach \

Advantages:
(1) Simple to use; accounts for frequency effects

Disadvantages;

(1) Not sensitive to location of hold time within the
cycle (tension or compression).

(2) Does not account for creep damage effects

(3) TMF life prediction not explicitly handled.

(4) No stress-strain model
Department of Mechanical and Industrial Engineering
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PARTITIONED STRAIN RANGE
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SRP Data on Two Class of Steels

Manson et al.

PARTITIONED STRAIN RANGE
(=]
s

010 -
Aepe Aepp : e Ae
Begp he 0
| | A | Ao ¥
001 ' 001 L | I |
1 10 102 10° 104 10° 1 10 10 0 104 10°
CYCLIC LIFE CYCLIC LIFE
- Summary of partitioned strain-life rela- _ Summary of partitioned strain-life relations.
tions. 2ler- 1Mo steel, 1100 F (865 K). Type 316 stainless steel, 1300 F (980 K).
]
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SRP Approach

Advantages:
(1) Accounts for location of hold time within a cycle

Disadvantages;

(1) Life curves are often too close, expensive to generate
all these curves

(2) Does not account for oxidation/environment effects

(3) TMF Life prediction not explicitly handled.

\ Department of Mechanical and Industrial Engineering/
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Development of a Mechanism Based
Failure Model (Sehitoglu et al.)

 Damage per cycle is sum of the dominant
mechanisms Dyy, Doy s Dereep-

 The terms in the damage equations should be
physically based, specifically, they should be
linked to specific experiments, stress-strain
behavior and microstructural observations.

\ Department of Mechanical and Industrial Engineering/
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Fatigue - Oxidation Models

(ctd.)

* Neu, Sehitoglu, Boismier, Kadioglu, 1987-

1 Z+1
1 _(_hy d | 2[Dénean)”
7 ABF ™ Kot g3

Nt

This equation accounts for the strain range at the
oxide tip hence the oxide-metal properties the shape
of the oxide are included.

F > Koetf  depends on the temperature strain history

and the temperature- time variation in the cycle.
Department of Mechanical and Industrial Engineering
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Combined Damage Model

Predictions
10" 3 ; ; ;
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] All Fatigue Results
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Combined Damage Model

Predictions (1070 Steel)
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Combined Damage Model

Predictions (1070 Steel)

w C T 1 lllllll T l(lrllll LR | LI RN | T lVl'lll
_ 1070 Steel Experiments ]
- Isothermal Fatigue 0 ¢=002 sec-1 T
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Advantages:

(1) Accounts for TMF loading.

Combined Damage Model \

(2) Damage due to oxidation and creep are included.

Disadvantages:

(1) Requires some time to understand how it all works.
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Fatigue Damage Equation

« Modified Strain-Life Relation

De o 2b -1
=g =Ca, (2N)° +e (N)°

a) - initial pore size
C' — fatigue strength coefficient
— fatigue strength exponent
e' — fatigue ductility coefficient
C - fatigue ductility exponent

\ Department of Mechanical and Industrial Engineering /
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Creep Damage Equation

t0$ |0 - D—IO me
DY =C(m, - Dag* { (r——=3 " exps —_dt
c8S 2 € RTO

C.,m, -empirical constants
DH - activation energy
R - universal gas constant
Sy hydrostatic stress
- effective stress
30 - initial pore size

\ Department of Mechanical and Industrial Engineering /
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TMF IP versus TMF OP Comparison- Al 319
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Initial Voids and after TMF IP
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Future Directions

« A simple model is developed to predict life
for a given mechanical strain range, maximum
temperature, and material.

» Given a strain and temperature field in a component,
the model can predict the most critical location where
crack nucleation will occur.

Department of Mechanical and Industrial Engineering
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Future Directions (ctd.)

» Given an elastic strain, temperature history
from FEM, the model is able to predict the
stresses and plastic strains assuming the
mechanical strain is equal to the elastic strain
from FEM. This is known as the * strain
invariance method’.

* To predict component behavior the model
accounts for the initial defect size.
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