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Examples of Components

Experiencing High
Temperatures

Railroad Wheels undergoing Friction Braking
Brake Rotors

Pistons, Valves and Cylinder Heads of Spark-
Ignition and Diesel Engines

Turbine Blades and Turbine Disks
Pressure Vessel and Piping
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Railroad Wheels under Friction
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Schematic of a Railroad Wheel,
Strain-Temperature-Stress Changes on the B1 location

under brake shoe heating (laboratory simulation based
on strain temperature measurements on wheels)
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Brake Rotor Cracking
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Cylinder Heads (FEM and Fatigue Life Contours)

Spark Plug %

Inlet Valve

Exhaust Valve
1gineering
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Turbine Blades
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Turbine Blades( Thermo-mechanical fatigue failure)
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Turbine Blades (strain-

temperature variation)
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Basic Terminology at High

Temperatures

 What is a high temperature problem?
Deformation under Constant or Variable
Stress at homologous temperatures above
0.35 ( T/T,, >0.35 where T,,is melting
temperature).

e Stress Relaxation: Decrease in Stress at
Constant Strain

e Creep: Increase in Strain at Constant Stress

Department of Mechanical Science and Engineering
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Isothermal vs. Thermo-mechanical fatigue

High temperature
fatigue testing or modeling

Isothermal fatigue Non-isothermal fatigue

TF
Internal stresses

TMF
external stresses
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Disk Specimen under TF loading
(Simovich)
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Limitations In our

Understanding of High
Temperature Material Behavior

Experiments on TMF are missing
(difficult, expensive).

Microstructural damage mechanisms are
not well understood.

eStress-strain (constitutive) models have
not been established

Proposed failure models have severe
drawbacks.
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Experimental Techniques at

High Temperatures
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Total Constraint
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Total Constraint

The compatibility equation

€net = &th*&mech = & (T-To) + €mech
When the net strain is zero and all of the thermal strain is converted to
mechanical strain. Then,

€mech =-0 (T-Typ)

Department of Mechanical Science and Engineering

Huseyin Sehitoglu

17



University of lllinois at Urbana-Champaign

Two-Bar Model(ctd.)
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Simple Relations

e Equilibrium: A;c,+A,0,=P
 Compatability : 1, &,=1,¢,
e Strain :
€ “&€ef€1inTE1Lth
& ~&e
€1th=a(T-To)

€1in = inelastic (plastic) strain

€] o = ¢elastic strain

Department of Mechanical Science and Engineering
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The Concepts of Total, Partial,

Over and Notch Constraint
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The Stress-strain Response under

Total and Partial Constraint
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The Stress-strain Response under

Total and Partial Constraint (ctd.)
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Stress-strain Behavior under

Out-of-Phase versus In-Phase
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Some Definitions

Inelastic Strain range:

lg_iu lod

Agin = Agyy - E-)
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Comparison of TMF IP and TMF OP Tests on

1010 Steel (Jaske’s Data)
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TMF experiments of Coffin
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Thermal Block Histories on
Steels under Total Constraint

Thermal Block History
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Teny
Cratiguc
a trusted source for fatigue analysis
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Thermo Mechancial Calculator
Thermo Mechancial Materials
Thermo Mechanical Background

Thermo Mechanical Technical Background

Thermomechanical fatigue (TMF) is caused by combined thermal and mechanical loading where both the stresses and temperatures vary with time. This type
of loading can be more damaging by more than an order of magnitude compared with isothermal fatigue at the maximum operating temperature. Material
properties, mechanical strain range, strain rate, temperature, and the phasing between temperature and mechanical strain all play a role in the type of
damage formed in the material. These types of loadings are most frequently found in start-up and shut-down cycles of high temperature components and
equipment. Typically, design lives are a few thousand cycles and involve significant plastic strains.

One of the major differences between isothermal and thermal mechanical fatigue is constraint. When heated, structures develop thermal gradients as they
expand. Expansion near stress concentrators is often constrained by the surrounding cooler material. In this case thermal strain is converted into mechanical
strain which causes fatigue damage in the structure. Total constraint exists when all of the thermal strain is converted into mechanical strain. Over constrain
can occur in a stress concentration where the mechanical strain is greater than the thermal strain. One measure of the degree of constraint is the ratio of the
thermal and mechanical strain rates.

TMF loading is often described to be in-phase (IP) or out-of-phase (OP). A schematic illustration of the stress-strain response under these two loadings is
given in Figure 1. In IP loading, the maximum temperature and strain occur at the same time. In OP loading, the material experiences compression at highest
temperature and tension at lower temperatures. IP loading is more likely to cause oxidation damage because an oxide film can form in compression at the
higher temperature and then rupture during the subsequent low temperature tensile portion of the loading cycle where the oxide film is more brittle.

T

a max

{
~
{

Trae

Out-of-phase In-phase

Figure 1 Load and Temperature Phasing
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e for fatigue analysis

Thermo Mechanical Analysis

Enter as much data as you know. If it is not enough, you will be asked for more. Fields with a light blue/gray background represent the minimum required data

to begin calculations. Other data may become necessary as calculation proceeds. Pressing the ' button provides help in the form of an equation or default
information for a parameter.

Experienced user mode is off. Turn experienced user mode on for a more concise form.
Experienced User On

Click on the button below to learn by example:

Frearnty Bxarnole?)
{ Learn By Example

Loading

You may enter the loading in a series of text boxes, paste from the clipboard or as a triangle wave.

Units for e (mm/mm —73)
Units for T (¢ %)
Units for At sec %)

Clipboard Iriangle

Enter up to ten points. You may paste tab and newline delimited text (such as would be copied from a spreadsheet) into a box, and it will be expanded
out automatically. The cycle begins at £x=0 and T=20°C

Initial Monotonic Loading

Point &, T At Control Mode

1 Total Strain »:3 remove

2 [ Total Strain i3] remove
3 Total Strain % remove

VT TP R
Add A Datapoint

Cyclic Loading

Point €, Control Mode

1 | Total Strain 1%] remove

2 [ Total Strain i4] remove

Add A Datapoint )
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Text Boxes Clipboard Iriangle

Enter up to ten points. You may paste tab and newline delimited text (such as would be copied from a spreadsheet) into a box, and it will be expanded
out automatically. The cycle begins at £x=0 and T=20°C

Initial Monotonic Loading

Point €, T At Control Mode
1 [0.005 [550 120 L Mechanical Strain s | remove
CAdd & Datanoint)

Add A Datapoint

Cyclic Loading

Point &, T At Control Mode
1 -0.005 |100 120 |_Mechanical Strain  |§] remove
2 0.005 [550 ]120 L Mechanical Strain s | remove
P e |

Add A Datapoint )

Use the Plot button below to verify that the correct loading information was entered.

You can plot the cyclic loading history to verify the input data.

( 3 EClealoadings
Plot Clear Loading

& aiigue & aligue & aligue

Tesgerature C
t
Tengerature C
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Stress Strain Properties

[ 2(&) e () (£)=!
oo [(8) o (HE) ()1
Q= 1.18E-5
E =210000 + -35 T+ o T2 MPA for T < (435
318100 + -283 T+ o T2 MPA
n, = s4
n,= 83
Ko =256 + 0 T+ o.0014 T2 MPA for T < 304
568 + -0.6 T+o T2 MPA
A, = 4.089

AHin — 210600
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A pie chart showing the relative damage for each failure mechanism is given first.

~Fael

€1 arigue

Creep Damage

Stress strain plots are given next for mechanical strain, thermal strain, and inelastic strain vs stress.

B - Bast
&+ siigue & diigue & diigue
00 600 600
400 00 400
00 200 00
» o o -
H H L ‘
. 0 e 0 - 0 |
: ¢ e
S = =
a o 4
00 ~200 00
400 -400 400
“0.008 «0.006 <=0.004 «0.002 0 0.002 0.004 0.006 0.008 “0.008 «0.006 <0.004 «0.002 [} 0.002 0.004 0.006 0.008 “0.008 «0.006 <«0.004 =0.002 o 0.002 0.004 0.006 0.008
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Numerical data for the stress strain plots is available in a tab delimited format that can be used with the clipboard or saved as a text file.
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Constitutive Modeling-
Experimentally Determined Flow Rule

 Plasticity
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TMFE OP 100-300°C 1.0%
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Hysteresis loops for the tests

performed at 5x103 s-1
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Drag stress recovery

Hyteresis loops at 20°C for the material pre-exposed at 300°C

Stress (MPa)
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Coarsening of the Precipitates

Department of Mechanical Science and Engineering
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TMF OP Stress-Strain Prediction

300
b TMF OP AT=100-300°C, Ae=0.6%, 5x10°s *
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200
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7 0
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Mechanistic Studies

Constitutive Modeling:

Requirements for a good model:

* Incorporate strain rate, temperature and mean
stress effect on stress-strain response

e Incorporate temperature-strain induced
changes on material’s stress-strain response

Department of Mechanical Science and Engineering
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Mechanistic Studies

Constitutive Modeling:

 Non-unified Plasticity (stress-strain) Models:
Plastic strains (time-independent) and creep
strains are added.

« Unified Creep-Plasticity Models: Plastic strain
and creep srain is combined as inelastic

strain.

Department of Mechanical Science and Engineering
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Life Prediction Modeling

Requirements for a good model:

e Incorporate stress,strain, thermal expansion,
mean stress, stress state effect on life

* Predict the effect of temperature, strain rate,
metallurgical changes on life.

Department of Mechanical Science and Engineering
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Coffin’s Approach
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STRAIN SCALE
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Coffin’s Approach (Frequency

Modified Life)
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Coffin’s Approach

Advantages:
(1) Simple to use; accounts for frequency effects
Disadvantages;

(1) Not sensitive to location of hold time within the
cycle (tension or compression).

(2) Does not account for creep damage effects
(3) TMF life prediction not explicitly handled.

(4) No stress-strain model

Department of Mechanical Science and Engineering
Huseyin Sehitoglu 44



University of lllinois at Urbana-Champaign

Strain Range Partitioning Method(SRP)
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SRP Data on Two Class of Steels

(Manson et al.)
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- Summary of partitioned strain-life rela- - - Summary of partitioned strain-life relations.
tions. 2% Cr - 1 Mo steel, 1100 F (865 K). Type 316 stainless steel, 1300 F (980 K).
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SRP Approach

Advantages:
(1) Accounts for location of hold time within a cycle
Disadvantages;

(1) Life curves are often too close, expensive to generate
all these curves

(2) Does not account for oxidation/environment effects

(3) TMF Life prediction not explicitly handled.

Department of Mechanical Science and Engineering
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Development of a Mechanism Based

Failure Model (Sehitoglu et al.)

« Damage per cycle is sum of the dominant
mechanisms Dgy, Doy, Deeep:

« The terms in the damage equations should be
physically based, specifically, they should be
linked to specific experiments, stress-strain
behavior and microstructural observations.

Department of Mechanical Science and Engineering
Huseyin Sehitoglu

48



University of lllinois at Urbana-Champaign

Fatigue - Oxidation Models

 Neu, Sehitoglu, Boismier, Kadioglu, 1987-

1 X 24
L — hcr 6o B 2 [Agr?lech] ¥
Nt BO™ Ko (g)(l'a'/ P)

This equation accounts for the strain range at the
oxide tip hence the oxide-metal properties the shape
of the oxide are included.

R Kpetf  depends on the temperature strain history

and the temperature- time variation in the cycle.

Department of Mechanical Science and Engineering
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Mechanical Strain Range

Combined Damage Model

Predictions

10"

—
()

—
()

10

'
[\

'
(98]

WAP319-T7B Small SDAS

30001C Dox=0
r R

30001C Dox

RT 40Hz
250L1C 0.5Hz

25001C 5 x10s '

3000C 5 x10s |
TMF OP 100-30011(

44X e > 0®

TMF IP 100-30001C

All Fatigue Results

10

10° 10’

10° 10° 10°
Department ofNjechanical Science and Engineering

10’ 10°

Huseyin Sehitoglu

50



University of Illinois at Urbana-Champaign

Combined Damage Model

Predictions (1070 Steel)
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Combined Damage Model

Predictions (1070 Steel)
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Combined Damage Model

Advantages:
(1) Accounts for TMF loading.

(2) Damage due to oxidation and creep are included.

Disadvantages:

(1) Requires some time to understand how it all works.
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Fatigue Damage Equation

» Modified Strain-Life Relation

Ag 0 =
e Ca NJ) +2 N )

a() - initial pore size
C' — fatigue strength coefficient
— fatigue strength exponent
g’ — fatigue ductility coefficient
f C- fatigue ductility exponent

Department of Mechanical Science and Engineering
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Creep Damage Equation

D—nﬂ AH\ C
eXp R/ Ut

D" =C.(m_,-Da,*" _[

C.,m_ -empirical constants
AH - activation energy
R - universal gas constant
o, hydrostatic stress
__ - effective stress
O-aO - initial pore size

Department of Mechanical Science and Engineering
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TMF IP versus TMF OP Comparison- Al 319

WAP EAP Prediction
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Initial Voids and after TMF IP
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Future Directions

« Asimple model is developed to predict life
for a given mechanical strain range, maximum
temperature, and material.

* Given a strain and temperature field in a component,
the model can predict the most critical location where
crack nucleation will occur.
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Future Directions (ctd.)

Given an elastic strain, temperature history
from FEM, the model is able to predict the
stresses and plastic strains assuming the
mechanical strain is equal to the elastic strain
from FEM. This is known as the * strain
Invariance method’.

To predict component behavior the model
accounts for the initial defect size.
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