VII Improving the fatigue life of weldments

AM 11/03

Outline

- Obvious things to do
- Problems the weld toe
- Fatigue life Improvement Strategies
- Light and heavy industry weldments
- Improving the "bad" weldments

Bad - planar weld discontinuities

- Obvious things to do
- Problems the weld toe
- Fatigue life Improvement Strategies
- Light and heavy industry weldments
- Improving the "bad" weldments

Weld toe is a stress concentration

Slag entrapments at toe?

Virtually eliminates fatigue crack initiation life NI

Cold-lap defects at weld toe

Cold laps virtually eliminate the fatigue crack initiation life (NI)

Such weldments may have an appreciable fatigue crack initiation life (NI)

AM 11/03

Effect of cold lap depth

Effect of cold root radius

Recent study on rail welds

Geometric Parameters

AM 11/03

Weld with a Fin and a Cold Lap

Nominal Weld Geometry

AIVI 11/03

Fins and Cold Laps

AM 11/03

Predicted effect of S_{uBM}

Trends in "Ideal" 1.0-in plate thickness, non-load carrying cruciform weldments fatigue strength.

- R = 0
- Welding residual stresses = 50% of S_{YBM}
- S_{fab} ~ S_{YBM}

Outline

- Obvious things to do
- Problems the weld toe
- Fatigue life Improvement Strategies
- Light and heavy industry weldments
- Improving the "bad" weldments

Good - grind off reinforcement

Good - burr grind weld toe

Very good - full face grinding

Remelted weld toe (laser)

Improvement Strategies

TWI suggestions as to weld improvement procedures

AM 11/03

ASTM A 36 butt weldment

ASTM A 514 butt weldment

32

Outline

- Obvious things to do
- Problems the weld toe
- Fatigue life Improvement Strategies
- Light and heavy industry weldments
- Improving the "bad" weldments

Light, heavy industry weldments

- Light industry weldments are presumed to be fabricated from 1/2" or smaller plate and not to have large fabrication stresses.
- Heavy industry weldments are presumed to be fabricated from larger than 1" thick plates and to possess large fabrication stresses.

Outline

- Obvious things to do
- Problems the weld toe
- Fatigue life Improvement Strategies
- Light and heavy industry weldments
- Improving the "bad" weldments

Weldment with a transverse attachment

Weldments with longitudinal attachments have a low fatigue resistance because of the presence of weld terminations. Starts and stops introduce weld discontinuities. Residual stresses very high. 3-D stress concentrations effects AM 11/03 39

Placement of stress diffuser

Longitudinal attachment with stress diffusers

Effectiveness of a stress diffuser

Longitudinal attachment

Longitudinal attachment with stress diffuser

Effect on M_{K} and N_{P}

- The fatigue strength of "Ideal" weldments can be much improved; whereas, the fatigue strength of "Nominal" weldments cannot.
- Weld toe grinding or weld profile control works best for "Ideal" weldments at short lives. Beware of corrosion pitting.
- Smaller "Ideal" weldments are more susceptible to improvement than larger weldments.
- Fabrication stresses are critically important.

- The behaviors of light and heavy industry weldments are dissimilar.
- Stress relief annealing and over-stressing works best for "Ideal" weldment at long lives. Beware of compressive overloads.
- Fatigue behavior of weldments and effective life improvement methods depends upon weldment size and weld quality
- Stress-diffuser can substantially improve the fatigue life of terminations without post-weld processing.