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State of Stress

Stress components

Common states of stress
Shear stresses
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Stress Components
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Stresses Acting on a Plane
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Principal Stresses
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Stress and Strain Distributions
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Tension

τ

σσx
 

γ/2

ε
ε1

σ1 σ2

σ3

σ2 = σ3 = 0

σ1

ε2 = ε3 = −νε1



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 9 of 125 

Torsion
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State of Stress Summary

Stresses acting on a plane
Principal stress

Maximum shear stress
Octahedral shear stress
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Fatigue Mechanisms

Crack nucleation

Fracture modes
Crack growth

State of stress effects
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Crack Nucleation
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Slip Bands

Loading Unloading

Extrusion

Undeformed
material

Intrusion
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Slip Bands
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Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear

Mode I, Mode II, and Mode III
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Stage I Stage II

loading direction

free
surface

Stage I and Stage II
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Case A and Case B

Growth along the surface Growth into the surface
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crack growth direction

10 µm

slip bandsshear stress

Mode II Growth



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 22 of 125 

1.0

0.2

0

0.4

0.8

0.6

1 10 102 103 104 105 106 107

Nucleation

Tension
Shear

304 Stainless Steel - Torsion

Fatigue Life, 2Nf

D
am

ag
e 

F
ra

ct
io

n 
 N

/N
f



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 23 of 125 

304 Stainless Steel - Tension

1 10 102 103 104 105 106 107

1.0

0.2

0

0.4

0.8

0.6 Nucleation

Tension

Fatigue Life, 2Nf

D
am

ag
e 

F
ra

ct
io

n 
 N

/N
f



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 24 of 125 

Nucleation

Tension

Shear

1.0

0.2

0

0.4

0.8

0.6

1 10 102 103 104 105 106 107

Inconel 718 - Torsion

Fatigue Life, 2Nf

D
am

ag
e 

F
ra

ct
io

n 
 N

/N
f



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 25 of 125 

Inconel 718 - Tension

Shear

Tension

Nucleation

1 10 102 103 104 105 106 107

1.0

0.2

0

0.4

0.8

0.6

Fatigue Life, 2Nf

D
am

ag
e 

F
ra

ct
io

n 
 N

/N
f



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 26 of 125 

Fatigue Life, 2Nf

D
am

ag
e 

F
ra

ct
io

n 
 N

/N
f

f

Nucleation

Shear

Tension

1 10 102 103 104 105 106 107

1.0

0.2

0

0.4

0.8

0.6

1045 Steel - Torsion



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 27 of 125 

1045 Steel - Tension
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Fatigue Mechanisms Summary

Fatigue cracks nucleate in shear

Fatigue cracks grow in either shear or tension 
depending on material and state of stress
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Stress Based Models

Sines

Findley
Dang Van
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Test Results

Cyclic tension with static tension

Cyclic torsion with static torsion
Cyclic tension with static torsion

Cyclic torsion with static tension
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Conclusions

Tension mean stress affects both tension 
and torsion
Torsion mean stress does not affect tension 
or torsion
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Bending Torsion Correlation
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Dang Van
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Stress Based Models Summary
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Strain Based Models

Plastic Work

Brown and Miller
Fatemi and Socie

Smith Watson and Topper
Liu
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Case A and B

Growth along the surface Growth into the surface
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Uniaxial

Equibiaxial

Brown and Miller ( continued )
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Brown and Miller ( continued )
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Fatemi and Socie
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Fatemi and Socie
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Smith Watson Topper
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Liu
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Cyclic Torsion

Cyclic Shear Strain Cyclic Tensile Strain

Shear Damage Tensile Damage

Cyclic Torsion
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Cyclic Torsion
Static Tension

Cyclic Shear Strain Cyclic Tensile Strain

Shear Damage Tensile Damage

Cyclic Torsion with Static Tension
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Cyclic Shear Strain Cyclic Tensile Strain
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Test Results

 
Load Case ∆γ/2 σhoop MPa σaxial MPa Nf 

Torsion 0.0054 0 0 45,200 
with tension 0.0054 0 450 10,300 

with compression 0.0054 0 -500 50,000 
with tension and 

compression 
0.0054 450 -500 11,200 
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Conclusions

All critical plane models correctly predict 
these results
Hydrostatic stress models can not predict 
these results
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Model Comparison

                                      Summary of calculated fatigue lives 
 

Model Equation Life 
Epsilon 6.5 14,060 
Garud    6.7 5,210 
Ellyin 6.17 4,450 

Brown-Miller 6.22 3,980 
SWT 6.24 9,930 
Liu I 6.41 4,280 
Liu II 6.42 5,420 
Chu 6.37 3,040 

Gamma  26,775 
Fatemi-Socie 6.23 10,350 

Glinka 6.39 33,220 
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Strain Based Models Summary

Two separate models are needed, one for 
tensile growth and one for shear growth
Cyclic plasticity governs stress and strain 
ranges

Mean stress effects are a result of crack 
closure on the critical plane
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Separate Tensile and Shear Models
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Cyclic Plasticity

∆ε
∆γ
∆εp

∆γp

∆ε∆σ
∆γ∆τ
∆εp∆σ
∆γp∆τ



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 68 of 125 

Mean Stresses

∆ε eq
f mean

f
b

f f
c

E
N N=

−
+

σ σ
ε

'
'( ) ( )2 2

[ ] 







−

γ∆τ∆+ε∆σ∆=∆
R1

2
)()(W maxnnI

c
f

'
f

b
f

n
'
f

n
max )N2()S5.05.1()N2(

E

2
)S7.03.1(S

2
ε++

σ−σ
+=ε∆+γ∆

co
f

'
f

bo
f

'
f

y

max,n )N2()N2(
G

k1
2

γ+τ=










σ
σ

+γ∆

cb
f

'
f

'
f

b2
f

2'
f1

n )N2()N2(
E2

 +εσ+σ=ε∆σ



Multiaxial Fatigue © 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 69 of 125 

Fracture Mechanics Models

Mode I growth

Torsion
Mode II growth

Mode III growth
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Mode I, Mode II, and Mode III

Mode I
opening

Mode II
in-plane shear

Mode III
out-of-plane shear
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Mode II

Mode III

Surface Cracks in Torsion
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Transverse Longitudinal Spiral

Failure Modes in Torsion
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Fracture Mechanics Models
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Fracture Surfaces

Bending Torsion
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Fracture Mechanics Models Summary

Multiaxial loading has little effect in Mode I

Crack closure makes Mode II and Mode III
calculations difficult
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Nonproportional Loading

In and Out-of-phase loading

Nonproportional cyclic hardening
Variable amplitude
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Findley Model Results

∆τ/2 MPa σ
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N/N
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Nonproportional Hardening
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Stress-Strain Response (continued)
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Stress-Strain on 120° and 150° Planes
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Fatigue Calculations

Load or strain history

Cyclic plasticity model

Stress and strain tensor

Search for critical plane
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Nonproportional Loading Summary

Nonproportional cyclic hardening increases 
stress levels
Critical plane models are used to assess 
fatigue damage
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Notches

Stress and strain concentrations

Nonproportional loading and stressing
Fatigue notch factors

Cracks at notches
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Torsion Experiments
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Multiaxial Loading

Uniaxial loading that produces multiaxial 
stresses at notches

Multiaxial loading that produces uniaxial 
stresses at notches

Multiaxial loading that produces multiaxial 
stresses at notches
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Bending Moments

∆M A B C D
2.82 1 1
2.00 3 2
1.41 2 1
1.00 2
0.71 2

∆ ∆M M= ∑ 55

A B C D

∆M 2.49 2.85 2.31 2.84
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Kt = 3 Kt = 4

Plate and Shell Structures
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Fracture Surfaces in Torsion
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Notches Summary

Uniaxial loading can produce multiaxial 
stresses at notches

Multiaxial loading can produce uniaxial 
stresses at notches

Multiaxial stresses are not very important in 
thin plate and shell structures
Multiaxial stresses are not very important in 
crack growth
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Final Summary

Fatigue is a planar process involving the 
growth of cracks on many size scales

Critical plane models provide reasonable 
estimates of fatigue damage
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