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Talk Outline

« Examples of High Temperature Problems
« Basic Terminology at High Temperatures

* Introduction to Constraint : Plasticity and ratchetting,
Out of Phase and In phase TMF

 Experimental Techniques at High Temperatures
 Fatigue Lives of Selected Materials under IF and TMF
« Mechanics- Stress-strain Models

» Life Models-Fatigue-Oxidation and Fatigue-Creep
Modeling

Future Directions
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Examples of Components

Experiencing High
Temperatures

Railroad Wheels undergoing Friction Braking
Brake Rotors

Pistons, Valves and Cylinder Heads of Spark-
Ignition and Diesel Engines

Turbine Blades and Turbine Disks
Pressure Vessel and Piping
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Railroad Wheels under Friction
Braking
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Schematic of a Railroad Wheel,
Strain-Temperature-Stress Changes on the B1 location
under brake shoe heating (laboratory simulation based

on strain temperature measurements on wheels)
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Brake Rotor Cracking
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Design-Manufacturing-Life Prediction
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Methodology for Cylinder Heads and Blocks
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Percentage of Vehicles with Aluminum
Engine Blocks and Heads(*)

1994 2000 2005

Heads
Passenger cars 8% 85% 95%
Light trucks 20% 40% 60%

Blocks
Passenger cars 13% 30% 50%
Light trucks 5% 10% 20%

(* Delphi VIl Study,
1996
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Cylinder Heads (FEM and Fatigue Life Contours)
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Turbine Blades
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/ Turbine Blades( Thermo-mechanical fatigue failure)
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Turbine Blades (strain-
temperature variation

T (*C53
4] 500 1000
| I
[}
2
E
B
Ll B O =
g
-
-0.2 —
| I
o 1000 2000

Metal temperature [“F)

Department of Mechanical and Industrial Engineering



University of Illinois at Urbana-Champaign

Basic Terminology at High
Temperatures

« What is a high temperature problem?
Deformation under Constant or Variable
Stress at homologous temperatures above
0.35 ( T/T,, >0.35 where T_is melting
temperature).

e Stress Relaxation: Decrease In Stress at
Constant Strain

 Creep: Increase in Strain at Constant Stress
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Isothermal vs. Thermo-mechanical fatigue

High temperature
fatiguetesting or modeling
|
| sothermal fatigue

HCF TE
Dein » O internal stresses
LCF TMF
L
exter nal stresses
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Disk Specimen under TF loading
(Simovich)
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Limitations in our
Understanding of High
Temperature Material Behavior

Experiments on TMF are missing
(difficult, expensive).

Microstructural damage mechanisms are
not well understood.

eStress-strain (constitutive) models have
not been established

Proposed failure models have severe
drawbacks.
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Experimental Techniques at
High Temperatures

LOAD CELL
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Total Constraint
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Total Constraint

The compatibility equation

€net = &htemech =a (T-To) + Emech
When the net strain is zero and all of thethermal strain is convertedto
mechanical strain. Then,

€nech =-a (T-To)
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Two-Bar Model(ctd.)
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P
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Simple Relations

e Equilibrium: A;s;+A,s,=P

« Compatability : =156
e Strain: g :ele+e1in+elth
© =6

€1th=a(T-To)

@1 in = inelagtic (plastic) strain

Q" glastic strain
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The Concepts of Total, Partial,
Over and Notch Constraint

C® ¥ : Tota Constrant
C® finite: Partia Constraint
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The Stress-strain Response under
Total and Partial Constraint (ctd.)
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Stress-strain Behavior under

Out-of-Phase versus In-Phase

min

/ / / ;|max
i f/ Mechanical Strain { /Mechanical Strain
Tmax /
7

min

Stress

Out-of-Phase TMF Response In-Phase TMF Response

Department of Mechanical and Industrial Engineering



University of lllinois at Urbana-Champaign

Some Definitions

Inelastic Strain range:
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Comparison of TMF IP and TMF OP Tests on

1010 Steel (Jaske’s Data)
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TMF experiments of Coffin
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Thermal Block Histories on
Steels under Total Constraint
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Classification of IF and TMF Studies

e Metallurgical Studies :

(a) Damage Mechanisms (Crack nucleation from slip bands,
precipitates, porosities, surface and internal oxidation, grain
boundary cavitation)

(b) Alloy Development

e Mechanistic Studies :

(a) Constitutive Modeling ( phenomenological:non-unified
and unified models for stress-strain prediction)

(b) Life Prediction Modeling (Crack nucleation (stress,
strain, time), Crack Growth (Mean stress, crack length)

Department of Mechanical and Industrial Engineering
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Classification of IF and TMF Studies
(ctd.)

Engineering Application :
(a) Material Selection

(b) Early Design

(c) Residual Life Assesment

Department of Mechanical and Industrial Engineering
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Constitutive Modeling-
Experimentally Determined Flow Rule
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n,=7.96
A
®
Power Law Creep
% n,=3.12
TT l T T T T 1T l|
2 3 4 5617
1 10

Department of Mechanical and Industrial Engineering



University of lllinois at Urbana-Champaign

TMF OP 100-300°C 1.0%
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Hysteresis loops for the tests
performed at 5x103 st

— experimental
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Drag stress recovery

Hyteresis loops at 20°C for the material pre-exposed at 300°C
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Coarsening of the Precipitates
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TMF OP Stress-Strain Prediction

TMF OP DT =100-300°C, De=0.6%, 5x10°s "
Al 319-T7B Small SDAS

Stress (MPa)
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Mechanistic Studies

Constitutive Modeling:

Requirements for a good model:

e |[ncorporate strain rate, temperature and mean
stress effect on stress-strain response

e Incorporate temperature-strain induced
changes on material’s stress-strain response

Department of Mechanical and Industrial Engineering
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Mechanistic Studies

Constitutive Modeling:

 Non-unified Plasticity (stress-strain) Models:
Plastic strains (time-independent) and creep
strains are added.

* Unified Creep-Plasticity Models: Plastic strain
and creep srain is combined as inelastic
strain.
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Life Prediction Modeling

Requirements for a good model:

e Incorporate stress,strain, thermal expansion,
mean stress, stress state effect on life

 Predict the effect of temperature, strain rate,
metallurgical changes on life.
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Coffin’s Approach
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Coffin’s Approach (Frequency

Modified Life)
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Coffin’s Approach

Advantages:
(1) Simple to use; accounts for frequency effects
Disadvantages;

(1) Not sensitive to location of hold time within the
cycle (tension or compression).

(2) Does not account for creep damage effects
(3) TMF life prediction not explicitly handled.

(4) No stress-strain model

Department of Mechanical and Industrial Engineering
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Strain Range Partitioning Method(SRP)
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SRP Data on Two Class of Steels

(Manson et al.)
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SRP Approach

Advantages:
(1) Accounts for location of hold time within a cycle
Disadvantages;

(1) Life curves are often too close, expensive to generate
all these curves

(2) Does not account for oxidation/environment effects

(3) TMF Life prediction not explicitly handled.
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Development of a Mechanism Based
Failure Model (Sehitoglu et al.)

« Damage per cycle is sum of the dominant
mechanisms Dyy, Doy s Dereep:

« The terms in the damage equations should be
physically based, specifically, they should be
linked to specific experiments, stress-strain

behavior and microstructural observations.
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Fatigue - Oxidation Models

(ctd.)

* Neu, Sehitoglu, Boismier, Kadioglu, 1987-

1 g+1
1o e d (b2 [Daﬂthb
\ BF erff ( 9) (1-a/b)

This equation accounts for the strain range at the
oxide tip hence the oxide-metal properties the shape
of the oxide are included.

(0).4

F o Ko depends on the temperature strain history

and the temperature- time variation in the cycle.
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Combined Damage Model

Predictions

10

H
Ol

300;C Dox

WAP319-T7B Small SDAS
All Fatigue Results

RT 40Hz
250iC 0.5Hz
250iC5x10 s

300;C5x10°s"
TMF OP 100-300;C
TMF IP 100-300;C

H
OI

Mechanical Strain Range

4 e > O®

10°

4 5

10 10 10

10

Nf
Department of Mechanical and Industrial Engineering




University of Illinois at Urbana-Champaign

Combined Damage Model

Predictions (1070 Steel)
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Combined Damage Model

Predictions (1070 Steel)
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Fatigue - Creep Modeling

t _
pereen_ [ Cfeepexp( DH) (als +aps h) M
0 RT

K

where tqis cycle period,

F Creeptemperature strain phasing factor,
S is the effective stress,

Shisthe hydrostatic stress,

and K isthe drag stress
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Combined Damage Model

Advantages:

(1) Accounts for TMF loading.
(2) Damage due to oxidation and creep are included.
Disadvantages:

(1) Requires some time to understand how it all works.
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Future Directions

« A simple model should be developed to predict life
for a given mechanical strain range, maximum
temperature, and material.

» Given a strain and temperature field in a component,

the model should predict the most critical location where
crack nucleation will occur.
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Future Directions (ctd.)

 Given an elastic strain, temperature history from FEM,
the model should be able to predict the stresses and
plastic strains assuming the mechanical strain is equal
to the elastic strain from FEM. This is known as the
strain invariance method’.

 To predict component behavior the model should

capture the crack growth rates as the crack grows in
a varying stress, temperature field.
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