Mechanisms of Fatigue Crack Initiation and Growth

F. V. Lawrence

Fatigue Mechanisms

- Fatigue Crack Initiation Mechanisms
- Fatigue Crack Growth Mechanisms

Process of fatigue

Cyclic slip
Crack initiation
Stage I crack growth
Stage II crack growth
Failure

Planar or wavy slip?

$$d = \frac{G(\mathbf{b}_2 \ \mathbf{b}_3)}{2\pi \ \gamma}$$

Material	γ Stacking Fault Energy ergs cm ⁻²
Aluminum	250
Iron	200
Nickel	200
Copper	90
Gold	75
Silver	25
Stainless Steel	<10
α Brass	<10

Stacking-fault energy effects

Cu-Al alloys, Cu-Zn, Aust. SS

Planar slip in Cu-Al

Ni, Cu, Al Fe

Wavy slip in steel

FCP

Development of cell structures

Planar and wavy slip materials

Wavy slip materials

Planar slip materials

Cyclic Slip - initial arrangements

Cyclic Hardening

Events leading to crack initiation

- Development of cell structures (hardening)
- •Increase in stress amplitude (under strain control)
- •Break down of cell structure to form PSBs
- Localization of slip in PSBs

Crack initiation

Fatigue crack initiation at an inclusion Cyclic slip steps (PSB)

Fatigue crack initiation at a PSB

Effects of strength and ductility

Strain controlled test on smooth specimen

•Strong materials give the best fatigue resistance at long lives; whereas, ductile materials give the best fatigue resistance at short lives

High-cycle fatigue Strength

Stronger materials resist crack initiation better.

Fatigue Mechanisms

- Fatigue Crack Initiation Mechanisms
- Fatigue Crack Growth Mechanisms

Process of fatigue

Cyclic slip
Crack initiation
Stage I crack growth
Stage II crack growth
Failure

Cyclic plastic zone size

$$r_{c} = \frac{1}{\pi} \left(\frac{\Delta K_{I}}{2\sigma_{y}^{'}} \right)^{2}$$

Cyclic plastic zone is the region ahead of a growing fatigue crack in which slip takes place. Its size relative to the microstructure determines the behavior of the fatigue crack, i.e.. Stage I and Stage II behavior.

Stage I crack growth

near - tip plastic zone

Stage I crack growth ($r_c \le d$) is strongly affected by slip characteristics, microstructure dimensions, stress level, extent of near tip plasticity

Stage II crack growth

Stage II crack growth (rc >> d)

Fatigue crack growing in Plexiglas

Behavior of Structural Materials

Crack Growth Rates of Metals

The fatigue crack growth rates for Al and Ti are much more rapid than steel for a given ΔK . However, when normalized by Young's Modulus all metals exhibit about the same behavior.

Crack closure

Crack closure

 Δ Keff = U Δ K

$$U = \frac{\Delta K_{eff}}{\Delta K} = \frac{S_{max} - S_{open}}{S_{max} - S_{min}} = \frac{1}{1 - R} \left(1 - \frac{S_{open}}{S_{max}} \right)$$

Plasticity induced crack closure (PICC)

A, A', A" Crack tip positions

Plastic zones for crack positions A...A"

Plastic wake

Crack Closure Mechanisms

Intrinsic, extrinsic crack closure

Aluminum - crack growth

- •Orientation of microstructural texture
- •Grain size
- Strength
- Environment

Subcritical Crack Growth

- Subcritical Crack Growth
- Measuring Crack Growth
- Use of Paris Power Law
- Variable Amplitude Loads
- Crack Closure
- Small Cracks
- Environmental Effects

Long cracks, short cracks

How fatigue cracks grow and particularly the 3-D aspects of fatigue crack growth is not fully understood.

Short Cracks, Long Cracks

SHORT CRACK

- LESS RESIDUAL DEFORMATION
- · LOWER opp
- HIGHER U = ∆K_{eff} \∆K

LONG CRACK

- MORE RESIDUAL DEFORMATION
- HIGHER opp
- LOWER U = △K_{eff} △K

Crack Growth at a Notch

Cracks growing from notches don't know that that stress field they are experiencing is confined to the notch root.

Growth of Small Cracks

Here the ΔK is the remote stress intensity factor based on remote stresses....

Effects of Environment

- A. Dissolution of crack tip.
- B. Dissolution plus H+ acceleration.
- C. H+ acceleration
- D. Corrosion products may retard crack growth at low ΔK .

Optimum microstructure?

Smooth specimen (Kt ≈ 1) - at long lives life dominated by initiation so pick small, high-strength microstructures

Notched Specimen (Kt ≈ 2) - at long lives initiation and crack growth equally important. Avoid high tensile residuals therefore use lower strength materials

Cracked specimen (Kt > 5) - in the absence of tensile residuals and for near conditions, large grain size preferred

Summary

- Fatigue may be thought of as a failure of the average stress concept; consequently, fatigue usually begins at stress concentrators which are most frequently at the surface of a component.
- Fatigue is a localized process involving the nucleation and growth of cracks to failure.
- Fatigue is caused by plastic deformation.
- The cyclic deformation of metals is fundamentally different from the monotonic deformation.

Summary

- The greatest portion of the fatigue life is spent nucleating and growing a fatigue crack to a length at which it can be detected.
- The range of effective stress intensity factor, that is, the idea of crack closure allows the growth of fatigue cracks to be rationalized.
- The behavior of small cracks is in many respects quite different from long cracks.