Notches in Fatigue

Professor Stephen Downing Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

© 2002-2012 Darrell Socie, All Rights Reserved

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Stress Concentration Factor

Fatigue Seminar

Define K_{σ} and K_{ϵ} after Yielding

Nominal Stress

Stress calculated with elastic assumptions

Neuber's Rule for Fatigue

Stress and strain amplitudes

	$K_t \Delta S K_t \Delta e$		_ ΔσΔε
	2	2	2 2
Elastic nominal stress	٨		
	Δ	$\frac{\Delta e}{\Delta =} = \frac{\Delta S}{\Delta S}$	
		2 2E	
Substitute and rearrange	е		

$$K_t \frac{\Delta S}{2} = \sqrt{E \frac{\Delta \sigma}{2} \frac{\Delta \varepsilon}{2}}$$

The product of stress times strain controls fatigue life

SN Materials Data

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Stress analysis and stress concentration factors are independent of size and are related only to the ratio of the geometric dimensions to the loads

Fatigue is a size dependant phenomena

How do you put the two together ?

Fatigue of Notches

From Dowling, Mechanical Behavior of Materials, 1999

Fatigue Seminar

© 2002-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Large Notch

Small Notch

Low Strength

High Strength

Low K_t

High K_t

Fatigue Seminar

© 2002-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

Stress concentrations are not very important at short lives

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Once a crack reaches 10% of the hole radius, it behaves as if the hole was part of the crack

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Crack Growth Data

Nonpropagating cracks

$$\Delta K_{TH} > \Delta \sigma 1.12 \frac{2}{\pi} \sqrt{\pi a}$$

Frost, "A Relation Between the Critical Alternating Propagation Stress and Crack Length for Mild Steel" Proceedings of the Institute for Mechanical Engineers, Vol. 173, No. 35, 1959, 811-836

Fatigue Seminar

© 2002-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

For $K_t > 4$, the notch acts like a crack with a depth D

$$S_{fl} = \frac{\Delta K_{th}}{\sqrt{\pi D}}$$

K_t does not play a role for sharp notches !

Specimens with Similar Geometry

Ultimate Strength 780 MPa Yield Strength 660 MPa

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Small Crack Growth

12 Difference in propagation rates da/dN of short and long fatigue cracks as function of stress intensity factor range ΔK for 3%Si iron of yield strength $\sigma_0 = 431 \text{ MNm}^{-2}$ (Ref. 70)

Threshold

16 Variation of threshold stress intensity range $\Delta K_{\rm th}$ with short crack length *a* in G40.11 austenitic 0.45%C steel, $\sigma_0 = 550 \, {\rm MNm^{-2}}$, 0.035%C mild steel, $\sigma_0 = 242 \, {\rm MNm^{-2}}$, and Al-Zn-Mg alloy, $\sigma_0 = 180 \, {\rm MNm^{-2}}$ (Ref. 69)

Fatigue Seminar

© 2002-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

38 of 50

Growth from Notches

24 Propagation rate da/dN of cracks emanating from notches as function of maximum stress intensity factor K_{\max} in 0.15%C mild steel; k_t is theoretical elastic stress concentration factor, R stress ratio, and R_{ϵ} edge strain ratio¹¹⁰

Fatigue Seminar

© 2002-2012 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved

 ΔK or a

Closure Observations

Closure Correlation

Outline

- 1. Notch Rules
- 2. Fatigue Notch Factor
- 3. Stress Intensity Factors for Notches
- 4. Frost Data and K_f
- 5. Small Crack Growth
- 6. Small Notches

Small Notches

Threshold Stress Intensity

Hardness Corelation

Flaw Sensitivity

Notches in Fatigue