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i Outline
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i Process of fatigue
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1. Cyclic slip

Cyclic dip occurswithin a
grain and therefore operates on
an atomic scale and are thusis
controlled by features seen at
that scale.
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1. Cyclic slip
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1. Cyclic slip

Cu-Al alloys, Cu-Zn, Aust. SS
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= Stacking-fault energy effects
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1. Cyclic slip
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Dislocation cell structures

1. Cyclic slip in copper
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Stressrange = +£25ka.

60 cycles

1,000 cycles

5,000 cycles

20,000 cycles

80,000 cycles

w10z @ Fatigue of an Fe single crystal 10



i Outline

m 1. Cyclicslip

= 2. Persistent slip bands
(PSB)

= 3. Intrusions and extrusions

s 4. Stage | crack growth

= 5. Stage Il crack growth

AM 11/03

11



2. Persistent slip bands (PSB)

*Development of cell structures (hardening)
Increase in stress amplitude (under strain control)
*Break down of cell structure to form PSBs
L_ocalization of dlip in PSBs
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i Outline
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3. Intrusions and extrusions

|ntrusions and
extrusions on the

surface of a Ni
specimen

AM 11/03

14



i 3. Intrusions and extrusions

Cyclicaly hardened material

Extrusion

Cyclicaly hardened material
Intrusion
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3. Intrusions and extrusions
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Fatigue crack initiation at an inclusion
Cyclic dip steps (PSB)

Fatigue crack initiation at a PSB
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i Outline
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4. Stage | crack growth

Stage | fatigue cracks are the size
of the grains and are thus
controlled by features seen at that
scale: grain boundaries, mean

stresses, environment.
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4. Stage | crack growth
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Cyclic plastic zone is the region ahead of a growing fatigue crack
in which slip takes place. Its size relative to the microstructure
determines the behavior of the fatigue crack, i.e.. Stage | and
Stage Il behavior.
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i 4. Stage | crack growth
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i 4. Stage | crack growth
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Cracks growing from notches
don’t know that that stress
field they are experiencing is
confined to the notch root.

s Crack Growth
at a Notch
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4. Stage | crack growth
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i Outline
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i 5. Stage Il crack growth ip bands
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fatigue crack

Stage Il fatigue cracks much larger
than the grain size and are thus
sensitive only to large scale
microstructural features - texture,

global residual stresses, etc.
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= Stage |l fatigue crack in a weldment
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5. Stage Il crack growth

Scanning electron
microscope image -
striations clearly visible

macroscopic fracture

propagation
direction

Schematic drawing of
a fatigue fracture
surface

crack paths 1-13
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5. Stage |l crack growth
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5. Stage Il crack growth

Plastic wake @ New plastic deformation
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Elastic stresses near a crack tip

VYV UYY

The magnitude stress field near a crack tip depends upon the stress intensity factor (K,).
Wouldn't it be nice if this quantity correlates with the speed with which fatigue cracks
grow? Let'sseeif it works! Rather, let’s seeif we can MAKE it work!

Range of stress intensity factor _
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Geometry correction factor (Y)
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5. Stage |l crack growth
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Crack growth
rate (da/dN) is
related to the
crack tip stress
field and isthus
strongly
correlated with
the range of
stress intensity
factor:
(?K=Y?Svpa).

Paris power law
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5. Stage Il crack growth
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5. Stage |l crack growth
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5. Stage Il crack growth

A. Dissolution of crack tip.

B. Dissolution plus H+
acceleration.

C. H+ acceleration

D. Corrosion products may
retard crack growth at low
?K.

s Effects of
Environment
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The fatigue crack growth rates for Al and Ti are much more rapid than steel for a

given ?K. However, when normalized by Young’s Modulus all metals exhibit

about the same behavior.
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s Crack Growth Rates of Metals
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i Summary

= Fatigue Is a complex process involving
many steps but it may be broken down
Into the Initiation and growth of fatigue
cracks.

= The growth of fatigue cracks is often
considered to be the most important
feature of fatigue from an engineering
perspective.
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