Fatigue Overview

F. V. Lawrence

1

Fatigue Overview

- History of Fatigue
- Fatigue Overview
- The Process of Fatigue

Fatigue-prone Machine

Welded Ship - 2 sink each day

FCP

Service Environment?

Determining Service Stresses

FCP

In Better Days

When is the next short course?

Early History

1829	Albert	Effects of repeated loads
1839	Poncelet	"Fatigue"
1843	Rankine	Effect of stress concentrations
1860	Wöhler	Systematic investigations
1886	Bauschinger	Reversed deformation effects
1903	Ewing & Humfrey	Nucleation of "fatigue" cracks
1910	Basquin	Endurance limit

1844 - Rankine

Stress Concentrations- Railroad Axles, the Versailles Accident

William John Macquorn Rankine Born: 2 July 1820 in Edinburgh, Scotland Died: 24 Dec 1872 in Glasgow, Scotland

1860 - Wöhler

Stress-Life (SN) Diagrams

1886 - Bauschinger

Cyclic behavior of materials Bauschinger effect

1903 - Ewings and Humphries

Cyclic deformation leads to the development (initiation) of fatigue cracks....

Mosaic structure

Origins of Fatigue Cracks

Surface roughening through cyclic plastic strains leads to the development of fatigue cracks

Recent Developments

1945	Miner	Accumulation of fatigue "damage"
1954	Coffin & Manson	Plastic strains cause fatigue
1961	Paris	Growth of fatigue cracks correlated with ² K
1970	Elber	Crack closure
1975	Pearson	Behavior of small cracks

1954 - Coffin and Manson

Plastic strains cause the accumulation of "fatigue damage."

1961 - Paris

Growth of fatigue cracks related to the range in stress intensity factor.

1970 - Elber

Critical importance of crack closure and the phenomena which cause it.

1975 - Pearson

Surprising behavior of small fatigue cracks

1980's - UIUC

Development of the local strain approach.

Fatigue caused by notch-root stresses and strains.

Fatigue life consists of both crack nucleation and growth.

20

Fatigue Mechanisms

- History of Fatigue
- Fatigue Overview
- The Process of Fatigue

FCP

Surface Effects in Fatigue

Surface finish	Reducing surface roughness reduces the notch root stresses. Smoother is better!
Designed-in notches	Designed-in notches are a major source of fatigue problems; notches are sites of stress and strain concentration.
Fabrication defects	Fabrication defects particularly crack-like (planar) as opposed to rounded (volumetric) defects are very damaging when oriented perpendicular to the applied stress.
Absolute size	Because most of fatigue life is spent in making a very small crack a little bigger, larger bodies have shorter fatigue lives because of the larger spatial extent of the high stresses in their notch-root stress fields.
Aggressive environments	Chemical attack can create pits at which fatigue cracks start. Corrosion can greatly reduce the portion of fatigue life devoted to fatigue crack initiation and + growth and thus greatly reduce the fatigue strength at long lives.

Material Property Effects

Tensile, yield strength	Higher strength materials resist plastic deformation and hence have a higher fatigue strength at long lives. Most ductile materials perform better at very short fatigue lives.
Temperature	Temperature has little influence except for the ductile-to- brittle transition in BCC metals which phenomenon leads to a very much smaller final flaw size. At high temperatures, creep damage may be superposed on fatigue damage.
Quality of Material	Metallurgical defects such as inclusions, seams, internal tears, and segregated elements can initiate fatigue cracks.
Rate of testing	At high frequencies, the metal component may be self-heated by the imposed plastic deformation. At low frequencies, environmental effects may become more important.

Stress Effects in Fatigue

Stress range	The basic cause of plastic deformation and consequently the accumulation of fatigue damage.
Mean and residual stress	Tensile mean and residual stresses aid the formation and growth of fatigue cracks.
Stress gradients	Bending is a more favorable loading condition than axial loading because (surface initiating) fatigue cracks propagate into lower stress environments.

It depends on who you are....

Example	Envir.	Life	Failure	Perspective
Welded bridge girder	NaCl, variable load histories	10 ⁶	large crack	Large preexisting defects (?), life limited by fatigue crack growth.
Nuclear reactor pressure vessel	H ₂ O, high temps, constant amplitude load histories	10^{5} to 10^{8}	small crack	Small preexisting defects, life limited by fatigue crack growth.
Automotive spot weld in sheet steel	Variable load histories	10^{3} to 10^{8}	visible crack	Initiation of fatigue cracks important, only limited fatigue crack growth possible.
Engine crank shaft	Constant amplitude load histories	10 ⁸	sudden, catastrophic failure	Initiation of fatigue cracks important.

Past Events, Future Behavior?

Design	Failure Analysis
An attempt to predict the future based on expectations: anticipated service loads, component design.	An attempt to explain the past based on evidence: metallography, fractography, computed loads, service records
Motive: save money but avoid premature fatigue failure.	Motive: assignment of blame, understand causes so future failure can be avoided.
Methods: fatigue testing, structural analysis, fatigue life prediction using empirical or analytical methods.	Methods: Fractography, materials tests, fracture mechanics.

Failure analysis

Analysis of past performance

Assignment of fault: Who's going to buy the new bridge?

Silver point bridge failure

Failure analysis

Service life exhausted

28

Design

Avoidance of future problems

Fatigue Mechanisms

- History of Fatigue
- Fatigue Overview
- The Process of Fatigue

FCP

Process of fatigue Intrusions and extrusions

Cyclic slip Crack initiation Stage I crack growth Stage II crack growth Failure

Intrusions and extrusions

One mechanism for the development (initiation) of a fatigue crack

Intrusions and extrusions

Intrusions and extrusions on the surface of a Ni specimen

FCP

33

S = 0

 $S = S_{op}$

Fatigue crack growth

Fatigue fracture surface

Scanning electron microscope image striations clearly visible

Schematic drawing of a fatigue fracture surface

Paris Power Law

I Sensitive to microstructure and environment

II Paris power Law

III Approaching fracture when Kmax ≈ KIC.