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Talk OutlineTalk Outline

• Examples of High Temperature Problems
• Basic Terminology at High Temperatures
• Introduction to Constraint : Plasticity and ratchetting, 

Out of Phase and In phase TMF
• Experimental Techniques at High Temperatures
• Fatigue Lives of Selected Materials under IF and TMF
• Mechanics- Stress-strain Models
• Life Models-Fatigue-Oxidation and Fatigue-Creep 

Modeling
• Future Directions
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• Railroad Wheels undergoing Friction Braking
• Brake Rotors 
• Pistons, Valves and Cylinder Heads of Spark-

ignition and Diesel Engines
• Turbine Blades and Turbine Disks
• Pressure Vessel and Piping

Examples of  Components 
Experiencing High 

Temperatures

Examples of  Components 
Experiencing High 

Temperatures
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Mechanical Strain
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Braking
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Schematic of a Railroad Wheel,
Strain-Temperature-Stress Changes on the B1 location 
under brake shoe heating (laboratory simulation based 

on strain temperature measurements on wheels)
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Brake Rotor Cracking
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Cylinder Heads (FEM and Fatigue Life Contours)

Inlet Valve

Exhaust Valve

Spark Plug
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Turbine Blades  

TF
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Turbine Blades( Thermo-mechanical fatigue failure)Turbine Blades( Thermo-mechanical fatigue failure)
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Turbine Blades (strain-
temperature variation)  
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Basic Terminology at High 
Temperatures

• What is a high temperature problem?  
Deformation under Constant or Variable 
Stress at homologous temperatures above 
0.35 ( T/Tm >0.35 where Tmis melting 
temperature).

• Stress Relaxation: Decrease in Stress at 
Constant Strain

• Creep: Increase in Strain at Constant Stress
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High temperature
fatigue testing or modeling

TMF
external stresses

TF
internal stresses

HCF
in  0

LCF
in > 0

Isothermal fatigue Non-isothermal fatigue

Isothermal vs. Thermo-mechanical fatigue
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Disk Specimen under TF loading 
(Simovich)
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Limitations in our 
Understanding of  High 

Temperature Material Behavior

Limitations in our 
Understanding of  High 

Temperature Material Behavior

•Experiments on  TMF  are missing 
(difficult, expensive).
•Microstructural damage mechanisms are 
not well understood. 
•Stress-strain (constitutive) models have
not been established
•Proposed failure models have severe 
drawbacks.
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Experimental Techniques at 
High Temperatures

Experimental Techniques at 
High Temperatures
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Total Constraint Total Constraint 
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The compatibility equation

net = th+mech  =  (T-To) + mech

When the  net strain is zero and all of the thermal strain is converted to

 mechanical strain. Then,

mech   = - (T-To)

Total Constraint 
(ctd.) 

Total Constraint 
(ctd.) 
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Two-Bar Model(ctd.)Two-Bar Model(ctd.)
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Simple RelationsSimple Relations

• Equilibrium : A1 1 + A2 2 = P
• Compatability : l1 1 = l2 2

• Strain : 
1 = 1 e + 1 in + 1 th

2 = 2 e

1 th =  ( T- T0 )

1 in = inelastic (plastic) strain

1 e = elastic strain 
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The Concepts of Total, Partial, 
Over and Notch Constraint

The Concepts of Total, Partial, 
Over and Notch Constraint
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The Stress-strain Response under 
Total and  Partial Constraint

The Stress-strain Response under 
Total and  Partial Constraint
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The Stress-strain Response under 
Total and  Partial Constraint (ctd.)
The Stress-strain Response under 
Total and  Partial Constraint (ctd.)
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Out-of-Phase TMF Response

Mechanical Strain
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Stress-strain Behavior under 
Out-of-Phase versus In-Phase 
Stress-strain Behavior under 
Out-of-Phase versus In-Phase 
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Comparison of TMF IP and TMF OP Tests on 
1010 Steel (Jaske’s Data)
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TMF experiments of Coffin
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Thermal Block Histories on 
Steels under Total Constraint
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Hysteresis loops for the tests 
performed at 5x10-3 s-1
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Drag stress recovery
Hyteresis loops at 20°C for the material pre-exposed at 300°C
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Coarsening of the PrecipitatesCoarsening of the Precipitates
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Constitutive Modeling:

Mechanistic  Studies

Requirements for a good model:
• Incorporate strain rate, temperature and mean 

stress effect on stress-strain response
• Incorporate temperature-strain induced 

changes on material’s stress-strain response
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Constitutive Modeling:
• Non-unified Plasticity (stress-strain) Models: 

Plastic strains (time-independent) and creep 
strains are added.

• Unified Creep-Plasticity Models: Plastic strain 
and creep srain is combined as inelastic 
strain.

Mechanistic  Studies
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Requirements for a good model:
• Incorporate stress,strain, thermal expansion, 

mean stress, stress state effect on life
• Predict the effect of temperature, strain rate,

metallurgical changes on life.

Life Prediction ModelingLife Prediction Modeling
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Coffin’s ApproachCoffin’s Approach
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Coffin’s Approach (Frequency 
Modified Life)

Coffin’s Approach (Frequency 
Modified Life)
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Coffin’s ApproachCoffin’s Approach

Advantages:

(1) Simple to use; accounts for frequency effects

Disadvantages;

(1) Not sensitive to location of hold time within the 
cycle (tension or compression).

(2) Does not account for creep damage effects

(3) TMF life prediction not explicitly handled.

(4) No stress-strain model

Advantages:

(1) Simple to use; accounts for frequency effects

Disadvantages;

(1) Not sensitive to location of hold time within the 
cycle (tension or compression).

(2) Does not account for creep damage effects

(3) TMF life prediction not explicitly handled.

(4) No stress-strain model
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Strain Range Partitioning Method(SRP)
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SRP Data on Two Class of Steels
(Manson et al.)
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SRP ApproachSRP Approach

Advantages:

(1) Accounts for location of hold time within a cycle

Disadvantages;

(1) Life curves are often too close, expensive to generate 
all these curves

(2) Does not account for oxidation/environment effects

(3) TMF Life prediction not explicitly handled.

Advantages:

(1) Accounts for location of hold time within a cycle

Disadvantages;

(1) Life curves are often too close, expensive to generate 
all these curves

(2) Does not account for oxidation/environment effects

(3) TMF Life prediction not explicitly handled.
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• Damage per cycle is sum of the dominant 
mechanisms  Dfat, Dox , Dcreep.

• The terms in the damage equations should be 
physically based, specifically, they should be 
linked to specific experiments, stress-strain 
behavior and microstructural observations. 

Development of a Mechanism Based 
Failure Model (Sehitoglu et al.)

Development of a Mechanism Based 
Failure Model (Sehitoglu et al.)
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• Neu, Sehitoglu, Boismier, Kadioglu, 1987-

1
Nf

ox = hcr  o
Box Kpeff

-1
   2 mech

ox 2
 +1

 (1-a'/)

This equation accounts for the strain range at the 
oxide tip hence the oxide-metal properties the shape
of the oxide are included. 

depends  on the temperature strain history

and the temperature- time variation in the cycle.

Fatigue - Oxidation Models 
(ctd.) 

Fatigue - Oxidation Models 
(ctd.) 

 ox  Kpeff
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Combined Damage Model 
Predictions

Combined Damage Model 
Predictions
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Combined Damage Model 
Predictions (1070 Steel)

Combined Damage Model 
Predictions (1070 Steel)
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Combined Damage Model 
Predictions (1070 Steel)

Combined Damage Model 
Predictions (1070 Steel)
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Combined Damage Model

Advantages:

(1) Accounts for TMF loading.

(2) Damage due to oxidation and creep are included.

Disadvantages:

(1) Requires some time to understand how it all works.

Advantages:

(1) Accounts for TMF loading.

(2) Damage due to oxidation and creep are included.

Disadvantages:

(1) Requires some time to understand how it all works.
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• Modified Strain-Life Relation

- initial pore size
– fatigue strength coefficient
– fatigue strength exponent
– fatigue ductility coefficient
– fatigue ductility exponent

C'
b

 f
'

c

Fatigue Damage Equation

a0

mech

2
 C'a0

2b
2b (2N f

fat )
1
b  f

' (2N f
fat )c
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- empirical constants
- activation energy
- universal gas constant
- hydrostatic stress
- effective stress
- initial pore size

Cc ,mc


 H

H
R

Creep Damage Equation

a0

Dcr  Cc(mc 1)a0
mc 1  H

 H







n1 exp 
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dt
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TMF IP versus TMF OP Comparison- Al 319 
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Initial Voids and after TMF IP
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Future DirectionsFuture Directions

• A simple model is developed to predict life
for a given mechanical strain range, maximum
temperature, and material.

• Given a strain and temperature field in a component,
the model can predict the most critical location where
crack nucleation will occur.



Huseyin Sehitoglu

Department of Mechanical Science and Engineering
59

University of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-Champaign

• Given an elastic strain, temperature history 
from FEM, the model is able to predict the 
stresses and plastic strains assuming the 
mechanical strain is equal to the elastic strain 
from FEM.  This is known as the ‘ strain 
invariance method’. 

• To predict component behavior the model 
accounts for the initial defect size.

Future Directions (ctd.)Future Directions (ctd.)


